各向异性导电膜及连接结构体的制作方法

文档序号:12514453阅读:276来源:国知局
各向异性导电膜及连接结构体的制作方法与工艺

本发明涉及各向异性导电膜、使用各向异性导电膜的连接方法、以及通过各向异性导电膜连接而成的连接结构体。



背景技术:

各向异性导电膜在将IC芯片等电子部件安装于基板时被广泛使用。近年来,移动电话、笔记本电脑等小型电子设备中要求配线的高密度化,作为使各向异性导电膜应对该高密度化的方法,已知在各向异性导电膜的绝缘粘接剂层中以格子状均等配置导电粒子的技术。

然而,即使将导电粒子均等配置,也会产生导通电阻不一致这样的问题。这是因为,位于端子边缘上的导电粒子会因绝缘性粘合剂的熔融而向间隙流出,不易被上下端子夹持。对于该问题,提出了将导电粒子的第一排列方向设为各向异性导电膜的长边方向,使与第一排列方向交叉的第二排列方向相对于与各向异性导电膜的长边方向正交的方向倾斜5°以上15°以下(专利文献1)。

现有技术文献

专利文献

专利文献1:日本特许4887700号公报



技术实现要素:

发明所要解决的课题

然而,如果由各向异性导电膜连接的电子部件的凸块尺寸进一步减小,则可被凸块捕集的导电粒子的个数也会进一步减少,对于专利文献1中记载的各向异性导电膜而言,有时无法充分得到导通可靠性。特别是,将用于控制液晶画面等的IC连接于玻璃基板上的透明电极的、所谓COG(玻璃覆晶,Chip on Glass)连接中,因与液晶画面的高精细化相伴随的多端子化和IC芯片的小型化从而凸块尺寸变小,此外,进行将用于电视的显示器的玻璃基板和柔性印刷配线板(FPC:Flexible Printed Circuits)接合的FOG(玻璃上膜,Film on Glass)连接时,连接端子形成微间距,从而使可被连接端子捕集的导电粒子数增加而提高导通可靠性也成为课题。

因此,本发明的课题是,不仅在以往的FOG连接、COG连接中,在微间距的FOG连接、COG连接中,也可使用各向异性导电膜获得稳定的导通可靠性。

用于解决课题的方法

本发明人发现,在将导电粒子以格子状配置的各向异性导电膜中,为了以高密度配置导电粒子,并且各向异性导电连接时不引起短路,关于作为基准的任意的导电粒子(以下,称为基准导电粒子)、和与基准导电粒子最接近的第一导电粒子或其次接近的第二导电粒子,通过使基准导电粒子在各向异性导电膜的长边方向及短边方向上的投影像与第一导电粒子或第二导电粒子重叠,并且将它们的重叠宽度设为特定的范围,能够提高各向异性导电膜的连接可靠性,从而想到了本发明。

即,本发明提供一种各向异性导电膜,其是包含绝缘粘接剂层和以格子状配置于该绝缘粘接剂层中的导电粒子的各向异性导电膜,

关于基准导电粒子、

最接近于基准导电粒子的第一导电粒子、以及

第二导电粒子,该第二导电粒子是与第一导电粒子同等地或次于第一导电粒子地接近于基准导电粒子的导电粒子、且不存在于包含基准导电粒子和第一导电粒子的格子轴上,

基准导电粒子在各向异性导电膜的长边方向上的投影像与第一导电粒子或第二导电粒子重叠,

基准导电粒子在各向异性导电膜的短边方向上的投影像与第二导电粒子或第一导电粒子重叠,

基准导电粒子在各向异性导电膜的长边方向上的投影像与第一导电粒子或第二导电粒子的重叠区域在各向异性导电膜的短边方向上的最大宽度(以下,称为在各向异性导电膜的长边方向上相邻的导电粒子的重叠宽度)、以及基准导电粒子在各向异性导电膜的短边方向上的投影像与第二导电粒子或第一导电粒子的重叠区域在各向异性导电膜的长边方向上的最大宽度(以下,称为在各向异性导电膜的短边方向上相邻的导电粒子的重叠宽度)中的至少一方小于导电粒子的粒径的1倍。

