薄膜晶体管及其制备方法、阵列基板及其制备方法、显示面板与流程

文档序号:12725383阅读:185来源:国知局
薄膜晶体管及其制备方法、阵列基板及其制备方法、显示面板与流程

本公开涉及一种薄膜晶体管及其制备方法、阵列基板及其制备方法、显示面板。



背景技术:

当前消费者对显示产品分辨率的要求越来越高,具有高分辨率的产品逐渐成为市场的主流,而高分辨率意味着对设备中每一行像素的充电时间要缩短,对应的开关元件(例如薄膜晶体管)需要增大开态电流,以在更短的时间内对像素电极完成充放电。

公开内容

本公开至少一个实施例提供了一种薄膜晶体管及其制备方法、阵列基板及其制备方法、显示面板以解决上述技术问题。

本公开至少一个实施例提供一种薄膜晶体管,包括:衬底基板;设置于所述衬底基板上的栅电极、栅绝缘层、有源层、源电极和漏电极,所述有源层包括源极区、漏极区以及位于所述源极区和所述漏极区之间的沟道区;至少设置于所述有源层的所述沟道区表面上的由导电材料制备的线栅,所述线栅包括多个彼此间隔的线栅段;其中,在所述源极区至所述漏极区的方向上,所述沟道区的长度大于所述线栅段的长度。

例如,在本公开至少一个实施例提供的薄膜晶体管中,所述线栅可以设置于所述有源层的面向所述栅电极的一侧;或所述线栅可以设置于所述有源层的背离所述栅电极的一侧;或所述线栅可以同时设置于所述有源层的面向所述栅电极的一侧以及所述有源层的背离所述栅电极的一侧。

例如,在本公开至少一个实施例提供的薄膜晶体管中,所述线栅可以分布于所述有源层的面向所述衬底基板的整个表面;和/或所述线栅可以分布于所述有源层的背离所述衬底基板的整个表面。

例如,在本公开至少一个实施例提供的薄膜晶体管中,所述线栅段的长度方向可以与所述源极区至所述漏极区的方向相同。

例如,在本公开至少一个实施例提供的薄膜晶体管中,所述薄膜晶体管可以包括顶栅型薄膜晶体管、底栅型薄膜晶体管和双栅型薄膜晶体管中的一种。

例如,在本公开至少一个实施例提供的薄膜晶体管中,所述线栅的材料可以包括金属材料或透明导电材料。

本公开至少一个实施例提供一种阵列基板,包括上述任一实施例中的薄膜晶体管。

例如,在本公开至少一个实施例提供的阵列基板,其中,所述阵列基板可以包括多个子像素,每个子像素包括显示区和位于所述显示区外围的非显示区,所述薄膜晶体管位于所述非显示区中,并且所述线栅还至少设置在所述子像素的所述显示区中,以及所述线栅配置为使得从所述显示区透过的光具有第一偏振方向。

例如,在本公开至少一个实施例提供的阵列基板,其中,所述线栅的厚度范围为50~200纳米,周期范围为100~200纳米,占空比的范围为0.3~0.7,同一延长线上的相邻所述线栅段之间的间隔距离为30~140纳米,所述线栅段的长宽比不小于10。

本公开至少一个实施例提供一种显示面板,包括上述任一实施例中的阵列基板。

本公开至少一个实施例提供一种薄膜晶体管的制备方法,包括:提供衬底基板;在所述衬底基板上形成栅电极、栅绝缘层、有源层及线栅、源电极和漏电极;其中,所述有源层包括源极区、漏极区以及位于所述源极区和所述漏极区之间的沟道区,所述线栅至少与所述沟道区部分重叠,并且所述线栅包括多个彼此间隔的线栅段,在所述源极区至所述漏极区的方向上,所述沟道区的长度大于所述线栅段的长度。

