一种薄膜晶体管中的多晶硅薄膜、薄膜晶体管及制作方法与流程

文档序号:12725382阅读:261来源:国知局
一种薄膜晶体管中的多晶硅薄膜、薄膜晶体管及制作方法与流程

本申请涉及显示领域,尤其涉及一种薄膜晶体管中的多晶硅薄膜、薄膜晶体管及制作方法。



背景技术:

多晶硅(poly-silicon)因具有优于非晶硅的电气特性,以及低于单晶硅的成本考虑的优势,而于近几年在薄膜晶体管制造上,尤其是在薄膜晶体管驱动显示器的应用上广受重视。

目前在多晶硅薄膜的制作上,最为普遍使用的是准分子激光回火(Excimer Laser Anneal,ELA)技术,但此方法存在制备设备昂贵,形成的多晶硅膜层均一性差,制作过程复杂等缺点。金属诱导非晶硅晶化(Metal Induced Crystallization,MIC)技术可在低温工艺制备出高性能的多晶硅薄膜,与其它低温多晶硅技术相比有明显的优势。

现有MIC技术在将非晶硅薄膜转化为多晶硅薄膜时,通常是在非晶硅薄膜上依次沉积金属隔离层和金属层,以使金属层的金属原子可以通过金属隔离层扩散到非晶硅薄膜,含有金属原子的非晶硅薄膜在退火工艺过程中进而可以转变为多晶硅薄膜。但上述该现有MIC技术在将非晶硅薄膜转化为多晶硅薄膜时,通常需单独制作金属隔离层,而且,在将非晶硅薄膜转化为多晶硅薄膜后,还需去除金属隔离层和金属层,致使现有MIC技术由非晶硅薄膜制作成多晶硅薄膜的成本较高,工艺较为复杂。



技术实现要素:

本申请实施例提供一种薄膜晶体管中的多晶硅薄膜、薄膜晶体管及制作方法,在通过金属诱导非晶硅晶化方法将非晶硅薄膜转换为多晶硅薄膜时,可以避免需单独制作金属隔离层,同时,也可以避免金属隔离层和金属层的去除工艺,降低将非晶硅薄膜转换为多晶硅薄膜的制作成本,简化工艺制作。

本申请实施例提供一种薄膜晶体管中的多晶硅薄膜的制作方法,其特征在于,包括:

在衬底基板上形成金属层;

在所述金属层上形成缓冲层;

在所述缓冲层上形成非晶硅膜层;

通过金属原子对所述非晶硅膜层的催化作用,将所述非晶硅膜层转化为多晶硅膜层,其中,所述金属原子为所述金属层扩散的、并与所述非晶硅膜层接触的金属原子。

优选的,在所述缓冲层上形成非晶硅膜层之前,所述制作方法还包括:采用第一退火工艺,在所述缓冲层上形成金属扩散层,其中,所述金属扩散层由所述金属层的金属原子扩散到所述缓冲层的上方形成;

所述通过金属原子对所述非晶硅膜层的催化作用,将所述非晶硅膜层转化为多晶硅膜层,具体包括:采用第二退火工艺,使所述非晶硅膜层通过所述金属扩散层的催化作用转化为多晶硅膜层。

优选的,在所述金属扩散层上形成非晶硅膜层,具体包括:

在金属扩散层上形成非晶硅薄膜;

采用干法刻蚀,使所述非晶硅薄膜形成图案化的非晶硅膜层,并同时去所述除缓冲层上第一区域以外其它区域的金属扩散层,其中,所述第一区域在所述衬底基板上的垂直投影与所述非晶硅膜层的图案在所述衬底基板上的垂直投影重叠。

优选的,所述在衬底基板上形成金属层,具体包括:

在衬底基板上形成图案化的金属层,其中,所述金属层的图案在所述衬底基板上的垂直投影与所述非晶硅膜层的图案在所述衬底基板上的垂直投影重叠。

优选的,所述通过金属原子对所述非晶硅膜层的催化作用,将所述非晶硅膜层转化为多晶硅膜层,具体包括:

采用第三退火工艺,使所述金属扩散层的金属原子扩散到所述非晶硅膜层,并同时使所述非晶硅膜层通过所述金属原子的催化作用转化为多晶硅膜层。

优选的,将所述非晶硅膜层转化为多晶硅膜层之后,所述制作方法还包括,对所述多晶硅膜层的背向所述缓冲层一侧的表面进行处理,以去除所述多晶硅膜层的背向所述缓冲层一侧的部分薄膜。

优选的,在衬底基板上形成金属层之前,所述制作方法还包括:

在所述衬底基板上形成阻挡层。

本申请实施例还提供一种薄膜晶体管的制作方法,包括本申请实施例提供的所述的多晶硅薄膜的制作方法。

本申请实施例还提供一种多晶硅薄膜,所述多晶硅薄膜包括:

设置在衬底基板上的金属层;

设置在所述金属层上的缓冲层;

设置在所述缓冲层上的多晶硅膜层,其中,所述多晶硅膜层由所述缓冲层上的非晶硅膜层通过金属原子的催化作用转化形成,所述金属原子为所述金属层扩散的、并与所述非晶硅膜层接触的金属原子。

本申请实施例还提供一种薄膜晶体管,包括本申请实施例提供的所述多晶硅薄膜。

本申请实施例的有益效果如下:本申请在衬底基板上形成金属层,在金属层上形成缓冲层,并在缓冲层上形成非晶硅膜层,金属层中的金属原子可以进行扩散,与非晶硅膜层进行接触,使非晶硅膜层在金属的催化作用下可以转化为多晶硅膜层,由于在将非晶硅薄膜转换为多晶硅薄膜时,利用多晶硅薄膜在制作成薄膜晶体管所存在的缓冲层替代金属隔离层,进而可以不需要单独制作金属隔离层,而且,也可以省略金属隔离层和金属层的去除工艺,可以降低生产成本,简化工艺制作步骤。

附图说明

图1为本申请实施例提供的一种制作薄膜晶体管的多晶硅薄膜的方法流程图;

图2为本申请实施例提供的设置在衬底基板上形成阻挡层的结构示意图;

图3为本申请实施例提供的在阻挡上形成金属层的结构示意图;

图4本申请实施例提供的在非晶硅膜层上形成缓冲层的结构示意图;

图5为本申请实施例提供的在缓冲层上形成金属扩散层的结构示意图;

图6为本申请实施例提供的在金属扩散层上形成非晶硅薄膜的结构示意图;

图7为本申请实施例提供的形成图案化的非晶硅膜层后的结构示意图;

图8为本申请实施例提供的去除多晶硅膜层的背向缓冲层一层的部分薄膜将非晶硅膜层转换为多晶硅膜层的结构示意图;

图9本申请实施例提供的去除多晶硅膜层的背向缓冲层一层的部分薄膜的结构示意图;

图10本申请实施例提供的一种具体的薄膜晶体管的结构示意图。

具体实施方式

下面结合说明书附图对本发明实施例的实现过程进行详细说明。需要注意的是,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。

参见图1,本申请实施例提供一种薄膜晶体管中的多晶硅薄膜的制作方法,包括:

101,在衬底基板上形成金属层。

在具体实施时,可以通过溅射方法在衬底基板上制备1nm~100nm的金属层,优选为50nm。具体金属的材质可以为金属Ni、Au、Cu、Pd、Co、Ag中的任意一种。

本申请实施例中的衬底基板具体可以为玻璃基板,为了防止玻璃中的杂质离子(例如玻璃中的碱金属Na或K离子)进入上方膜层,对上方的膜层造成影响,优选的,在衬底基板上形成金属层之前,所述制作方法还包括:在衬底基板上形成阻挡层。在具体实施时,可以通过等离子体化学气相沉积(PECVD)或低压化学气相沉积(LPCVD)在衬底基板上制备10nm~100nm的阻挡层,该阻挡层可以为碳化硅化合物,例如,阻挡层具体可以为SiN。

102,在金属层上形成缓冲层。

在具体实施时,可以通过等离子体化学气相沉积(PECVD)或低压化学气相沉积(LPCVD)在金属层上制备10nm~100nm的缓冲层,优选为50nm。该缓冲层一般为薄膜晶体管中的缓冲层,在本申请实施例中,该缓冲层不仅作为薄膜晶体管中常用的缓冲层,还用于控制金属层中的金属原子扩散到上方的非晶硅膜层的金属量的控制,即,在非晶硅膜层和金属层之间设置的缓冲层,可以避免金属层中的原子过多地扩散到非晶硅膜层中,进而可以避免形成的薄膜晶体管由于含有较多的金属原子而产生漏电流较大的问题。具体缓冲层的材质可以为氧化硅的化合物,例如,具体可以为SiO。

