一种高灵敏度半导体纳米紫外光探测器的制备方法与流程

文档序号:12737404阅读:229来源:国知局
一种高灵敏度半导体纳米紫外光探测器的制备方法与流程

本发明属于电学领域,涉及一种功能器件,具体来说是一种高灵敏度半导体纳米紫外光探测器的制备方法。



背景技术:

紫外光探测器具有结构简单、体积小、重量轻、工作环境要求低、无电磁波辐射、抗干扰能力强等优点,广泛应用于通信、预警、导航、传感、环境检测及气体探测分析等领域,具有较大的应用价值。传统的光电倍增管型紫外光探测器,具有较低的暗电流和较高的响应度,但操作电压较高,器件体积较大且造价较高;Si基光电二极管型紫外光探测器,体积小,制作成本也较低,但Si材料禁带宽度较小,对可见光和红外有较高响应,必须附加滤波片过滤可见和红外光,导致其探测效率较低。宽禁带半导体材料具有较大的禁带宽度,对可见光无响应,并具有热导率高、击穿电场高、电子饱和飘移速率大、化学稳定性好、抗辐射能力强等优点,非常适合用于制作体积小、重量轻、高频率、抗干扰能力强、耐高温高压的高效紫外光探测器。宽带隙半导体材料包括GaN、SiC、ZnO、ZnS、ZnSe、AlN、GaN、InN等,用于紫外光探测器的关键是提高对紫外光的响应度和灵敏度、减少响应恢复时间以及提高光电流稳定性。基于此,提高宽禁带半导体材料的结晶质量、改善半导体材料的比表面积、制作合适的接触电极,成为制作高效半导体紫外光探测器的关键技术。

ZnO具有较大的禁带宽度(3.37 eV)、较高电子迁移率以及高的激子复合能(60 meV),是一种非常有前途的紫外光探测器材料。但ZnO材料本身具有较多的氧空位和锌间隙等固有缺陷,使其平衡载流子浓度较高,导致多数ZnO紫外光探测器存在暗电流过大、响应恢复速度慢、光电流稳定性差等问题。通过设计肖特基接触、形成异质结、制作金属-半导体-金属结构以及场效应光电晶体管等方法,可以降低ZnO紫外光探测器的暗电流,并降低响应时间;但相对复杂的结构设计、繁琐的原材料及器件制作过程、以及较高的测试要求和工作条件,不仅使得ZnO紫外光探测器的结构复杂,同时增加了器件的体积,使其难以实现与其它MEMS器件集成,并明显地增加了ZnO紫外光探测器的生产成本,极大地限制了ZnO紫外光探测器的实际应用。



技术实现要素:

针对现有技术中的上述技术问题,本发明提供了一种高灵敏度半导体纳米紫外光探测器的制备方法,所述的这种高灵敏度半导体纳米紫外光探测器的制备方法要解决现有技术中制备的ZnO紫外光探测器存在暗电流过大、响应恢复速度慢、光电流稳定性差的技术问题。

本发明提供了一种高灵敏度半导体纳米紫外光探测器的制备方法,包括如下步骤:

1)一个制备二维超薄结构单晶ZnO纳米材料的步骤,采用化学气相沉积法、水热法、磁控溅射法、电子束蒸发、或者分子束外延法方法制备;

2)采用超声分散、旋涂有机薄膜以及高纯气体吹扫方法,将所述的二维超薄结构单晶ZnO纳米材料从生长衬底转移;

3)将所述的二维超薄结构单晶ZnO纳米材料与乙醇、丙酮、二甲基甲酰胺、二氯甲烷、辛烷、异丙醇有机溶液、或去离子水混合,所述的二维超薄结构单晶ZnO纳米材料与有机溶液或去离子水的质量比1:1~1:100;

4)超声分散步骤3)所述二维超薄结构单晶ZnO纳米材料的溶液,超声功率为1~100 W,时间为1~600 s;