此外,本发明提供一种连接结构体,其是第一电子部件和第二电子部件通过上述各向异性导电膜进行各向异性导电连接而成。

发明效果

根据本发明的各向异性导电膜,通过将导电粒子以高密度配置于绝缘粘接剂层中,从而即使进行各向异性导电连接的端子的面积变窄,也能够将导电粒子有效捕集于该端子,并且即使端子被形成为微间距,也能够抑制因导电粒子而发生短路。

附图说明

图1是实施例的各向异性导电膜1A中的导电粒子的配置图。

图2是实施例的各向异性导电膜1B中的导电粒子的配置图。

图3是实施例的各向异性导电膜1C中的导电粒子的配置图。

图4是实施例的各向异性导电膜1D中的导电粒子的配置图。

图5是比较例的各向异性导电膜1x中的导电粒子的配置图。

图6是比较例的各向异性导电膜1y中的导电粒子的配置图。

具体实施方式

以下,一边参照附图一边详细说明本发明。予以说明的是,各图中同一符号表示相同或等同的构成要素。

图1是本发明的一个实施例的各向异性导电膜1A中的导电粒子P的配置图。该各向异性导电膜1A具有绝缘粘接剂层10、和以格子状的配置固定于绝缘粘接剂层10中的导电粒子P。

更具体而言,导电粒子P以正方形格子或长方形格子配置于绝缘粘接剂层10内,包含基准导电粒子P0和最接近于该基准导电粒子P0的第一导电粒子P1的格子轴(以下,称为第一排列轴A1)相对于各向异性导电膜1A的长边方向F1及短边方向F2倾斜。这里,基准导电粒子P0与第一导电粒子P1的中心间距离为L1。

此外,包含第二导电粒子P2和基准导电粒子P0的格子轴(以下,称为第二排列轴A2)也相对于各向异性导电膜1A的长边方向F1及短边方向F2倾斜,该第二导电粒子P2是与第一导电粒子P1同等地或次于第一导电粒子P1地接近于基准导电粒子P0的导电粒子、且不在第一排列轴A1上。这里,如果将基准导电粒子P0与第二导电粒子P2的中心间距离设为L2,则L2≥L1。

基准导电粒子P0与第一导电粒子P1的中心间距离L1、以及基准导电粒子P0与第二导电粒子P2的中心间距离L2可根据应用各向异性导电膜的FOG连接、COG连接等而适宜决定,通常分别为导电粒子P的粒径D的1.5~2000倍,但FOG连接的情况下,优选为2.5~1000倍,更优选为3~700倍,特别优选为大于5倍且小于400倍。COG连接的情况下,优选为1.5~5倍,更优选为1.8~4.5倍,特别优选为2~4倍。通过这样高密度地配置导电粒子P,从而即使使用各向异性导电膜1A进行各向异性导电连接的端子的面积窄,导电粒子P也可被有效地捕集于该端子,获得导通可靠性。相对于此,如果中心间距离L1、L2过短,则使用各向异性导电膜对端子间进行连接的情况下,容易发生短路,相反,如果过长,则被捕集于端子间的导电粒子数会不充分。

该各向异性导电膜1A中,基准导电粒子P0在各向异性导电膜的长边方向上的投影像q1(即,将基准导电粒子P0用各向异性导电膜1A的长边方向F1上的平行光投影时的像)与第一导电粒子P1重叠,并且基准导电粒子P0在各向异性导电膜的短边方向F2上的投影像q2(即,将基准导电粒子P0用各向异性导电膜1A的短边方向F2上的平行光投影时的像)与第二导电粒子P2重叠。进一步,在各向异性导电膜1A的长边方向F1上相邻的基准导电粒子P0与第一导电粒子P1的重叠宽度W1、和在各向异性导电膜1A的短边方向F2上相邻的基准导电粒子P0与第二导电粒子P2的重叠宽度W2分别大于导电粒子P的粒径D的0倍且小于1倍,优选为小于0.5倍。