例如,在本公开至少一个实施例提供的制备方法中,形成所述线栅的方法可以包括纳米压印。

本公开至少一个实施例提供一种阵列基板的制备方法,所述阵列基板可以包括多个子像素,所述子像素每个包括显示区和位于所述显示区外围的非显示区,所述方法包括:提供衬底基板;在所述非显示区中形成薄膜晶体管的栅电极、栅绝缘层、有源层及源电极和漏电极;形成线栅;其中,所述有源层包括源极区、漏极区以及位于所述源极区和所述漏极区之间的沟道区,所述线栅至少与所述沟道区部分重叠,并且所述线栅包括多个彼此间隔的线栅段,在所述源极区至所述漏极区的方向上,所述沟道区的长度大于所述线栅段的长度,并且所述线栅还至少在所述子像素的显示区中,以及所述线栅配置为使得从所述显示区透过的光具有第一偏振方向。

附图说明

为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。

图1a为本公开一个实施例提供的一种薄膜晶体管的截面图;

图1b为图1a所示薄膜晶体管的有源层的局部放大示意图;

图1c为图1a所示薄膜晶体管的俯视图;

图2a为本公开一个实施例提供的另一种薄膜晶体管的截面图;

图2b为本公开一个实施例提供的另一种薄膜晶体管的截面图

图3为本公开一个实施例提供的一种阵列基板的截面图;

图4a为本公开一个实施例提供的另一种阵列基板的俯视图;

图4b为图4a所示阵列基板的A区域的截面图;

图4c为图4a所示阵列基板的局部示意图;

图4d为图4c所示阵列基板的B区域的截面图;

图5a~图5f为本公开一个实施例提供的一种薄膜晶体管的制备方法的过程图;以及

图6a~图6c为本公开一个实施例提供的一种阵列基板的制备方法的过程图。

附图标记:

1-栅线;2-数据线;100-衬底基板;110-缓冲层;200-栅电极;300-栅绝缘层;400-线栅;410-线栅段;411-第一栅线段;412-第二栅线段;413-第三栅线段;414-第四栅线段;500-有源层;510-源极区;520-漏极区;530-沟道区;600-绝缘层;610-第一过孔;620-第二过孔;700-源漏电极层;710-源电极;720-漏电极;800-钝化层;810-第三过孔;900-第二栅电极;1000-第一电极层。

具体实施方式

为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。

除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。

业界在持续提高显示设备的分辨率,例如分辨率4K甚至8K显示设备,则需要缩短对设备中每一行像素的充电时间,即增加其开关元件例如薄膜晶体管的开态电流。最直接的增加例如薄膜晶体管的开关元件开态电流的方法,就是增大薄膜晶体管的有源层的沟道区的W/L(宽长比)。受当前工艺条件的限制,有源层的沟道区的长度难以进一步缩短,所以通常通过增加有源层的沟道区的宽度以实现更大的W/L。然而,此方法会使得薄膜晶体管在每个像素区域中的占用空间增加,导致像素区域开口率降低。

本公开至少一个实施例提供一种薄膜晶体管及其制备方法、阵列基板及其制备方法、显示面板以解决上述技术问题。该薄膜晶体管包括:衬底基板、设置于所述衬底基板上的栅电极、栅绝缘层、有源层、源电极和漏电极以及至少设置于所述有源层的所述沟道区表面上的由导电材料制备的线栅,所述有源层包括源极区、漏极区以及位于所述源极区和所述漏极区之间的沟道区,所述线栅包括多个彼此间隔的线栅段,并且在所述源极区至所述漏极区的方向上,所述沟道区的长度大于所述线栅段的长度。至少设置在有源层的沟道区上的线栅为导电材料,线栅可以缩短沟道区的有效长度,不需要增加有源层的宽度即可提高薄膜晶体管的开态电流,而且,还可以进一步降低薄膜晶体管的占用空间,从而子像素的提高开口率。

为便于理解本公开的技术方案,下面通过几个实施例对本公开的技术方案进行说明。

实施例一

本公开至少一个实施例提供一种薄膜晶体管,图1a为本公开一个实施例提供的一种薄膜晶体管的截面图,图1b为图1a所示薄膜晶体管的有源层的局部放大示意图,图1c为图1a所示薄膜晶体管的俯视图且为局部示意图。