5)采用旋涂、提拉、或者点滴的方法将所述二维超薄结构单晶ZnO纳米材料溶液涂覆在半导体、绝缘、导电的衬底表面;采用气体吹扫以及有机溶液冲洗方法,使得所述的二维超薄结构单晶ZnO纳米材料附着在衬底表面;

6)采用聚焦离子束或光学显微镜,选取二维超薄结构单晶ZnO纳米材料,所述二维超薄结构单晶ZnO纳米材料长宽比例为100:1~2:1,宽厚比例为10000:1~100:1,厚度小于20 nm;

7)利用电子束曝光方法或者光学曝光方法制作掩膜,采用电子束蒸发方法,沿所述二维超薄结构单晶ZnO纳米材料长度方向,两端镀制Au单质、Ti单质、Cr单质、Al单质、Ni单质、或者复合导电薄膜电极,所述的电极的厚度为10~300 nm;

8)利用掩膜版遮挡所述二维超薄结构单晶ZnO纳米材料,镀制绝缘氧化物覆盖层,绝缘氧化物覆盖层半遮盖或者对称遮盖所述的电极,覆盖层的厚度为1~300 nm,得到二维超薄结构单晶ZnO纳米紫外光探测器。

进一步的,所述的绝缘氧化物覆盖层由二氧化铪构成。

进一步的,在步骤1)中,采用化学气相沉积法是以表面镀制0.5~5 nm厚催化金属的半导体或陶瓷抛光衬底,将ZnO或Zn粉末、石墨粉末、以及磷或者锑或者钒氧化物粉末按质量比1:0.1~5:0.001~0.05混合,在500~1200℃高温合成。

进一步的,根据权利要求1所述的一种高灵敏度半导体纳米紫外光探测器的制备方法,其特征在于:在步骤8)中,所述的二氧化铪绝缘氧化物覆盖层完全覆盖二维超薄结构单晶ZnO纳米材料两侧的电极,两侧的二氧化铪绝缘氧化物覆盖层之间具有间隙,形成对称结构。

进一步的,在步骤8)中,在二维超薄结构单晶ZnO纳米材料的一侧,所述的二氧化铪绝缘氧化物覆盖层只覆盖电极,不覆盖二维超薄结构单晶ZnO纳米材料;在另一侧,所述二氧化铪绝缘氧化物覆盖层覆盖除了覆盖电极之外,还覆盖自电极内侧边缘起的1/4~1/2面积的二维超薄结构单晶ZnO纳米材料,两侧的二氧化铪绝缘氧化物覆盖层之间具有间隙。

进一步的,在步骤1)中,ZnO 可以被GaN、SiC、ZnS、ZnSe、AlN、GaN、或者InN替代。

本发明依次经二维超薄结构单晶纳米材料制备、转移、分散、涂覆、镀制电极、氧化物遮盖以及微区紫外光激发过程。本发明通过改善ZnO半导体材料的结晶质量,降低ZnO半导体材料的氧空位和锌间隙浓度,减少ZnO材料晶体缺陷,从而能抑制ZnO材料的平衡载流子浓度,有效地降低ZnO紫外光探测器的暗电流,并减少响应恢复时间。本发明利用纳米材料结构的特点,通过制备合理的一维二维ZnO纳米材料,增大ZnO材料的比表面积,能显著提升对紫外光的响应度,从而能有效地提升ZnO紫外光探测器的整体效率。

本发明和已有技术相比,其技术进步是显著的。本发明利用二维超薄结构单晶ZnO纳米材料,具有超大比表面积和高质量结晶性能特点,采用绝缘氧化物部分遮盖的方法制作,无需其它任何复杂工艺和特殊结构设计,制作具有较快响应恢复速度和较低暗电流的高灵敏度半导体纳米紫外光探测器,实现对紫外光的快速探测和响应。本发明的二维超薄结构单晶半导体纳米紫外光探测器具有结构简单、体积小、响应快、灵敏度高等特点。