另外,本发明中,导电粒子P的粒径D是各向异性导电膜中所使用的导电粒子的平均粒径。从防止短路和所连接的端子间接合的稳定性方面考虑,导电粒子P的粒径D优选为1~30μm,更优选为2~15μm。另外,导电粒子的粒径D与粒子中心间距离的范围密切相关,例如,一般的FPC配线的情况下,连接区域长度通常为2mm,如果一个排列轴上粒径1μm的2个导电粒子带有导电粒径0.5倍的余量而被捕集,则可算出粒子中心间距离的上限为粒径的1998倍(该情况下,该排列轴与相邻排列轴的距离充分短)。粒径为2μm及3μm的FOG连接的情况下,基于上述同样的理由,也可算出粒子中心间距离的上限分别为粒径的998倍及663.7μm(也是可包含2mm内存在3个1μm的导电粒子的情况的范围)。此外,关于一般的FPC配线,将其宽度设为200μm、L/S=1的情况下,如果在作为配线宽度和其间隙的合计的400μm内,一个排列轴上最小直径1μm的2个导电粒子带有导电粒径0.5倍的余量地存在且相较于配线的端部更存在于内侧,则可算出粒子中心间距离的上限小于粒径的398倍。此外,关于粒子中心间距离的下限,导电粒子的粒径D为30μm的情况下,相当于可带有余量而配置的间隔。

该各向异性导电膜1A中,如上所述,长边方向F1上相邻的基准导电粒子P0与第一导电粒子P1的重叠宽度W1、和各向异性导电膜1A的短边方向F2上相邻的基准导电粒子P0与第二导电粒子P2的重叠宽度W2均小于导电粒子P的粒径D的1倍,但本发明中,只要这些重叠宽度W1、W2中的至少一方小于导电粒子P的粒径D的1倍即可。换言之,双方的重叠宽度W1、W2不同时等于导电粒子P的粒径D。即,不是以下的情况:基准导电粒子P0的投影像q1与第一导电粒子P1或第二导电粒子P2完全重叠,并且基准导电粒子P0的投影像q2与第二导电粒子P2或第一导电粒子P1完全重叠。

通过这样调整重叠宽度W1、W2,从而即使以高密度配置导电粒子P也没关系,使用各向异性导电膜1A将端子进行各向异性导电连接的情况下,能够抑制端子间发生短路。此外,即使是在高密度配置的状态下,通过有意地错开,从而制造各向异性导电膜时即使发生不良也可容易地检测。例如,通过在任意部位中,在面视场图像中划出膜的长边、短边或相对于它们预先设计的倾斜角度的直线(辅助线),从而可容易地确认是否与当初设计一致地形成排列轴。

关于该短路发生的抑制效果,认为是通过导电粒子P与绝缘粘接剂层10的如下作用机理而获得。即,使用各向异性导电膜1A将电子部件的连接端子3进行各向异性导电连接的情况下,例如,如图1所示,通过将各向异性导电膜1A的长边方向F1和连接端子3的短边方向对合,利用覆盖连接端子3的加热头进行加热加压,则绝缘粘接剂层10熔融,该熔融的树脂向箭头X方向流动,随着熔融的树脂的流动,连接端子3间的导电粒子P也向箭头X方向移动。这里,如果如图5中示出的比较例的各向异性导电膜1x那样,重叠宽度W1及W2双方均等于导电粒子P的粒径D,则各向异性导电连接时连接端子3间的导电粒子P会在箭头X方向以及与其正交的方向排成一列,随着熔融的树脂的流动,导电粒子P容易发生3个以上的多个导电粒子P的连结。因此,将微间距的连接端子进行连接的情况下,容易引起短路。

