高电子迁移率晶体管和其制造方法与流程

文档序号:11214321阅读:456来源:国知局
高电子迁移率晶体管和其制造方法与流程

本发明涉及一种高电子迁移率晶体管hemt以及一种用于制造高电子迁移率晶体管的方法。



背景技术:

基于氮化镓的横向功率晶体管hemt不是过压稳定的,因为该hemt的介电层,例如缓冲层和屏蔽电容,在相比hemt所基于的半导体衬底更小的场强时便会击穿。这些晶体管不雪崩。可以用于安全地运行hemt的最大的雪崩能量相应于以下能量的量,该能量的量可以与最大的反向电压一起存储在输出电容上。

在此,缺点是:在超过该最大的反向电压的情况下发生不可逆的介电击穿并且该hemt被毁坏。

构件的毁坏同样在基于igbt的构件中已知。在此,为了进行保护以防过压,使用齐纳二极管和雪崩二极管的错接(verschaltung)。然而,对于hemt不遵循该方案,因为齐纳二极管和雪崩二极管不能够集成到hemt技术中。此外,在此不利的是,这些二极管不够快速,因为gan(氮化镓)hemt具有高的切换速度。

文献de102013102457a1描述了一种用于化合物半导体场效应晶体管的过压保护的构件。该构件包含布置在化合物半导体材料中的注入区。该注入区具有空间上分布的陷阱状态该陷阱状态引起注入区在阈值电压时变得导电。因此,注入区具有根据弗兰凯尔-普尔(frenkel-pool)原理的导电机理。通过注入外来原子来引入有能量的状态,即所谓的杂质其能够实现一种类型的跳跃导电。杂质构成在通常为无状态的带隙的区域中的电子的在能量上可能的状态。通过跳跃导电,电子能够由一种杂质转入到下一种杂质。这相应于电流流动。通过外来原子的选择确定该状态的有能量的深度。借助于这些状态能够调节场强,从该场强起在场效应晶体管中产生电流流动。

在此,缺点是:能够流过所注入的复合半导体材料能够实现电流流动,从而不存在过压保护构件的长时间稳定性。



技术实现要素:

本发明的任务是,提供一种长时间稳定的、过压安全的hemt。

所述高电子迁移率晶体管hemt包括多个第一单个单元和至少一个第二单个单元,其中,所述第二单个单元具有第一绝缘层。单个单元在此理解为hemt的基本单元,该基本单元具有源极连接端、栅极连接端和漏极连接端。所述第二绝缘层垂直于衬底前侧地布置并且从所述衬底前侧延伸至二维电子气中,从而产生具有第一栅极连接端的第一单个晶体管和具有第二栅极连接端的第二单个晶体管。术语衬底前侧在此理解为衬底的一个侧,在该侧上布置有hemt的接触部,即栅极、漏极和源极。第一单个晶体管和第二单个晶体管并联电连接并且具有源极连接端和漏极连接端。换言之,第一单个晶体管和第二单个晶体管具有共同的源极连接端或源极接触部以及共同的漏极连接端或漏极接触部。根据本发明,在所述漏极连接端和所述源极连接端之间在所述第二单个晶体管的区域中布置有电位接触部。所述电位接触部垂直于所述衬底前侧地定向并且从所述衬底前侧伸展至所述第二单个晶体管的所述二维电子气中。这意味着,所述电位接触部垂直于所述衬底前侧地布置。基于电位接触部,在所述漏极连接端和所述第二栅极连接端之间构成或产生第一电阻并且在所述第二栅极连接端和所述源极连接端之间构成或产生第二电阻。换言之,所述电位接触部构成在所述源极连接端和漏极连接端之间的分压器,其中,所述分压器通过所述电位接触部与所述第二栅极连接端电连接。这意味着,设有将所述电位接触部和所述第二栅极连接端电连接的装置。