在本公开一个实施例中,例如如图1a、图1b和图1c所示,该薄膜晶体管包括:衬底基板100、设置于衬底基板100上的栅电极200、栅绝缘层300、线栅400、有源层500以及源漏电极层700(可以包括源电极710和漏电极720),有源层500包括源极区510、漏极区520以及位于源极区510和漏极区520之间的沟道区530,线栅400至少设置于有源层500的沟道区530的表面上,并且线栅400为导电材料,线栅400可以包括多个线栅段410,并且在源极区510至漏极区520的方向上,沟道区530的长度大于线栅段410的长度。沟道区530的长度大于线栅段410的长度则使得相邻线栅段410之间的间隔区域至少位于沟道区530之内。

为便于说明本公开技术方案中各部件的位置,以薄膜晶体管中的衬底基板100为参考,对各部件的位置进行方向性的指定。示例性的,以有源层500为例,其“上表面”为远离衬底基板100的表面,其“下表面”为靠近衬底基板的表面。另外,以有源层500为例,其“上方”和“下方”为垂直于衬底基板100所在面的方向,且“上方”为有源层500的远离衬底基板100一侧的方向,“下方”为有源层500的靠近衬底基板100一侧的方向;有源层500中的源极区510至漏极区520的方向为“第一方向”;有源层500的“长度”的方向与第一方向平行,有源层500的“宽度”的方向与第一方向垂直且平行于衬底基板100所在的面。

有源层500的沟道区530中,覆盖有线栅段410的沟道区530部分的电阻降低,可以认为该部分的沟道区530与线栅段410并联,有源层500的整体电阻降低,从而使得薄膜晶体管在开态下的电流增加,如此不需要增加有源层500的宽度。

需要说明的是,因线栅400为导电材料,有源层500的沟道区530为半导体材料,在线栅400的导电性能良好的情况下,线栅400的电阻率可以远小于有源层500的沟道区530的电阻率。为便于解释本公开的技术方案,在本公开的下述实施例中,因为与沟道区530的电阻率相比,线栅段410的电阻率非常小,所以在此可以将线栅段410的电阻率忽略,即可以将沟道区530中覆盖线栅段410的部分的电阻视为零,则有源层500的沟道区530的有效部分的长度为:在平行于第一方向的同一延长线上,沟道区530中未覆盖有线栅段410的部分之和。

例如,在本公开至少一个实施例提供的薄膜晶体管中,如图1a、图1b和图1c所示,线栅400中的线栅段410的长度方向(即线栅段410的延长方向)可以与第一方向相同,也可以与第一方向有一定的夹角;线栅段410可以为直线段,也可以为曲线段等形状。只要在第一方向上,设置于沟道区530中的线栅段410可以缩短沟道区530的有效部分的长度并且不会短路全部的沟道区530即可,本公开对线栅段410的长度方向及形状等不做限制。为便于解释本公开的技术方案,在本公开下述的实施例中,以线栅段410为直线段且其长度方向与第一方向平行为例进行说明。

例如,在本公开至少一个实施例中,薄膜晶体管可以为底栅型薄膜晶体管、顶栅型薄膜晶体管或者双栅型薄膜晶体管等。

例如,在本公开实施例的一个示例中,薄膜晶体管可以为底栅型薄膜晶体管,其具体结构可以参考图1a及前述相关内容,在此不做赘述。

例如,在本公开实施例的另一个示例中,薄膜晶体管可以为顶栅型薄膜晶体管,图2a为本公开一个实施例提供的另一种薄膜晶体管的截面图。例如如图2a所示,该薄膜晶体管可以包括:衬底基板100以及依次设置于衬底基板100上的有源层500、线栅400、栅绝缘层300和源漏电极层700。例如,衬底基板100和有源层500之间还可以设置有缓冲层110。为防止有源层500受到光的照射,还可以在有源层500和衬底基板100中间设置对应于有源层500的遮光层(图中未示出)。