与此相对,该各向异性导电膜1A中,如图1所示,X方向上相邻的导电粒子P3、P1、P4在各向异性导电膜1A的长边方向F1上的位置存在偏离,因而打乱熔融的树脂的流动,防止因熔融的树脂而流动后3个以上导电粒子连结,即使是微间距的连接端子也能够不发生短路地进行连接。即,能够使膜的熔融粘度的设计带有余地。例如,如果为了使导电粒子以高密度存在且抑制导电粒子的流动而将熔融粘度设计为较高,则会产生阻碍挤入的担忧。但是,通过如上设计,容易避免这样的问题。此外,配合设计阶段中也容易掌握流动状态的行为,因此也可有助于设计工时的减少。

该微间距的连接中,在包含相互连接并且相对的连接端子的、连接端子的并列方向上,可将隔着间隙而相邻的最小端子间距离(该距离在能够各向异性导电连接的范围内可在并列方向上存在偏差)设为小于导电粒子的粒径D的4倍。该情况下,所连接的端子的连接面的短边方向的宽度可设为小于导电粒子的粒径D的7倍。

此外,如图6所示的比较例的各向异性导电膜1y那样,最接近于基准导电粒子P0的第一导电粒子P1不与基准导电粒子P0在各向异性导电膜的长边方向F1上的投影像q1重叠,也不与短边方向F2上的投影像q2重叠,比第一导电粒子P1更远离基准导电粒子P0的导电粒子Px、Py与基准导电粒子P0的投影像q1、q2重叠的情况下,导电粒子P的密度降低,因此不易发生短路。然而,由于导电粒子P的密度低,因此应当连接的端子的尺寸小的情况下,导电粒子P不易被端子3捕集,导通可靠性差。一般而言,如相同图所示,IC芯片等中并列有多个连接端子3,各向异性导电膜对连接端子的贴合沿着连接端子3的排列方向进行,但如果该贴合时发生偏离、挠曲,则连接端子3上稀疏配置的导电粒子P更难以被连接端子捕集。

与此相对,本发明的各向异性导电膜1A能够使导通可靠性提高。

本发明的各向异性导电膜中,关于导电粒子的配置,可采取各种各样的方式。例如,上述各向异性导电膜1A中,可设为基准导电粒子P0在各向异性导电膜1A的长边方向F1上的投影像q1与第二导电粒子重叠,基准导电粒子P0在各向异性导电膜1A的短边方向F2上的投影像q2与第一导电粒子重叠。

此外,可如图2所示的各向异性导电膜1B那样,将上述各向异性导电膜1A中导电粒子P的配置设为菱形格子,进一步使在各向异性导电膜的短边方向F2上相邻的基准导电粒子P0与第二导电粒子P2的重叠宽度W2等于导电粒子P的粒径D。该情况下,在各向异性导电膜1B的长边方向F1上相邻的基准导电粒子P0与第一导电粒子P1的重叠宽度W1小于导电粒子P的粒径D的1倍,优选设为小于0.5倍。该方式中,优选基准导电粒子P0在各向异性导电膜的长边方向F1上的外切线与第一导电粒子P1的外切线不重合。即,优选基准导电粒子P0在各向异性导电膜的长边方向F1上的外切线穿过第一导电粒子P1。

可以如图3所示的各向异性导电膜1C那样,将上述各向异性导电膜1A中导电粒子P的配置设为菱形格子,进一步使在各向异性导电膜的长边方向F1上相邻的基准导电粒子P0与第一导电粒子P1的重叠宽度W1等于导电粒子P的粒径D。该情况下,在各向异性导电膜1C的短边方向F2上相邻的基准导电粒子P0与第二导电粒子P2的重叠宽度W2小于导电粒子P的粒径D的1倍,优选设为小于0.5倍。该方式中,优选基准导电粒子P0在各向异性导电膜的短边方向F2上的外切线与第二导电粒子P2的外切线不重合。即,优选基准导电粒子P0在各向异性导电膜的短边方向F2上的外切线穿过第二导电粒子P2。

