一种光响应敏感的碲化铋薄膜和硅基片形成的PN结材料的制作方法

文档序号:11214346阅读:664来源:国知局
一种光响应敏感的碲化铋薄膜和硅基片形成的PN结材料的制造方法与工艺
本发明涉及光电/光伏电池材料和光敏材料,特别提供一种光响应敏感的碲化铋薄膜和硅基片形成的pn结材料。
背景技术
:光敏器件是指能将光信号转变为电信号的元件,与发光管配合,可以实现电→光、光→电的相互转换。常见的光敏元件有光敏电阻、光电二极管、光电三极管。光电二极管是由pn结构成的半导体器件,通过它把光信号转换为电信号,是一种光电转换器件。光电二极管是在反向电压下工作的,在黑暗状态下,由于本征激发微弱,反向电流(此时电流称为暗电流)很小。当有光照时,随着本征激发的增强,少数载流子浓度增加,使得反向电流迅速增大到几十微安,此时的电流称为光电流。光照的强弱变化引起了光电二极管光电流大小的变化,这样就可以很容易地实现光/电信号的转换。光电池是一种利用光直接发电的光电半导体。它只要被光照到,瞬间就可输出电压及在有回路的情况下产生电流。光照在半导体p-n结上,形成新的空穴-电子对,在p-n结内建电场的作用下,光生空穴流向p区,光生电子流向n区,接通电路后就产生电流,这就是光电效应。黑体(如氙灯)辐射出不同波长(对应于不同频率)的电磁波,如红外线、紫外线、可见光等等。当这些射线照射在不同导体或半导体上,光子与导体或半导体中的自由电子作用产生电流。射线的波长越短,频率越高,所 具有的能量就越高,例如紫外线所具有的能量要远远高于红外线。但是并非所有波长的射线的能量都能转化为电能,值得注意的是光电效应与射线的强度大小无关,只有频率达到或超越可产生光电效应的阈值时,电流才能产生。能够使半导体产生光电效应的光的最大波长同该半导体的禁带宽度相关,譬如晶体硅的禁带宽度在室温下约为1.155ev,因此必须波长小于1100nm的光线才可以使晶体硅产生光电效应。而碲化铋在室温带隙约为0.33ev,所以波长小于约3500纳米的光线都可以使碲化铋产生光电效应,应该能实现紫外~可见光~红外波段光电响应。复旦大学物理系修发贤教授研究组2013年在<<物理应用快报>>103期031605页报道碲化铋薄膜载流子迁移率大约5000cm2/(vs),美国宾夕法尼亚大学mele教授研究组在2007年<<物理评论快讯>>98期第106803页报道碲化铋可以作为吸收剂。技术实现要素:本发明的目的在于提供一种光响应敏感的碲化铋薄膜和硅基片形成的pn结材料,由于pn结性质不同,碲化铋薄膜同时具有光伏特性和光电效应。本发明以氙灯模拟光源,研究其在可以控制的波长或光强度下,碲化铋薄膜的光响应特性,发现该pn结材料在400纳米到1200纳米波段都有响应,而且900-1000纳米响应最为显著。pn结现象越显著的材料,光伏特性越明显,反之,pn结弱的碲化铋薄膜,光电效应则显著。本发明所提供的pn结材料在紫外、可见及近红外波段具有强的光电转化能力,可以应用于光电/光伏电池和光敏器件。本发明具体提供了一种光响应敏感的碲化铋薄膜和硅基片形成的pn结材料,其特征在于:在p型硅基片上蒸发沉积n型碲化铋薄膜,得到碲 化铋薄膜与p型硅基片形成的pn结材料,该pn结材料具有明显的单向导电特性。本发明所述材料表现出良好的光伏特性和瞬间光电响应速度,在大气条件下,以氙灯作为光源,波段包括紫外、可见光及近红外,测试结果发现该pn结材料对波长400纳米到1200纳米光响应灵敏,对光电响应时间表现为瞬间,和设备的响应时间几乎一至。研究发现生长在p型硅基片上的不同导电特性的n型碲化铋薄膜,碲化铋薄膜与硅基片间形成的pn结现象越显著则对光响应越强烈,所测pn结特性明显的样品,光电压达230mv,光电流达0.9微安。该材料在紫外、可见及近红外光波段都有响应,在近红外波段响应最显著,即使减弱光强到原来的10%,也有明显的光伏特性。本发明碲化铋薄膜和硅形成的pn结有很好的光伏特性,较大范围光波段和较弱光强下都存在光响应,具有良好的光敏元件和光电/光伏电池应用前景。形成薄膜的碲化铋纳米片尺寸越大,则碲化铋薄膜和硅基片型的pn结质量越好。碲化铋薄膜与硅基片形成的pn结质量越好,对光响应越敏感,且光伏效应越显著。本发明所述光响应敏感的碲化铋薄膜和硅基片形成的pn结材料,其特征在于:所用蒸发原料为高纯碲化铋粉末,生长碲化铋薄膜时,炉中心温度为520℃,碲化铋原料离炉子中心距离为2~5厘米,降低原料蒸发温度来控制蒸发数量;制备碲化铋薄膜时硅基片温度为300±50℃,蒸发时间2~30分钟。