103,在缓冲层上形成非晶硅膜层。

在具体实施时,可以通过等离子体化学气相沉积(PECVD)或低压化学气相沉积(LPCVD)在缓冲层上沉积10nm~100nm的非晶硅膜层,优选为50nm。应该理解的是,该非晶硅膜层通常作为薄膜晶体管中的有源层。

104,通过金属原子对非晶硅膜层的催化作用,将非晶硅膜层转化为多晶硅膜层,其中,金属原子为金属层扩散的、并与非晶硅膜层接触的金属原子。

本申请在衬底基板上形成金属层,在金属层上形成缓冲层,并在缓冲层上形成非晶硅膜层,金属层中的金属原子可以进行扩散,与非晶硅膜层进行接触,使非晶硅膜层在金属的催化作用下可以转化为多晶硅膜层,由于在将非晶硅薄膜转换为多晶硅薄膜时,利用多晶硅薄膜在制作成薄膜晶体管所存在的缓冲层替代金属隔离层,进而可以不需要单独制作金属隔离层,而且,也可以省略金属隔离层和金属层的去除工艺,可以降低生产成本,简化工艺制作步骤。

需要说明的是,在通过金属诱导非晶硅晶化方法将非晶硅薄膜转换为多晶硅薄膜时,金属层一般作为催化剂,使非晶硅膜层在金属原子的催化作用下转换为多晶硅膜层,而由于在金属层与非晶硅膜层之间还形成有缓冲层,为了能够使金属层的金属原子对非晶硅膜层起到催化的作用,通过需要将金属层进行一定的加热,使金属层中的金属原子能够进行扩散,与非晶硅膜层接触。在具体实施时,可以通过不同的工艺步骤,实现非晶硅膜层转化为多晶硅膜层。以下进行具体举例说明。

例如,为了能够使金属层的金属原子充分扩散到非晶硅膜层,形成结晶性能优异的多晶硅薄膜,本申请实施例的制作方法,在缓冲层上形成非晶硅膜层之前,还包括:通过第一退火工艺,在缓冲层上形成金属扩散层,该金属扩散层由金属层的金属原子扩散到缓冲层的上方形成。在缓冲层上形成金属扩散层之后,再在金属扩散层上形成非晶硅膜层,再通过第二退火工艺,使非晶硅膜层在金属扩散层的催化作用下转化为多晶硅膜层。具体的,第一退火工艺可以为以温度为低于600℃,时长为第一预设时长的退火过程,第二退火工艺可以为温度为低于600℃,时长为第二预设时长的退火过程。

又例如,本申请实施例中使非晶硅膜层转化为多晶硅膜层的过程中,还可以通过一步退火工艺实现,即,在金属层上形成缓冲层后,直接在缓冲层上形成非晶硅膜层,可以通过一次较长时间的退火过程,在使金属层的金属原子扩散到非晶硅膜层的过程中,通过使非晶硅膜层在该金属原子的催化作用下转化为多晶硅膜层。第三退火工艺可以为温度为低于600℃,时长为第三预设时长的退火过程。其中,第三预设时长大于第一预设时长,同时也大于第二预设时长,即,相比第一退火工艺和第二工艺,第三退火工艺的时长更长。