附图说明

图1为二维超薄结构单晶ZnO纳米片TEM图。

图2为二维超薄结构单晶ZnO纳米片Raman图。

图3为二维超薄结构单晶ZnO纳米片PL图。

图4为二维超薄结构单晶ZnO纳米片AFM图及厚度曲线图。

图5为对称遮盖(A)和半遮盖(B)结构二维超薄结构单晶ZnO纳米紫外光探测器件示意图。

图6为二维超薄结构单晶ZnO纳米紫外光探测器件光学照片图。

图7为二维超薄结构单晶ZnO纳米紫外光探测器件SEM图。

图8为二维超薄结构单晶ZnO纳米紫外光探测器的测试装置示意图。

图9为不同比例激光功率照射下二维超薄结构单晶ZnO纳米紫外光探测器的电学性能图。

图10为二维超薄结构单晶ZnO纳米紫外光探测器的光电流曲线图。

图11为二维超薄结构单晶ZnO纳米紫外光探测器的响应恢复曲线图。

图12为二维超薄结构单晶ZnO纳米紫外光探测器的光电流与激光功率比例关系图。

具体实施方式

实施例1

一种二维超薄结构单晶ZnO纳米紫外光探测器的制备方法,具体包括如下步骤:

1)一个采用化学气相沉积方法制备二维超薄结构单晶ZnO纳米材料的步骤,以表面镀制0.5~5 nm厚Au、Fe、Ni、Pt、Mo等金属的抛光SiO2或蓝宝石为衬底,将纯度为99.9%的ZnO或Zn粉末,纯度为99%的100~800目石墨粉末、纯度为99%的磷、锑、或者钒氧化物粉末按质量比1:0.1~5:0.001~0.05混合,通入纯度为99.99%的氧气和氩气,在500~1200℃进行化学沉积制备获得;

2)采用超声分散、在二维超薄结构单晶ZnO纳米材料上旋涂PMMA、PDMS、或者PVDF等有机薄膜,或者高纯气体吹扫等方法,将所述二维超薄结构单晶ZnO纳米材料从生长衬底转移;

3)将所述二维超薄结构单晶ZnO纳米材料与乙醇、丙酮、二甲基甲酰胺、二氯甲烷、辛烷、异丙醇有机溶液、或者去离子水混合;二维超薄结构单晶ZnO纳米材料与有机溶液或者去离子水的质量比1:1~1:100,

4)采用超声振动方法均匀分散所述二维超薄结构单晶ZnO纳米材料溶液,超声功率为1~100 W,时间为1~600 s;

5)采用旋涂、滴加、或提拉方法,将所述溶液均匀涂覆在Si、GaN、石墨烯、SiO2、SiC、Si3N4、玻璃、PET、PVC、或者ITO等半导体、绝缘、导电衬底表面;采用气体吹扫以及有机溶液冲洗方法,形成所述二维超薄结构单晶ZnO纳米材料在衬底表面有效附着。图1-图3为二维超薄结构单晶ZnO纳米材料的TEM、PL和Raman图;

6)采用聚焦离子束(FIB)或光学显微镜,标定并选取具有较大比表面积的二维超薄结构单晶ZnO纳米材料;所述二维超薄结构单晶ZnO纳米材料长宽比例为100:1~2:1,宽厚比例为10000:1~100:1,厚度小于20 nm。图4所示为二维超薄结构单晶ZnO纳米片AFM图及厚度曲线图;

7)利用电子束曝光方法、光学曝光方法做掩膜,采用电子束蒸发方法,沿所述二维超薄结构单晶ZnO纳米材料长度方向,两端镀制Au、Ti、Cr、Al、Ni等单质及复合导电薄膜电极,电极厚度为10~300 nm;

