一步热处理技术生产高Ce含量稀土永磁的方法与流程

文档序号:12787944阅读:727来源:国知局

本发明涉及一种一步热处理技术生产高Ce含量稀土永磁的方法。



背景技术:

烧结钕铁硼磁体是目前磁性最强、应用最广、消耗稀土最多的永磁材料,广泛应用于信息、能源、医疗、交通和国防等高技术领域,是最重要的稀土功能材料和国民经济的关键基础材料。作为全球最大的稀土出口国,近年来对稀土产业进行宏观调控,实行出口配额,征收并逐渐上调出口关税,加强环境监管,对稀土资源实行保护性开采,稀土产品廉价竞销的时代已经过去,稀土价格一路上涨,全球稀土产业开始面临严峻的成本控制难题。如何寻找一种低成本永磁体来缓解当前紧张的钕铁硼价格形势是一项迫在眉睫的重要任务。而轻稀土元素Ce在所有稀土元素中储量最高,价格也是最低。其丰度接近于Zn和Sn元素,比Mo和Cd等元素都要高,是一种名副其实的高丰度稀土元素。另外,钕和镨元素是钕铁硼磁体的重要原料,被广泛应用在稀土永磁体的制造上,在供应链上处于供不应求的状态因而价格处在高位;但是作为含量接近稀土矿一半的Ce元素却主要用于各类催化剂等有限的场合下,因此长期供过于求,是市场上的滞销品。综上考虑,应用高丰度稀土元素Ce,取代部分Nd用于稀土永磁体的生产中,一是Ce的较低价格有助于实现成本控制,缓解当前国际稀土产业的严峻形势;二是有助于实现稀土产品的产销平衡,减少Ce的积压,充分发挥其作为一种高丰度稀土资源的优势;三是能进一步发挥中国稀土资源的特色优势。虽然所制备出的稀土永磁体属于中、低档次的永磁体,但由于其成本低和有效的利用了稀土资源,因而其在用中、低档永磁体领域行业将会代替现有中、低档钕铁硼磁体的应用,占据很大的市场。预计,随着该产品生产工艺的成熟,在不久的将来,可将此技术推广到中、低档次永磁体的所有领域。同时,由于此产品价格较低,可为这一产品的广泛应用提供前提条件。

为了把Ce应用到钕铁硼磁体中,前人已经做过不少研究。第一种方法是用直接熔炼法制备钕铈铁硼磁体。但是由于Ce2Fe14B的内禀磁性弱于Nd2Fe14B,直接合金化替代量有限而且恶化磁性能。有研究表明,当Ce的替代量从5wt.%提高到40wt.%,磁性能从40MGOe降低到27MGOe。相对直接熔炼法制备的低磁性能钕铈铁硼磁体磁体来说,近年来发展起来的双主相工艺能生产出高Ce取代量的烧结钕铈铁硼磁体。对钕铁硼磁体进行热处理时我们采用两步热处理的方法,860~920℃一级回火和410~470℃二级回火,实现磁体晶界相的连续均匀分布,达到高矫顽力。然而,利用双主相工艺制备钕铈铁硼磁体时,若仍然采用两步热处理会破坏双主相形成的核壳结构,降低磁性能,例如对于27wt.%Ce取代量的双主相磁体,采用两步热处理后磁性能为Br=12.7kGs,Hcj=8.1kOe,(BH)max=39.8MGOe,随着Ce取代量的增加磁性能严重下降,很难达到商业磁体的要求,这样就限制了对轻稀土元素的开发利用。



技术实现要素:

本发明的目的是克服现有技术的不足,提供一种一步热处理技术生产高Ce含量稀土永磁的方法。

本发明的一步热处理技术生产高Ce含量稀土永磁的方法采用低温烧结,同时只进行一步热处理生产高Ce含量的稀土永磁体,它的步骤如下:1)采用速凝铸带技术得到厚度为0.2~0.5mm的两种主相合金的甩片,然后经过氢爆和气流磨工艺制备平均粒度为3~4μm的两种主相合金粉末;2)将两种主相合金粉末按照不同的比例均匀混合得到不同Ce取代量的合金粉末;3)两种主相合金粉末混合均匀后在1.5~2T的磁场下进行取向压型,得到生坯;4)将得到的生坯进行真空封装,15~20MPa间冷等静压1~3min,放入高真空正压烧结炉,在1010~1060℃间烧结3~5h,然后在400~900℃进行一步热处理2-5h,制备高Ce含量的稀土永磁体。通过调整烧过程中的工艺参数,包括烧结温度、烧结时间、一步热处理温度和时间制备得到磁性能良好的高Ce含量磁体。