缓冲层110在衬底基板100和有源层500之间充当一个过渡膜层,可以使有源层500和衬底基板100之间结合得更稳固,且可以防止衬底基板100中的有害杂质、离子等扩散到有源层500之中。缓冲层110的制备材料可以包括硅氧化物(SiOx)或硅氮化物(SiNx)、硅氮氧化物(SiOxNy)等。例如,该缓冲层还可以为由氮化硅或者氧化硅构成的单层结构,或者由氮化硅和氧化硅构成的双层或多层结构。

例如,在本公开实施例的另一个示例中,薄膜晶体管可以为双栅型薄膜晶体管,图2b为本公开一个实施例提供的另一种薄膜晶体管的截面图。例如如图2b所示,该薄膜晶体管可以包括:衬底基板100以及依次设置于衬底基板100上的栅电极200、栅绝缘层300、线栅400和有源层500、绝缘层600、源漏电极层700、钝化层800以及第二栅电极900,其中,栅电极200可以作为第一栅电极。钝化层800的材料可以为氮化硅(SiNx)、氧化硅(SiOx)以及丙烯酸类树脂等。

例如,在本公开至少一个实施例提供的薄膜晶体管中,如图1a、图2a和图2b所示,线栅400可以设置于有源层500的面向栅电极200的一侧;也可以设置于有源层500的背离栅电极200的一侧;还可以同时设置于有源层500的面向栅电极200的一侧和有源层500的背离栅电极200的一侧。例如,在本公开的实施例中,线栅400不限于只设置于沟道区530中,也可以设置为分布于有源层500的面向衬底基板100的整个表面和/或设置为分布于有源层500的背离衬底基板100的整个表面。即,线栅400可以设置于有源层500的上表面和/或下表面,并且线栅400至少部分设置于有源层500的沟道区530中即可,本公开对线栅400相对于有源层500的具体设置位置不做限定。

例如,在本公开至少一个实施例提供的薄膜晶体管中,线栅400可以通过纳米压印等方式设置在薄膜晶体管中。线栅400可以为金属材料或透明导电材料。例如,线栅400的制备材料可以包括:金属材料可以为钼、钛、铜和铬等或者由上述金属形成的合金材料,例如,铜基合金材料包括铜钼合金(CuMo)、铜钛合金(CuTi)、铜钼钛合金(CuMoTi)、铜钼钨合金(CuMoW)、铜钼铌合金(CuMoNb)等,铬基合金材料包括铬钼合金(CrMo)、铬钛合金(CrTi)、铬钼钛合金(CrMoTi)等;透明导电材料可以为氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)、氧化锌(ZnO)、氧化铟(In2O3)、氧化铝锌(AZO)和碳纳米管等。

为便于解释本公开实施例的技术方案,在本公开的下述实施例中,以薄膜晶体管为底栅型薄膜晶体管,且线栅400设置于有源层500的下表面为例,对本公开的技术方案进行说明。

实施例二

本公开至少一个实施例提供一种阵列基板,该阵列基板可以包括上述任一实施例提供的薄膜晶体管,图3为本公开一个实施例提供的一种阵列基板的截面图,其为局部示意图。例如,如图3所示,本公开一个实施例提供的阵列基板可以包括:实施例一中提供的薄膜晶体管、设置于源漏电极层700上的钝化层800以及第一电极层1000。该第一电极层1000可以与源漏电极层700中的漏电极720电连接。在本公开的一些实施例中,线栅400可以只设置于薄膜晶体管中的有源层500上;在本公开的另一些实施例中,线栅400还可以至少设置在阵列基板的显示区中,并且线栅400可以被配置为偏光结构以代替偏光片等结构,从而可以简化用于例如液晶显示面板的阵列基板的结构。

例如,在本公开至少一个实施例中,阵列基板可以包括多个子像素,每个子像素包括显示区和位于显示区外围的非显示区,薄膜晶体管可以位于非显示区中,并且线栅400至少设置在子像素的显示区中,以及线栅配置为使得从所述显示区透过的光具有第一偏振方向。第一偏振方向可以根据阵列基板对透过光的偏振方向的实际需求来决定,只要线栅可以配置为使得透过的光具有一定的偏振方向,且该偏振方向的光满足实际需求即可,本公开在此对第一偏振方向的具体偏振方向不做限制。