在此优点是,由此产生的hemt功率晶体管是过压安全的。通过分压器能够调节第二单个晶体管的栅极电压。当第二单个晶体管的栅极电压超过第二单个晶体管的阈值电压时,第二单个晶体管导通并且将过电压引出。此外,该hemt是长时间稳定的并且可以以简单的方式将过压保护集成到hemt工艺中。

在另一个构型中,所述装置为栅极场板。

在此有利的是,通过降低最大的场强来抑制动态的rds-on(在导通状态下的漏源电阻)效应。

在一个扩展方案中,所述第二栅极连接端的面积与所述电位接触部的面积相应。不仅第二栅极连接端的面而且电位接触部的面平行于衬底前侧地布置或者布置在衬底前侧上。

在此有利的是,能够大面积地形成电位接触部。在此,电位接触部既不影响二维电子气也不影响漏极连接端和第二栅极连接端之间的漂移区。

在另一个构型中,所述第二栅极连接端的面积大于所述电位接触部的面积。不仅第二栅极连接端的面而且电位接触部的面都平行于衬底前侧地布置或者布置在衬底前侧上。

在此优点是,基于小的电位接触部表面,电位接触部对二维电子气的影响小。

在一个扩展方案中,所述电位接触部布置在所述第二单个晶体管的区域中的漏极连接端和所述第二栅极连接端之间。

在此有利的是,减小了该hemt的不必要的总面积。

在另一个构型中,所述电位接触部布置在所述第二单个晶体管的区域中的源极连接端和所述第二栅极连接端之间。

在此优点是,形成了总面积的减小。

在一个扩展方案中,第二单个晶体管具有第二绝缘层,所述第二绝缘层垂直于所述衬底前侧地布置并且从所述衬底前侧延伸至所述第二单个晶体管的所述二维电子气中。

在此有利的是,所述电位接触部不影响二维电子气,因为电位接触部与所述第二栅极连接端电绝缘。

在另一个构型中,第二单个晶体管的待机电流(stand-by-strom)能够根据电位接触部的高度来调节。

在此有利的是,第二单个晶体管的栅极连接端在过压时能够可靠地接通。

根据本发明的用于制造hemt的方法,所述hemt具有多个第一单个单元,所述方法包括:在至少一个第二单个单元中产生第一绝缘层,其中,所述第一绝缘层垂直于衬底前侧地布置并且伸展至二维电子气中,从而产生具有第一栅极连接端的第一单个晶体管和具有第二栅极连接端的第二单个晶体管。在所述第二单个晶体管的区域中产生电位接触部,所述电位接触部垂直于所述衬底前侧地布置并且从所述衬底前侧伸展至所述第二单个晶体管的所述二维电子气中。所述方法还包括:在所述电位接触部和所述第二栅极连接端之间产生电连接。

在另一个构型中产生第二绝缘层,所述第二绝缘层垂直于衬底前侧地布置并且伸展至第二单个晶体管的二维电子气中。

其他优点由实施例的后续描述或由从属权利要求得出。

附图说明

接下来借助于优选的实施方式和所附的附图阐述本发明。附图示出:

图1:现有技术中的hemt的俯视图;

图2:根据本发明的hemt的示意性的俯视图;

图3:第二单个单元的第一构型的俯视图;

图4:第二单个单元的第二构型的俯视图;

图5:根据本发明的hemt的等效电路图;以及

图6:用于制造根据本发明的hemt的方法。

具体实施方式

图1示出现有技术中的hemt100的俯视图。该hemt100具有多个第一单个单元101,所述多个第一单个单元101分别构成至少一个单个晶体管。因此,该hemt100包括由多个单个晶体管组成的串联电路。同样地,在图1中示出该hemt100的源极连接端108、漏极连接端109和栅极连接端112。

图2示出根据本发明的hemt200的示意性俯视图。该hemt200具有源极连接端208、漏极连接端209和栅极连接端212、多个第一单个单元201和至少一个第二单个单元214,所述至少一个第二单个单元214具有第一绝缘层202。通过第一绝缘层202构成具有第一栅极连接端205的第一单个晶体管和具有第二栅极连接端207的第二单个晶体管。在此,第一单个晶体管和第二单个晶体管并联电连接。在第二单个晶体管的区域中布置有电位接触部213。在此,第二单个晶体管充当用于第一单个晶体管的过压保护。