在蒸发沉积碲化铋薄膜前,所述p型硅基片需经过乙醇超声清洗5分钟去除表面杂质,然后放入浓度为5%的稀氢氟酸溶液中腐蚀1分钟,去掉 表面少量的氧化物。本发明所述光响应敏感的碲化铋薄膜和硅基片形成的pn结材料,其特征在于:所述n型碲化铋薄膜的厚度为几纳米至几百纳米。所用工作气体为氩气或氩气与氢气的混合气体,气体压强范围是23pa~60pa。根据所需薄膜厚度,可调节气体压强和反应时间,所需薄膜越厚所用气体压强越大,反应时间越长。本发明所述pn结材料适用于光敏器件(如光电二极管)以及光电/光伏电池,通过氙灯模拟太阳光,发现该pn结材料在900纳米-1000纳米具有较强的光响应,在400纳米到1200纳米光波段,光电流和光电压随着光强的减弱而减小,而光电流和光电压随着光波长的增加而增加,在1000纳米最大,然后随波长的增加而减小。本发明所述pn结材料制备方法简单,成本低廉,利用基片与薄膜间空间电荷层形成的内电场作用,减少光生电子和光生空穴的复合,有效地促进光生载流子产生并延长载流子寿命,产生较强的光电响应和极短的光电响应时间。附图说明图1测量光响应设备示意图(其中1、solar500型氙灯光源,2、样品台,3、电脑,4、反光镜,5、滤光片,可以手动换不同波长滤光片,6、中性密度滤光片,用于改变波长,7、黑暗密封室,8、样品);图2、碲化铋薄膜(样品1)电流电压曲线随光波长的变化。图3、碲化铋薄膜(样品1)在1000纳米光波长时电流电压曲线随光强度的变化。图4、碲化铋薄膜(样品1)不同光波长时的光伏电流及光伏电压。图5、碲化铋薄膜(样品1)在1000纳米光波长时不同光强度的光伏电流及光伏电压。图6、碲化铋薄膜(样品2)电流电压曲线随光波长的变化。图7、碲化铋薄膜(样品2)在1000纳米光波长时电流电压曲线随光强度的变化。图8、碲化铋薄膜(样品2)不同光波长时的光伏电流及光伏电压。图9、碲化铋薄膜(样品2)在1000纳米光波长时不同光强度的光伏电流及光伏电压。图10、碲化铋薄膜(样品3)电流电压曲线随光波长的变化。图11、碲化铋薄膜(样品3)在1000纳米光波长时电流电压曲线随光强度的变化。图12、碲化铋薄膜(样品3)不同光波长时的光伏电流及光伏电压。图13、碲化铋薄膜(样品3)在1000纳米光波长时不同光强度的光伏电流及光伏电压。图14、碲化铋薄膜不同光波长下的电流电压曲线。图15、硅基片黑暗及1000纳米光波长下不同光强的电流电压曲线。图16、碲化铋薄膜(样品1)在1000纳米光波长时光伏电流光响应敏感特性。图17、碲化铋薄膜(样品1)在1000纳米光波长时光伏电压光响应敏感特性。图18、三种碲化铋薄膜的扫描电镜照片(从左到右分别为样品1、样 品2、样品3)。具体实施方式如图1测量光响应设备示意图,本发明所选用氙灯为solar500型氙灯光源,波段包括紫外、可见光及近红外;光源内部安装500w高压短弧球形氙灯,在高频高压激发下形成弧光放电。高压短弧球形氙灯是发光点很小的点光源,在点燃时辐射出强而稳定的、从紫外到近红外强烈连续光谱,可见区光色极近似于日光,能量密度高,输出稳定,不仅应用于太阳能电池研究、还可用于光电响应型器件测试、表面光电压谱、生物光照、光催化、表面缺陷分析等领域。用特定波长的滤光片获得需要的单波长光,滤光片波长误差为10纳米,例如:400±10纳米波长滤光片,滤光片的光透过率大约30%。所需不同的光强度,通过中性密度滤光片获得。滤光片给出参数越大,光的透过率越小,获得低光强度。将样品放置在黑暗条件下,获取特定波长和光强度的电流-电压曲线,及光电压、光电流数据。为了得到准确数据,采用灵敏度高纳伏表测量薄膜材料明暗态下的电压电流。一切测试都在大气状态下,让氙灯光源透过不同滤光片直接照射在薄膜上,得到不同条件下的样品光特性。在氙灯光源下对薄膜进行光电响应测试,测试结果表明,pn结特性明显的样品得到较高的光照电压,所有样品对光电响应极其敏感。实施例1利用化学气相沉积方法在p型硅基片上沉积碲化铋薄膜,硅基片先经过乙醇超声清洗5分钟,然后稀氢氟酸(浓度约5%)腐蚀处理硅基片以除 去表面少量氧化物。原料为纯度99.99%碲化铋粉末,气体总流量为50sccm的氩气与氢气混合气体作为工作气体。工作气压30pa,炉子中心温度520℃,基片距离炉子中心14~15厘米,基片温度大约300±50℃,工作时间2分钟。