本发明基于双主相合金技术,两种主相合金分别为含Ce的主相A和不含Ce的主相B,其中含Ce的主相A的质量百分数通式为(Pr,Nd)aCeb(Fe1-cM′c)100-a-b-dBd,M′为Nb、V、Ti、Co、Cr、Mo、Mn、Ni、Ga、Zr、Ta、Ag、Au、Al、Pb、Cu、Si中的一种或几种,29≤a+b≤33、0.5≤c≤2、0.8≤d≤1.5,不含Ce的主相B质量百分数通式为(Pr,Nd)e(Fe1-fM″f)100-e-gBg,M″为Nb、V、Ti、Co、Cr、Mo、Mn、Ni、Ga、Zr、Ta、Ag、Au、Al、Pb、Cu、Si中的一种或几种,29≤e≤33、0.5≤f≤2、0.8≤g≤1.5。最终制备得到的磁体质量百分数通式为(Pr,Nd)xCey(Fe1-zMz)100-x-y-wBw,M为Nb、V、Ti、Co、Cr、Mo、Mn、Ni、Ga、Zr、Ta、Ag、Au、Al、Pb、Cu、Si中的一种或几种,其中29≤x+y≤33、1/4≤y/x≤3/2、0.5≤z≤2、0.8≤w≤1.5。最高可实现60wt.%Ce取代量,在促进稀土元素的平衡利用的同时减少生产工序,有效降低成本。

本发明与现有技术相比具有的有益效果:1)利用高丰度稀土Ce部分取代Nd,降低成本的同时促进稀土产品的产销平衡,2)传统方法制备钕铁硼采用两步热处理工艺,第一步热处理温度在850-900℃之间,而采用这种工艺制备含Ce烧结磁体时,高温热处理会使不同主相的元素均匀化,削弱双主相工艺的优点,当Ce的取代量较高时磁体性能会急剧恶化;本发明采用一步热处理的工艺可以在磁体中高Ce取代量的同时,保障其磁性能,缓解磁稀释效应,因此,本发明提供的磁体能有效实现成本控制。3)由于Ce的助烧结作用,烧结态的含Ce磁体就已经有很好的显微组织,本发明只进行一步热处理,能减少元素的扩散,保护双主相磁体中壳层结构不被破坏,从而提高磁体矫顽力。

具体实施方式

下面结合具体实施例对本发明做进一步说明,但本发明并不仅仅局限于以下实施例:两种主相合金分别为含Ce的主相A和不含Ce的主相B,其中含Ce的主相A的质量百分数通式为(Pr,Nd)aCeb(Fe1-cM′c)100-a-b-dBd,M′为Nb、V、Ti、Co、Cr、Mo、Mn、Ni、Ga、Zr、Ta、Ag、Au、Al、Pb、Cu、Si中的一种或几种,29≤a+b≤33、0.5≤c≤2、0.8≤d≤1.5,不含Ce的主相B质量百分数通式为(Pr,Nd)e(Fe1-fM″f)100-e-gBg,M″为Nb、V、Ti、Co、Cr、Mo、Mn、Ni、Ga、Zr、Ta、Ag、Au、Al、Pb、Cu、Si中的一种或几种,29≤e≤33、0.5≤f≤2、0.8≤g≤1.5。最终制备得到的磁体质量百分数通式为(Pr,Nd)xCey(Fe1-zMz)100-x-y-wBw,M为Nb、V、Ti、Co、Cr、Mo、Mn、Ni、Ga、Zr、Ta、Ag、Au、Al、Pb、Cu、Si中的一种或几种,其中29≤x+y≤33、1/4≤y/x≤3/2、0.5≤z≤2、0.8≤w≤1.5。本发明最高可实现60wt.%Ce取代量,在促进稀土元素的平衡利用的同时减少生产工序,有效降低成本。

实施例1:

1)将以质量百分数计,成分为(Pr,Nd)15.25Ce15.25Fe67.11Al1.39B1主相A和

(Pr,Nd)30.55Fe67.11Al1.39B1的主相B两种主相合金分别配料,采用速凝铸带技术得到厚度为0.3mm的两种甩片;

2)将两种主相甩片经过氢爆和气流磨工艺制备平均粒度为3.1μm的合金粉末;