如该各向异性导电膜1C那样,如果在各向异性导电膜的长边方向F1上将导电粒子P排成一列,并且使在各向异性导电膜的短边方向F2上相邻的导电粒子P以小于导电粒子P的粒径D的1倍的重叠宽度W2逐渐偏离,则导电粒子P仅在作为树脂的流动方向的X方向上倾斜而配置,因此可容易掌握被连接端子3捕集的导电粒子和因树脂流动而移动的导电粒子。此外,流动方向上的导电粒子P的重叠变小,因而尤其能够抑制短路的发生。

另外,如此通过参考连接时的树脂的流动而设计导电粒子P的配置,从而能够增大形成绝缘粘接剂层10的绝缘性粘合剂的配合自由度,容易对各向异性导电膜的制作条件、连接条件等的变更做出准备。

可以如图4所示的各向异性导电膜1D那样,将上述各向异性导电膜1A中导电粒子P的配置设为菱形格子。

本发明中导电粒子P的密度优选为400~250000个/mm2,更优选为800~200000个/mm2,进一步优选为1200~100000个/mm2。该粒子密度可根据导电粒子P的粒径D和配置位置来适宜调整。

关于导电粒子P自身的构成、绝缘粘接剂层10的层构成或构成树脂,可采取各种各样的方式。

即,作为导电粒子P,可从公知的各向异性导电膜中所使用的导电粒子中适当选择使用。例如,可举出镍、钴、银、铜、金、钯等金属粒子,金属被覆树脂粒子等。也可并用两种以上。

作为绝缘粘接剂层10,可适当采用公知的各向异性导电膜中所使用的绝缘性树脂层。例如,可使用包含丙烯酸酯化合物和光自由基聚合引发剂的光自由基聚合型树脂层、包含丙烯酸酯化合物和热自由基聚合引发剂的热自由基聚合型树脂层、包含环氧化合物和热阳离子聚合引发剂的热阳离子聚合型树脂层、包含环氧化合物和热阴离子聚合引发剂的热阴离子聚合型树脂层等。关于这些树脂层,为了根据需要将导电粒子P固定于绝缘粘接剂层10中,可采用各聚合而成的树脂层。也可由多个树脂层形成绝缘粘接剂层10。

此外,为了将导电粒子P固定于绝缘粘接剂层10中,绝缘粘接剂层10中视需要可配合二氧化硅等绝缘性填料。

作为以上述配置将导电粒子P固定于绝缘粘接剂层10中的方法,只要利用机械加工、激光加工、光刻等公知的方法制作具有与导电粒子P的配置对应的凹部的模具,将导电粒子放入该模具中,并在其上填充绝缘粘接剂层形成用组合物、使其固化,从模具中取出即可。由于是这样的模具,因此可利用刚性更低的材质来制作模具。

此外,为了以上述配置将导电粒子P置于绝缘粘接剂层10中,也可以是在绝缘粘接剂层形成组合物层上设置以预定的配置形成有贯通孔的构件,从其上提供导电粒子P,使导电粒子P通过贯通孔等的方法。

使用本发明的各向异性导电膜,将柔性基板(FPC)、玻璃基板、塑料基板(由PET等热塑性树脂构成的基板)、陶瓷基板等第一电子部件的连接端子与IC芯片、IC模块、柔性基板(FPC)等第二电子部件的连接端子进行各向异性导电连接的情况下,例如,如图1所示,各向异性导电膜1A的长边方向F1与第一电子部件或第二电子部件的连接端子3的短边方向对合。由此,通过灵活配置本发明的各向异性导电膜1A中的导电粒子P而能够充分提高连接端子3上的导电粒子P的捕集数,特别是,当导电粒子P的第一排列轴A1或第二排列轴A2的至少一方相对于各向异性导电膜的长边方向F1或短边方向F2倾斜的情况下,能够显著提高连接端子3上的导电粒子P的捕集性。