在具体实施时,本申请实施例在制作多晶硅膜层时,可以直接将多晶硅膜层制作为图案化的多晶硅膜层,即,直接使该多晶硅膜层具有有源层的图案,例如,只在薄膜晶体管的沟道区形成多晶硅薄膜,对于通过两次退火工艺将非晶硅膜层转化为多晶硅膜层,若要形成图案化的多晶硅膜层,可以在经过第一退火工艺后,在缓冲层的上方形成非晶硅薄膜,采用干法刻蚀,使所述非晶硅薄膜形成图案化的非晶硅膜层。优选的,在形成图案化的非晶硅膜层时,还可以选择合适的过刻比,同时去除缓冲层上第一区域以外其它区域的金属扩散层,即,金属层在扩散到缓冲层的上方时,可能还扩散到非沟道区,进而在将多晶硅薄膜层图案化时,同时去除金属扩散层第一区域以外的其它区域的薄膜,可以降低金属层的金属原子由于扩散到非沟道区时对多晶硅薄膜形成的薄膜晶体管的影响,即,可以在不增加制作工艺步骤的情况下,降低金属层的金属原子由于扩散到非沟道区时对多晶硅薄膜形成的薄膜晶体管的影响。具体的过刻比,可以理解为在能够去除非沟道区的非晶硅膜层的情况下,进一步向下刻蚀,去除非晶硅膜层下方的金属扩散层,例如,若去除去除非沟道区的非晶硅膜层的用时为30min,则,可以适当延长时间为40min,以刻蚀掉缓冲非沟道区的金属扩散层。当然,上述只是以30min和40min进行举例说明,本申请并不以此为限。具体可以选用氟系气体和氯系气体的混合气体进行刻蚀。

在具体实施时,考虑到由金属层扩散出的金属原子可能富集在多晶硅膜层的背向缓冲层一侧的表面层,进而,通过对多晶硅膜层的背向缓冲层一侧的表面进行处理,可以去除多晶硅膜层的背向所述缓冲层一侧的部分薄膜,降低多晶硅薄膜形成的薄膜晶体管的漏电流较高的问题。优选的,本申请实施例在将非晶硅膜层转化为多晶硅膜层后,制作方法还包括:对多晶硅膜层的背向缓冲层一侧的表面进行处理,以去除多晶硅膜层的背向缓冲层一侧的部分薄膜。具体的,可以采用干刻工艺去除富集金属催化剂的多晶硅的表面层,例如,利用ICP设备,在CF4+O2或Cl2+O2氛围下,采用功率为第一预设功率的Source Power和功率为第二预设功率的Bias Power或无Bias Power对多晶硅膜层表面进行处理。其中,优选的,选取Bias Power为低功率或不设置Bias Power功率,可以避免对多晶硅膜层的沟道区截面产生损伤而影响形成的薄膜晶体管的特性。

为了更详细的对本申请实施例提供的薄膜晶体管中的多晶硅薄膜的制备方法进行说明,结合附图2至附图9举例如下:

本申请实施例提供一种具体的薄膜晶体管中的多晶硅薄膜的制备方法,包括:

步骤一,采用等离子体化学气相沉积法,在衬底基板1上沉积50nm厚的SiN膜层作为阻挡层2。衬底基板1具体可以为玻璃基板,该无机SiN膜层可用来阻挡玻璃基板中的碱金属离子,例如,Na或K。在衬底基板1上形成阻挡层2后的示意图如图2所示。

步骤二,通过溅射方法,并采用与后期形成的多晶硅膜层的图案一致的掩模板,在阻挡层2上形成50nm厚图案化的Ni金属层3,即,为了降低金属层扩散的金属原子扩散到薄膜晶体管非沟道区的几率,金属层3的图案在衬底基板上的垂直投影与多晶硅膜层的图案在衬底基板上的垂直投影重叠。在阻挡层2上形成金属层3后的结构示意图如图3所示。

步骤三,采用等离子体化学气相沉积法,在Ni金属层3上沉积50nm厚的SiO薄膜作为缓冲层4,此SiO薄膜用于控制进入多晶硅薄膜的金属量。在金属层上形成缓冲层4后的示意图如图4所示。

步骤四,以温度为500℃,进行退火,使金属层3的金属原子扩散到SiO缓冲层4的上表面,形成由扩散的金属原子构成的金属扩散层5。在缓冲层4上形成金属扩散层5后的示意图如图5所示。

步骤五,采用等离子体化学气相沉积法,在金属扩散层5上沉积50nm厚的非晶硅薄膜60。在金属扩散层5上形成非晶硅薄膜60后的示意图如图6所示。

步骤六,在非晶硅薄膜60上形成图案化的光刻胶层(图中未示出),并在图案化的光刻胶层的遮挡下,在氟气和氯气的混合气体氛围下,对非晶硅薄膜60进行干刻,形成图案化的非晶硅膜层6,该图案化的非晶硅膜层6在经过处理后可作为薄膜晶体管沟道区的有源层,在该步骤中,可适当增加过刻比,在形成图案化的非晶硅膜层6时,同时去除非沟道区的金属扩散层5。形成图案化的非晶硅膜层6后的示意图如图7所示。