8)采用掩膜版,部分遮挡所述二维超薄结构单晶ZnO纳米材料,利用电子束蒸发、热蒸发、或者磁控溅射等方法,镀制二氧化铪绝缘氧化物覆盖层,形成纳米材料一端遮盖另一端暴露的半遮盖结构,或纳米材料两端对称遮盖的结构,二氧化铪覆盖层的厚度为1~300 nm,得到二维超薄结构单晶ZnO纳米紫外光探测器。

图5为对称遮盖和半遮盖结构二维超薄结构单晶ZnO纳米紫外光探测器件示意图,在对称遮盖的结构中,所述的二氧化铪绝缘氧化物覆盖层完全覆盖二维超薄结构单晶ZnO纳米材料两侧的电极,两侧被二氧化铪绝缘氧化物覆盖的二维超薄结构单晶ZnO纳米材料面积相等,两侧的二氧化铪绝缘氧化物覆盖层之间具有间隙,形成对称结构。

在半遮盖结构中,在二维超薄结构单晶ZnO纳米材料的一侧,所述的二氧化铪绝缘氧化物覆盖层只覆盖电极,不覆盖二维超薄结构单晶ZnO纳米材料;在另一侧,所述二氧化铪绝缘氧化物覆盖层覆盖除了覆盖电极之外,还覆盖自电极内侧边缘起的1/4~1/2面积的二维超薄结构单晶ZnO纳米材料,两侧的二氧化铪绝缘氧化物覆盖层之间具有间隙。

图6所示为二维超薄结构单晶ZnO紫外光探测器件光学照片图,图7所示为二维超薄结构单晶ZnO纳米紫外光探测器件SEM图;

通过上述的方法制备的二维超薄结构单晶ZnO纳米紫外光探测器的应用如下:

将所述二维超薄结构单晶ZnO纳米紫外光探测器,置于微区紫外激光装置台,激光束斑为1~100 μm。激光仅作用于二维结构超薄单晶纳米材料,不作用于电极以及其它任何部位。图8所示为二维超薄结构单晶ZnO纳米紫外光探测器的测试装置示意图;

调整激光功率密度及激发波长,测试二维超薄结构单晶ZnO纳米紫外光探测器的响应度和灵敏度等关键参数指标;激光功率密度为10 kW/cm2~7000 kW/cm2,波长为300~365 nm。图9所示为不同比例激光功率照射下二维超薄结构单晶ZnO纳米紫外光探测器的电学性能图,图10所示为二维超薄结构单晶ZnO纳米紫外光探测器的光电流曲线图。随着紫外光照射功率的增加,二维超薄结构单晶ZnO纳米片的导电性显著增加。二维超薄结构单晶ZnO纳米紫外光探测器具有较高的光响应率、较好的光电流稳定性以及较短的响应恢复时间。

间歇开启及关闭激光器,测试所述二维超薄结构单晶ZnO纳米紫外光探测器的响应恢复时间以及光电流稳定性等关键参数指标,激光开启时间为0.1 s~300 s,关闭时间为0.1 s~300 s。图11所示为二维超薄结构单晶ZnO纳米紫外光探测器的响应恢复曲线图;图12所示为二维超薄结构单晶ZnO纳米紫外光探测器的输出光电流与激光功率比例关系图。二维超薄结构单晶ZnO纳米紫外光探测器的响应恢复时间小于2s;随着紫外光照射功率的增加,二维超薄结构单晶ZnO纳米紫外光探测器的光电流显著增加,响应率显著提升。二维超薄结构单晶ZnO纳米紫外光探测器具有较敏感的光强度响应性能和较好的响应恢复性能。

采用本发明的方法制备的所述二维超薄结构单晶ZnO纳米材料具有较高的结晶质量、较低的缺陷密度和较大的比表面积。二维超薄结构单晶ZnO纳米紫外光探测器具有较低的暗电流、良好的光电流稳定性以及较短的响应恢复时间。所述二维超薄结构单晶ZnO纳米紫外光探测器具有结构简单、体积小、响应快、灵敏度高等特点,适合与其它MEMS器件集成,具有较高的实际应用价值。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1