图4a为本公开一个实施例提供的另一种阵列基板的俯视图,其为阵列基板中的一个子像素的结构示意图。在本公开的一个实施例中,例如如图4a所示,栅线1和数据线2限定了一个子像素的区域,第一电极层1000可以为像素电极,像素电极1000所对应的区域可以为子像素的显示区,显示区之外的子像素的区域为该子像素的非显示区,薄膜晶体管A可以位于非显示区中。

例如,在本公开的至少一个实施例中,位于薄膜晶体管中的线栅400部分可以设置于有源层500的下表面也可以设置于有源层500的上表面,线栅400在薄膜晶体管中的设置方式可以参考实施例一中的相关内容,在此不做赘述。

线栅400作为偏光结构,其结构参数需要满足一定的条件。例如,在本公开的至少一个实施例中,在垂直于衬底基板100所在面的方向上,线栅400的厚度范围为大约50~200纳米,周期范围为大约100~200纳米,占空比的范围为大约0.3~0.7,同一延长线上的相邻线栅段410之间的间隔距离为大约30~140纳米,线栅段410的长宽比可不小于10。

图4c为图4a所示阵列基板的局部示意图,图4d为图4c所示阵列基板的B区域的截面图。如图4c和4d,以线栅400中的第一线栅段411、第二线栅段412、第三线栅段413以及第四线栅段414为例对线栅400的结构参数进行说明,其中L1和L2分别为线栅段410的长度和宽度,L3为同一延长线上的相邻线栅段410之间的行间距,L4为位于不同延长线上的相邻线栅段410之间的列间距。线栅400的周期为L2+L4,其范围为100~200纳米;线栅400的占空比为L2/(L2+L4),其范围为0.3~0.7;线栅400的间距为L3,其范围为30~140纳米;线栅400的长宽比L1/L2不小于10。

需要说明的是,线栅400在作为偏光结构时,其具体的结构参数不限于上述的数值范围,线栅400的结构参数可以根据实际需求进行确定,本公开的实施例对此不做限制。

例如,在本公开至少一个实施例中,阵列基板可应用于例如液晶显示面板、有机发光二极管显示面板、电子纸显示面板等。相应的,第一电极层1000也有不同的设置结构。

例如,在本公开实施例的一个示例中,第一电极层1000为像素电极。像素电极1000的材料可以包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)、氧化锌(ZnO)、氧化铟(In2O3)、氧化铝锌(AZO)和碳纳米管等。

例如,在本公开实施例的另一个示例中,第一电极层1000可以为有机发光二极管的阳极或阴极。以第一电极层1000为有机发光二极管的阳极为例,该阵列基板还可以包括位于有机发光二极管的阳极1000上方的有机功能层和阴极。例如,该有机材料功能层可以包括:空穴传输层、发光层和电子传输层;为了能够提高电子和空穴注入发光层的效率,该有机材料功能层还可以包括设置在阴极与电子传输层之间的电子注入层,以及设置在阳极1000与空穴传输层之间的空穴注入层。

第一电极层1000作为阳极时,其制备材料可以为透明导电材料或金属材料,例如,形成该第一电极层1000的材料包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)氧化锌(ZnO)、氧化铟(In2O3)、氧化铝锌(AZO)和碳纳米管等;第一电极层1000作为阴极时,其制备材料可以为银、铝、钙、铟、锂或镁等金属或它们的合金来(例如镁银合金)。

实施例三

本公开至少一个实施例提供一种显示面板,该显示面板可以包括实施例二中的阵列基板。该显示面板可以应用于手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。

该显示面板的一个示例为液晶显示面板,可以包括阵列基板和对置基板,二者彼此对置以形成液晶盒,在液晶盒中填充有液晶材料。该对置基板例如为彩膜基板。阵列基板的每个像素单元的像素电极用于施加电场以对液晶材料的旋转的程度进行控制从而进行显示操作。

该显示面板的另一个示例为有机发光二极管(OLED)显示面板,其中,该显示面板包括的阵列基板上可以形成有机发光功能材料的叠层,每个像素单元的阳极或阴极用于驱动有机发光材料发光以进行显示操作。