更具体而言,例如,当使用由透明电极形成连接端子的玻璃基板等作为第一电子部件、使用IC芯片等作为第二电子部件而进行高密度配线的COG连接的情况下,更具体而言,这些连接端子的连接面的大小为宽度8~60μm、长度400μm以下(下限与宽度等倍)的情况下,尤其与以往的各向异性导电连接相比,连接端子可捕集的导电粒子数稳定增加,能够提高连接可靠性。另外,如果连接端子面的短边方向的宽度小于上述宽度,则连接不良多发,如果大,则难以应对COG连接中所需的高密度安装。此外,如果连接端子面的长度小于上述长度,则难以获得稳定的导通,如果长度大于上述长度,则会成为部分接触的因素。此外,作为第二电子部件,如柔性基板(FPC)那样配线间距离为40μm以上的较难以发生短路的情况下,可使用6μm以上的较大直径的导电粒子(粒径的上限根据间隙而不同,但优选为30μm以下,更优选为15μm以下,进一步更优选为小于15μm)。通过使用这样的较大的导电粒子,从而即使第一电子部件的连接面上的配线高度的位置存在轻微的偏差也能够稳定地连接。作为这样的配线高度的位置出现偏差的基板,可举出因制造上的问题而使表面带有波纹的陶瓷基板。

本发明还包括如此进行各向异性导电连接而成的第一电子部件和第二电子部件的连接结构体。

实施例

以下,基于实施例,对本发明具体说明。

实施例1~3、比较例1

(1)各向异性导电膜的制造

调制包含苯氧树脂(热塑性树脂)(新日铁住金(株),YP-50)60质量份、环氧树脂(热固性树脂)(三菱化学(株),jER828)40质量份、阳离子系固化剂(三新化学工业(株),SI-60L)2质量份和二氧化硅微粒子(日本Aerosil(株),Aerosil RY200)20质量份的绝缘性树脂的混合溶液,将其涂布于膜厚度50μm的PET膜上,利用80℃的烘箱干燥5分钟,在PET膜上形成厚度20μm的粘着层。

另一方面,制作以表1所示的配置具有凸部的排列图案的模具,使公知的透明性树脂的颗粒以熔融的状态流入该模具,冷却、固化,从而形成凹部为表1所示的配置的树脂模具。将导电粒子(积水化学工业(株),AUL704,粒径4μm)填充于该树脂模具的凹部,在其上被覆上述绝缘性树脂的粘着层,通过紫外线固化而使该绝缘性树脂中所含的固化性树脂固化。然后,将绝缘性树脂与模具剥离,制造各实施例及比较例的各向异性导电膜。

(2)最接近导电粒子的中心间距离

使用光学显微镜测量并确认各实施例及比较例的各向异性导电膜中,基准导电粒子P0与最接近于该基准导电粒子P0的第一导电粒子P1的中心间距离L1。该情况下,对于连结基准导电粒子P0的中心和第一导电粒子P1的中心的第一排列轴A1上存在的100个50组导电粒子进行任意测量,求出其平均值,确认为预期的中心间距离L1。将结果示于表1中。

(3)相邻的导电粒子的重叠宽度W1、W2

使用金相显微镜测量各实施例及比较例的各向异性导电膜中,在各向异性导电膜的长边方向F1上相邻的导电粒子P的重叠宽度W1及在各向异性导电膜的短边方向F2上相邻的导电粒子P的重叠宽度W2。将结果示于表1中。