3)以质量百分数计,将54wt.%的主相A合金粉、46wt.%主相B合金粉混合均匀后,在氮气保护下将磁粉在2T的磁场下取向成型,并经17MPa冷等静压制成生坯;

4)将生坯放在真空烧结炉中进行烧结,烧结温度为1040℃,烧结时间3h,然后在600℃下热处理4h,制成27wt.%Ce取代量的稀土永磁体;

5)磁体磁性能为Br=13.4kGs,Hcj=12.8kOe,(BH)max=42.6MGOe。

实施例2:

1)将以质量百分数计,成分为(Pr,Nd)15.25Ce15.25Fe67.11Co1.39B1主相A和

(Pr,Nd)30.55Fe67.11Co1.39B1主相B两种主相合金分别配料,采用速凝铸带技术得到厚度为0.3mm的两种甩片;

2)将两种主相甩片经过氢爆和气流磨工艺制备平均粒度为3.3μm的合金粉末;

3)以质量百分数计,将72wt.%的主相A合金粉、28wt.%主相B合金粉混合均匀后,在氮气保护下将磁粉在2T的磁场下取向成型,并经17MPa冷等静压制成生坯;

4)将生坯放在真空烧结炉中进行烧结,烧结温度为1040℃,烧结时间3h,然后在620℃下热处理4h,制成36wt.%Ce取代量的稀土永磁体;

5)磁体磁性能为Br=12.6kGs,Hcj=11.5kOe,(BH)max=38.4MGOe。

实施例3:

1)将以质量百分数计,成分为(Pr,Nd)15.25Ce15.25Fe67.11Ga1.39B1主相A和(Pr,Nd)30.55Fe67.11Ga1.39B1主相B两种主相合金分别配料,采用速凝铸带技术得到厚度为0.3mm的两种甩片;

2)将两种主相甩片经过氢爆和气流磨工艺制备平均粒度为3.3μm的合金粉末;

3)以质量百分数计,将90wt.%的主相A合金粉、10wt.%主相B合金粉混合均匀后,在氮气保护下将磁粉在2T的磁场下取向成型,并经17MPa冷等静压制成生坯;

4)将生坯放在真空烧结炉中进行烧结,烧结温度为1040℃,烧结时间2.5h,然后在580℃下热处理4h,制成45wt.%Ce取代量的稀土永磁体;

5)磁体磁性能为Br=12.6kGs,Hcj=10.4kOe,(BH)max=36.1MGOe。

实施例4:

1)将以质量百分数计,成分为(Pr,Nd)6.1Ce24.4Fe67.11Co0.8Ga0.59B1主相A和(Pr,Nd)30.55Fe67.11Co0.8Ga0.59B1主相B两种主相合金分别配料,采用速凝铸带技术得到厚度为0.3mm的两种甩片;

2)将两种主相甩片经过氢爆和气流磨工艺制备平均粒度为3.3μm的合金粉末;

3)以质量百分数计,将70wt.%的主相A合金粉、30wt.%主相B合金粉混合均匀后,在氮气保护下将磁粉在2T的磁场下取向成型,并经17MPa冷等静压制成生坯;

4)将生坯放在真空烧结炉中进行烧结,烧结温度为1040℃,烧结时间2.5h,然后在600℃下热处理3h,制成56wt.%Ce取代量的稀土永磁体;

5)磁体磁性能为Br=12.3kGs,Hcj=8.8kOe,(BH)max=34.1MGOe。

实施例5:

1)将以质量百分数计,成分为(Pr,Nd)6.1Ce24.4Fe67.11Co0.8Zr0.59B1主相A和(Pr,Nd)30.55Fe67.11Co0.8Zr0.59B1主相B两种主相合金分别配料,采用速凝铸带技术得到厚度为0.3mm的两种甩片;

2)将两种主相甩片经过氢爆和气流磨工艺制备平均粒度为3.3μm的合金粉末;

3)以质量百分数计,将75wt.%的主相A合金粉、25wt.%主相B合金粉混合均匀后,在氮气保护下将磁粉在2T的磁场下取向成型,并经17MPa冷等静压制成生坯;

4)将生坯放在真空烧结炉中进行烧结,烧结温度为1040℃,烧结时间2.5h,然后在600℃下热处理2h,制成60wt.%Ce取代量的稀土永磁体;

5)磁体磁性能为Br=12.0kGs,Hcj=7.4kOe,(BH)max=32.6MGOe。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1