图3示出第二单个单元的第一构型314。第二单个单元314具有源极连接端308和漏极连接端309。此外,该另一单个单元314具有第一绝缘层302,从而形成具有第一栅极连接端305的第一单个晶体管304和具有第二栅极连接端307的第二单个晶体管306。在此,第一单个晶体管304和第二单个晶体管306并联连接。在第二单个晶体管306的区域中布置有电位接触部313。

图4示出第二单个单元的第二构型414。在此,与图3中的附图标记的后面几位相同的附图标记的后面几位表示相同的特征。附加地,第二单个晶体管406具有第二绝缘层403,该第二绝缘层403将电位接触部413与第二栅极连接端407电绝缘。第二绝缘层406与衬底前侧成直角地布置并且延伸至第二单个晶体管406的二维电子气中。

可选地,该hemt能够包括多个第二单个单元314和414。然而,一个这样的第二单个单元314和414对于过压保护的功能性来说是足够的。

在一个实施例中,该hemt具有多个单个单元。这些单个单元全部并联连接,从而它们具有共同的漏极连接端、源极连接端和栅极连接端。在此,这些单个单元中的两个单个单元单独地实施。这两个单个单元通过绝缘层与另外的单个单元绝缘,其中,这两个单个单元还具有共同的漏极连接端和源极连接端。这两个单独地实施的单个单元中的第一单个单元包含另一欧姆式接触部作为电位接触部,其处于原来的基本单元的漂移区上。这两个单个单元中的第二单个单元如此实施,使得栅极连接端与第一单个单元的欧姆式接触部连接。

图5示出根据本发明的hemt的等效电路图500。该hemt包括具有第一栅极连接端505的第一单个晶体管504和具有第二栅极连接端507的第二单个晶体管506。第一单个晶体管504和第二单个晶体管506借助于共同的源极连接端508和共同的漏极连接端509并联电连接。该hemt包括具有两层的异质结(heterostruktur),所述两层具有不同大小的带隙,例如algan/gan层或者algaas/gaas,从而在有源的构件之下形成二维电子气。在此,该二维电子气在漏极连接端和源极连接端之间形成欧姆电阻。该hemt具有电位接触部513,所述电位接触部从衬底前侧伸展至二维电子气中,从而该欧姆电阻被分成第一电阻510和第二电阻511,即构成一个分压器,该分压器调节第二单个晶体管506的栅极电压或待机电流。对于过压装置的可靠的功能性来说,待机电流必须处于栅极的导通电流之上,从而第二单个晶体管506在过压时是可使用的。这意味着,第二单个晶体管506是常通型的。在此,电位接触部513的高度调节待机电流。电位接触部513的材料包括例如钛/铝/镍/金接触部。

图6示出用于制造hemt的方法600,该hemt包括多个第一单个单元和至少一个第二单个单元。该方法600以步骤610开始,在该步骤中在第二单个单元中产生第一绝缘层。在此,该第一绝缘层垂直于衬底前侧地布置并且伸展至二维电子气中。由此产生具有第一栅极连接端的第一单个晶体管和具有第二栅极连接端的第二单个晶体管。在接下来的步骤630中,在第二单个晶体管的区域中产生电位接触部。所述电位接触部也垂直于衬底前侧地布置并且从衬底前侧伸展至第二单个晶体管的二维电子气中。在接下来的步骤640中,在电位接触部和第二栅极连接端之间产生电连接。

在一个实施例中,在步骤610和步骤630之间实施步骤620,在步骤620中产生第二绝缘层,该第二绝缘层垂直于衬底前侧地布置并且伸展至第二单个晶体管的二维电子气中。由此,将电位接触部与第二栅极连接端电分离。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1