(4)导通评价

分别如下评价各实施例及比较例的各向异性导电膜的(a)初期导通电阻、(b)导通可靠性、(c)短路发生率。将结果示于表1中。

(a)初期导通电阻

将各实施例及比较例的各向异性导电膜夹持在初期导通以及导通可靠性的评价用IC和玻璃基板之间,加热加压(180℃、80MPa、5秒)而获得各评价用连接物。该情况下,使各向异性导电膜的长边方向与连接端子的短边方向对合。然后,测定该评价用连接物的导通电阻。

这里,关于该各评价用IC和玻璃基板,它们的端子图案对应,尺寸如下。

初期导通以及导通可靠性的评价用IC

外径0.7×20mm

厚度0.2mm

凸块状态镀金、高度12μm、尺寸15×100μm、凸块间距离15μm

玻璃基板

玻璃材质康宁公司制

外径30×50mm

厚度0.5mm

电极ITO配线

(b)导通可靠性

(a)对于将初期导通电阻的评价用IC和各实施例及比较例的各向异性导电膜的评价用连接物在温度85℃、湿度85%RH的恒温槽中放置500小时后的导通电阻,与(a)同样地测定。另外,如果该导通电阻为5Ω以上,则从所连接的电子部件的实用时的导通稳定性方面考虑不佳。

(c)短路发生率

作为短路发生率的评价用IC,准备以下IC(7.5μm间隙的梳齿TEG(测试元件组,test element group))。

外径1.5×13mm

厚度0.5mm

凸块状态镀金、高度15μm、尺寸25×140μm、凸块间距离7.5μm

将各实施例及比较例的各向异性导电膜夹持在短路发生率的评价用IC和与该评价用IC对应的图案的玻璃基板之间,以与(a)同样的连接条件加热加压而获得连接物,求出该连接物的短路发生率。短路发生率由“短路发生数/7.5μm间隙总数”算出。如果短路发生率为50ppm以上,则从制造实用的连接结构体方面考虑不佳。

(5)连结粒子

(a)在初期导通电阻的评价用IC和各实施例及比较例的各向异性导电膜的评价用连接物中,使用金相显微镜测量相邻的连接端子间100个中,作为不与端子连接而存在的导电粒子且2个导电粒子连结的导电粒子块的数量或3个导电粒子连结的导电粒子块的数量。将结果示于表1中。

[表1]

从表1可知,实施例1~3的各向异性导电膜和比较例1的导电性膜的导电粒子均为高密度,但比较例1的各向异性导电膜中产生了3个导电粒子连结的导电粒子块,容易发生短路,与此相对,实施例1~3的各向异性导电膜中不易产生导电粒子块,端子不易短路。

此外,观察它们的连接状态,则比较例1中,可能是因为导电粒子的排列包含与凸块列平行的排列和正交的排列,因此难以了解导电粒子的排列状态在连接前后的变化。然而,相邻的导电粒子在各向异性导电膜的长边方向及短边方向中的至少一方重叠、且重叠宽度W1、W2小于导电粒子的粒径的1倍的实施例1~3中,容易掌握连接前后的导电粒子的位置变化。

符号说明

1A、1B、1C、1D 各向异性导电膜

3 端子或连接端子

10 绝缘粘接剂层

A1 第一排列轴

A2 第二排列轴

F1 各向异性导电膜的长边方向

F2 各向异性导电膜的短边方向

L1 基准导电粒子与第一导电粒子的中心间距离

L2 基准导电粒子与第二导电粒子的中心间距离

P 导电粒子

P0 基准导电粒子

P1 第一导电粒子

P2 第二导电粒子

q1 基准导电粒子在各向异性导电膜的长边方向上的投影像

q2 基准导电粒子在各向异性导电膜的短边方向上的投影像

W1 在各向异性导电膜的长边方向上相邻的导电粒子的重叠宽度

W2 在各向异性导电膜的短边方向上相邻的导电粒子的重叠宽度

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1