在密封及氙灯光源对材料明暗态下的电极电势,电流-电压曲线进行测试,一切测试都在大气状态下进行。实施例2生长在p型硅基片的碲化铋薄膜(样品1),碲化铋纳米片呈三角形,尺寸约1微米,薄膜厚度约200纳米。碲化铋薄膜和硅基片形成pn结。没有光照时,电流电压曲线表现明显的pn结特性,即单向导电。当不同波长光照射时,不导电方向有明显电流通过,即产生光伏效应。导电方向电流基本没有变化。在400纳米到1000纳米波长范围内,随着波长的增加,光伏效应增加,而随着波长的继续增加到大于1000纳米时,光伏效应迅速减弱。在1000纳米时,达到最强光伏效应。在1000纳米最强光伏效应的波长下,通过中心密度滤光片,改变光强度。发现随着光强度的减弱,光伏效应减弱,当光强度大约为原来的1.0%时,光伏效应很弱。光伏电流和光伏电压随波长变化趋势相同。在400纳米到1000纳米,光伏电流和光伏电压随光波长的增加而增加,1000纳米达到最大值,光伏电压约230毫伏,光伏电流约0.9微安。然后随光波长增加,光伏电压和光伏电流减小。光伏电流和光伏电压随光波强度变化趋势相同。在1000纳米光波长下, 光伏电流和光伏电压随光波强度的增加而增加。当光波强度为原来的0.1%时,光伏电压和光伏电流几乎为零。实施例3生长在p型硅基片的碲化铋薄膜(样品2),碲化铋纳米片呈三角形,尺寸介于1微米和0.5微米间,薄膜厚度约200纳米。碲化铋薄膜和硅基片形成pn结。没有光照时,电流电压曲线表现明显的pn结特性,即单向导电。当不同波长光照射时,不导电方向有明显电流通过,即产生光伏效应。导电方向电流基本没有变化。在400纳米到1000纳米波长范围内,随着波长的增加,光伏效应增加,而随着波长的继续增加到大于1000纳米时,光伏效应迅速减弱。在1000纳米时,达到最强光伏效应。在1000纳米最强光伏效应的波长下,通过中心密度滤光片,改变光强度。发现随着光强度的减弱,光伏效应减弱,当光强度大约为原来的1.0%时,光伏效应很弱。光伏电流和光伏电压随波长变化趋势相同。在400纳米到1000纳米,光伏电流和光伏电压随光波长的增加而增加,1000纳米达到最大值,光伏电压约200毫伏,光伏电流约0.7微安。然后随光波长增加,光伏电压和光伏电流减小。光伏电流和光伏电压随光波强度变化趋势相同。在1000纳米光波长下,光伏电流和光伏电压随光波强度的增加而增加。当光波强度为原来的0.1%时,光伏电压和光伏电流几乎为零。实施例4生长在p型硅基片的碲化铋薄膜(样品3),碲化铋纳米片呈三角形,尺寸小于0.5微米,薄膜厚度约200纳米。碲化铋薄膜和硅基片形成pn结。没有光照时,电流电压曲线表现明显的pn结特性,即单向导电,只是导电方向的电阻极大。当不同波长光照射时,不导电方向有明显电流通过。当光波长小于800纳米时,光伏效应较明显。然而光波长在1000纳米时,表现明显的光电效应,光波长继续增加到1100纳米又表现光伏效应。导电方向电流基本没有变化。说明光波长1000纳米时,光电效应占主导作用。在1000纳米最强光效应的波长下,通过中心密度滤光片,改变光强度。发现随着光强度的减弱,光伏效应增加而光电效应减弱,当光强度大约为原来的25%时,光伏效应表现比较明显。光伏电流和光伏电压随波长变化趋势相同。在400纳米到1000纳米,光伏/光电电流和光伏/光电电压随光波长的增加而增加,1000纳米达到最大值,光电压约50毫伏,光伏电流约0.17微安。然后随光波长增加,光伏/光电电压和光伏/光电电流减小。光伏电流和光伏电压随光波强度变化趋势相同。在1000纳米光波长下,光伏电流和光伏电压随光波强度的增加而增加。当光波强度为原来的1%时,光伏电压和光伏电流几乎为零。实施例5对碲化铋薄膜(样品1)和硅基片分别测量黑暗和光照下的电流电压曲线。发现碲化铋薄膜电阻很小,电流电压曲线是线性的,表现良好的金属 性,在光照的情况下,没有任何的光电或光伏效应。而硅基片,没有光照时,电阻极大,在光照时,有弱的光电效应。相对于碲化铋薄膜和硅基片形成的pn结,硅基片的光电效应可忽略不计。表1中性密度滤光片光学参数和对应的光透过率光学密度光透过率0.179%0.263%0.350%0.440%0.532%0.625%1.010%2.01.0%3.00.10%4.00.01%上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1