该显示面板的再一个示例为电子纸显示面板,其中,该显示面板的阵列基板上形成有电子墨水层,每个像素单元的像素电极作为用于施加驱动电子墨水中的带电微颗粒移动以进行显示操作的电压。

实施例四

本公开至少一个实施例提供一种薄膜晶体管的制备方法,该方法包括:提供衬底基板;在衬底基板上形成栅电极、栅绝缘层、有源层及线栅、源电极和漏电极;其中,有源层包括源极区、漏极区以及位于源极区和漏极区之间的沟道区,线栅至少与沟道区部分重叠,并且线栅包括多个彼此间隔的线栅段,在源极区至漏极区的方向上,沟道区的长度大于线栅段的长度。

需要说明的是,由本公开实施例的制备方法制备的薄膜晶体管的具体结构,可以参考实施例一中的薄膜晶体管的相关内容,在此不做赘述。

为便于解释本公开实施例中薄膜晶体管的制备方法,在本公开实施例的至少一个示例中对该制备方法的过程进行说明,图5a~图5f为本公开一个实施例提供的一种薄膜晶体管的制备方法的过程图。以图1a所示的薄膜晶体管的结构为例,例如如图5a~图5f所示,本公开一个示例中的薄膜晶体管的制备方法可以包括如下过程:

如图5a所示,提供衬底基板100,在衬底基板100上沉积一层栅电极薄膜并对其进行构图工艺处理以形成栅电极200。

例如,衬底基板100的材料可以为透明材料,例如可以为玻璃或透明树脂等。

例如,在本示例中,栅电极200的材料可以为铜基金属,例如,铜(Cu)、铜钼合金(Cu/Mo)、铜钛合金(Cu/Ti)、铜钼钛合金(Cu/Mo/Ti)、铜钼钨合金(Cu/Mo/W)、铜钼铌合金(Cu/Mo/Nb)等;该栅电极500的材料也可以为铬基金属,例如,铬钼合金(Cr/Mo)、铬钛合金(Cr/Ti)、铬钼钛合金(Cr/Mo/Ti)等;该栅电极200的材料还可以为铝或铝合金等。

在本公开的至少一个实施例中,构图工艺例如可以为光刻构图工艺,其例如可以包括:在需要被构图的结构层上涂覆光刻胶层,使用掩膜板对光刻胶层进行曝光,对曝光的光刻胶层进行显影以得到光刻胶图案,使用光刻胶图案作为掩模对结构层进行蚀刻,然后可选地去除光刻胶图案。

如图5b所示,在衬底基板100上沉积一层栅绝缘层薄膜以形成栅绝缘层300。

例如,在本示例中,栅绝缘层300的材料可以包括氮化硅(SiNx)、氧化硅(SiOx)、氧氮化硅(SiNxOy)、氧化铝(Al2O3)、氮化铝(AlN)或其他适合的材料等。

如图5c所示,在栅绝缘层300上形成线栅400。线栅400的结构及材料等说明可以参考实施例一中的相关内容,在此不做赘述。

如图5d所示,在衬底基板100上沉积半导体薄膜并对其进行构图工艺以形成有源层500。

例如,在本示例中,有源层的材料可以包括非晶硅、多晶硅、以及氧化铟镓锌(IGZO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化镓锌(GZO)等金属氧化物等。

如图5e所示,在衬底基板100上沉积一层绝缘层薄膜以形成绝缘层600。

例如,在本示例中,绝缘层600的材料可以为氮化硅或氧化硅等。

如图5f所示,在绝缘层600中形成第一过孔610和第二过孔620,第一过孔610和第二过孔620可以暴露出部分有源层500。

如图1a所示,在衬底基板100上沉积一层导电层薄膜并对其进行构图工艺以形成源漏电极层700,该源漏电极层700可以包括源电极710和漏电极720。例如,源电极710可以通过第一过孔610与有源层500电连接,漏电极720可以通过第二过孔620与有源层500电连接。