步骤七,以温度为500℃,进行退火,使非晶硅膜层6在金属的催化作用下转化为多晶硅膜层7,该多晶硅膜层7包括背向缓冲层4一侧的含有较多金属原子的第一膜层7a以及含有较小或不含金属原子的其它膜层7b。在将非晶硅膜层6转换为多晶硅薄膜7后的示意图如图8所示。

步骤八,通过ICP设备,以CF4和O2的混合气体,以Source Power为第一预设功率,Bias Power为第二预设功率,对多晶硅膜层7的表面层进行干刻处理,以去除多晶硅膜层7背向缓冲层一侧的表面层的部分薄膜,即第一膜层7a。去除多晶硅膜层7背向缓冲层一侧的表面层的部分薄膜后的示意图如图9所示。

本申请实施例还提供一种薄膜晶体管的制作方法,包括本申请实施例提供的薄膜晶体管中的多晶硅薄膜的制作方法。当然,对于整体的薄膜晶体管,参见图10,薄膜晶体管的制作方法,还包括形成其它膜层的制作步骤,例如,薄膜晶体管的制作步骤还包括:

在多晶硅膜层7上形成栅极绝缘层8,并在栅极绝缘层8上形成栅极9,其中,多晶硅膜层7在衬底基板1上的垂直投影覆盖栅极9在衬底基板上的垂直投影,当然,这里的多晶硅膜层7可指去除了背向缓冲层一侧的表面层的部分薄膜的多晶硅膜层;

在栅极9上形成源漏极绝缘层10,并在栅极绝缘层8与源漏极绝缘层10形成与多晶硅膜层7接触的第一过孔13和第二过孔14;

在源漏极绝缘层上形成源极11和漏极12,并通过第一过孔13使源极11与多晶硅膜层7接触,通过第二过孔14使漏极12与多晶硅膜层7接触。

参见图9,本申请实施例还提供一种薄膜晶体管中的多晶硅薄膜,包括:

设置在衬底基板1上的金属层3;

设置在金属层3上的缓冲层4;

设置在缓冲层4上的多晶硅膜层7(该多晶硅膜层7可指去除了背向缓冲层一侧的表面层的部分薄膜的其它膜层7b),其中,多晶硅膜层7由缓冲层4上的非晶硅膜层通过金属原子的催化作用转化形成,金属原子为金属层3扩散的、并与非晶硅膜层接触的金属原子。

本申请实施例还提供一种薄膜晶体管,包括本申请实施例提供的多晶硅薄膜。

参见图10,本申请实施例还提供一种具体的薄膜晶体管,包括本申请实施例提供的多晶硅薄膜,包括:

设置在多晶硅膜层7上的栅极绝缘层8,设置在栅极绝缘层8上的栅极9,其中,多晶硅膜层7在衬底基板1上的垂直投影覆盖栅极9在衬底基板1上的垂直投影,该多晶硅膜层7可指去除了背向缓冲层一侧的表面层的部分薄膜后的多晶硅膜层;

设置在栅极9上的源漏极绝缘层10,以及设置在源漏极绝缘层10上的源极11和漏极12,其中,源极11通过第一过孔13与多晶硅膜层7接触,漏极12通过第二过孔14与多晶硅膜层7接触。

综上所述,本申请在衬底基板上形成金属层,在金属层上形成缓冲层,并在缓冲层上形成非晶硅膜层,金属层中的金属原子可以进行扩散,与非晶硅膜层进行接触,使非晶硅膜层在金属的催化作用下可以转化为多晶硅膜层,由于在将非晶硅薄膜转换为多晶硅薄膜时,利用多晶硅薄膜在制作成薄膜晶体管所存在的缓冲层替代金属隔离层,进而可以不需要单独制作金属隔离层,而且,也可以省略金属隔离层和金属层的去除工艺,可以降低生产成本,简化工艺制作步骤。

显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1