例如,在本示例中,源漏电极层700的材料可以包括钼、钛、铜和铬等金属材料或者由上述金属形成的合金材料,例如,铜基合金材料包括铜钼合金(CuMo)、铜钛合金(CuTi)、铜钼钛合金(CuMoTi)、铜钼钨合金(CuMoW)、铜钼铌合金(CuMoNb)等,铬基合金材料包括铬钼合金(CrMo)、铬钛合金(CrTi)、铬钼钛合金(CrMoTi)等。

实施例五

本公开至少一个实施例提供一种阵列基板的制备方法,阵列基板包括多个子像素,子像素每个包括显示区和位于显示区外围的非显示区,方法包括:提供衬底基板;在非显示区中形成薄膜晶体管的栅电极、栅绝缘层、有源层及源电极和漏电极;形成线栅;其中,有源层包括源极区、漏极区以及位于源极区和漏极区之间的沟道区,线栅至少与沟道区部分重叠,并且线栅包括多个彼此间隔的线栅段,在源极区至漏极区的方向上,沟道区的长度大于线栅段的长度,并且线栅还至少在子像素的显示区中且配置为设置从显示区,以及线栅配置为使得从显示区透过的光具有第一偏振方向。

需要说明的是,由本公开实施例的制备方法制备的阵列基板的具体结构,可以参考实施例二中的阵列基板的相关内容,在此不做赘述。

便于解释本公开至少一个实施例中阵列基板的制备方法,在本公开实施例的至少一个示例中对该制备方法的过程进行说明,图6a~图6c为本公开一个实施例提供的一种阵列基板的制备方法的过程图。以图4b所示的阵列基板的结构为例,例如如图6a~图6c所示,本公开一个示例中的阵列基板的制备方法可以包括如下过程:

需要说明的是,对于实施例四中所述的制备线栅400的过程,在本公开的一些实施例中,线栅400可以只形成在薄膜晶体管的有源层500上;在本公开的另一些实施例中,线栅500还可以至少形成在阵列基板的各个子像素的显示区中。关于上述两种线栅400的设置方式可以参考前述实施例中的相关内容,在此不做赘述。

为便于解释本公开的技术方案,在本公开的下述实施例中,以线栅400形成为偏光结构为例,对本公开的技术方案进行说明。

如图6a所示,提供一制备有薄膜晶体管的阵列基板。该阵列基板上的薄膜晶体管的制备过程可以参考实施例四中的相关说明,本公开的实施例在此不做赘述。

如图6b所示,在形成有薄膜晶体管的衬底基板100上沉积钝化层薄膜以形成钝化层800。

例如,在本示例中,钝化层800的材料可以为氮化硅(SiNx)、氧化硅(SiOx)以及丙烯酸类树脂等。

如图6c所示,对钝化层800进行构图工艺以形成第三过孔810,第三过孔810可以暴露部分源漏电极层700,例如第三过孔810可以暴露源漏电极层700中的漏电极720。

如图4b所示,在衬底基板100上沉积一层导电层薄膜并对其进行构图工艺以形成第一电极层1000。第一电极层1000可以通过第三过孔810与源漏电极层700中的漏电极720电连接。关于第一电极1000的设置可以参考实施例二中的相关内容,在此不做赘述。

本公开的实施例提供一种薄膜晶体管及其制备方法、阵列基板及其制备方法、显示面板,并且可以具有以下至少一项有益效果:

(1)至少一个实施例的薄膜晶体管的有源层的沟道区中设置有导电的线栅,可以缩短沟道区的有效长度,不需要增加有源层的宽度即可提高薄膜晶体管的开态电流。

(2)至少一个实施例的薄膜晶体管可以降低薄膜晶体管的占用空间,提高开口率。

(3)至少一个实施例的在阵列基板中,线栅还可以至少设置于子像素的显示区中,以及线栅配置为使得从显示区透过的光具有第一偏振方向,以使得线栅可以替代偏振片等部件,可以简化阵列基板的结构。

对于本公开的实施例,还有以下几点需要说明:

(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。

(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。

(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。

以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1