金属‑绝缘体‑金属电容器结构的制作方法

文档序号:11262731阅读:243来源:国知局
金属‑绝缘体‑金属电容器结构的制造方法与工艺

本申请是pct国际申请日为2014年6月13日,国家申请号为201480033612.9,题为“金属-绝缘体-金属电容器结构”的pct国家阶段专利申请的分案申请。

背景

领域

本公开的各方面一般涉及电容器,并且尤其涉及金属-绝缘体-金属(mim)电容器结构。



背景技术:

解耦电容器通常被使用在芯片中以滤除电源上的噪声,其中解耦电容器被耦合在电源的两个电源轨(例如,vdd与vss)之间。典型情况下,解耦电容器是使用包括两个金属层与部署在这两个金属层之间的介电层的金属-绝缘体-金属(mim)电容器来实现的。

概述

以下给出对一个或多个实施例的简化概述以提供对此类实施例的基本理解。此概述不是所有构想到的实施例的详尽综览,并且既非旨在标识所有实施例的关键性或决定性要素亦非试图界定任何或所有实施例的范围。其唯一的目的是要以简化形式给出一个或更多个实施例的一些概念以作为稍后给出的更加具体的说明之序。

根据一方面,提供了一种电容器结构。该电容器结构包括低压电容器和高压电容器。该低压电容器包括从第一金属层形成的第一电极、从第二金属层形成的第二电极、从第三金属层形成的第三电极、在第一与第二电极之间的第一介电层、以及在第二与第三电极之间的第二介电层。该高压电容器包括从第一金属层形成的第四电极、从第三金属层形成的第五电极、以及在第四与第五电极之间的第三介电层,其中,该第三介电层比第一介电层或者第二介电层厚。

第二方面涉及一种电容器结构,其包括从第一金属层形成的第一电极、从第二金属层形成的第二电极、以及从第三金属层形成的第三电极,其中第二与第三电极比第一与第二电极分隔得更远。该电容器结构还包括在第一与第二电极之间的第一介电层、和在第二与第三金属层之间的第二介电层,其中第二介电层具有比第一介电层更大的厚度。

第三方面涉及一种用于制造电容器结构的方法。该方法包括将第一金属层沉积在第一绝缘层之上,从第一金属层形成第一电极和第二电极,将第一介电层沉积在第一和第二电极之上,以及将第二金属层沉积在第一介电层之上。该方法还包括从第二金属层形成第三电极,其中,第三电极与第一电极交叠;以及将第二金属层的与第二电极交叠的部分移除。该方法进一步包括将第二介电层沉积在第三电极和第一介电层之上,将第三金属层沉积在第二介电层之上,并且从第三金属层形成第四电极和第五电极,其中第四电极与第一和第三电极交叠,并且第五电极与第二电极交叠。

第四方面涉及一种用于制造电容器结构的方法。该方法包括将第一金属层沉积在第一绝缘层之上,从第一金属层形成第一电极,将第一介电层沉积在第一电极之上,将第二金属层沉积在第一介电层之上,以及从第二金属层形成第二电极。该方法还包括将第二介电层沉积在第二电极之上,其中第一和第二介电层具有不同的厚度。该方法还包括将第三金属层沉积在第二介电层之上,并且从第三金属层形成第三电极。

第五方面涉及一种设备。该设备包括用于衰减第一电源轨上的噪声的装置,以及用于衰减第二电源轨上的噪声的装置,其中这两个装置被集成在芯片上,并且第二电源轨耦合到比第一电源轨更高的电源电压。

为能达成前述及相关目的,这一个或多个实施例包括在下文中充分描述并在权利要求中特别指出的特征。以下说明和所附插图详细阐述了这一个或更多个实施例的某些解说性方面。但是,这些方面仅仅是指示了可采用各个实施例的原理的各种方式中的若干种,并且所描述的实施例旨在涵盖所有此类方面及其等效方案。

附图简述

图1示出了mim电容器结构的示例。

图2示出了根据本公开实施例的提供高压电容器和低压电容器二者的mim电容器结构。

图3示出了根据本公开的实施例的其中可制造图2中的mim电容器结构的芯片。

图4示出了根据本公开另一实施例的提供高压电容器和低压电容器二者的mim电容器结构。

图5示出了根据本公开的实施例的其中可制造图4中的mim电容器结构的芯片。

图6是根据本公开实施例的耦合到低压电路的低压电容器的电路图。

图7是根据本公开实施例的耦合到高压电路的高压电容器的电路图。

图8a-8k解说了根据本公开实施例的用于制造图2中的mim电容器结构的示例性过程。

图9a-9k解说了根据本公开实施例的用于制造图4中的mim电容器结构的示例性过程。

图10是根据本公开的一实施例的用于制造电容器结构的方法的流程图。

图11是根据本公开另一个实施例的用于制造电容器结构的方法的流程图。

图12示出了根据本公开实施例的从四个金属层形成的低压电容器。

图13示出了根据本公开实施例的包括高压电容器与低压电容器二者的电容器结构。

详细描述

以下结合附图阐述的详细描述旨在作为各种配置的描述,而无意表示可实践本文中所描述的概念的仅有的配置。本详细描述包括具体细节以便提供对各种概念的透彻理解。然而,对于本领域技术人员将显而易见的是,没有这些具体细节也可实践这些概念。在一些实例中,以框图形式示出众所周知的结构与组件以避免湮没此类概念。

解耦电容器通常被用以滤除电源上的噪声,其中解耦电容器被耦合在电源的两个电源轨(例如,vdd与vss)之间。图1示出了当前用来实现解耦电容器的金属-绝缘体(mim)电容器结构110的示例。如图1中所示,mim电容器结构110可以被放置在处于互连金属m8与m9之间的芯片的后端制程(beol)部分中。

mim电容器结构110包括顶部金属层115、底部金属层120以及部署在顶部与底部金属层115与120之间的介电层117。顶部金属层115通过第一通孔122被耦合到第一电源轨130,并且底部金属层120通过第二通孔127被耦合到第二电源轨132。第一电源轨130可以被耦合到电源的vdd,并且第二电源轨127可以被耦合到电源的vss。

图1中所示的电容器结构110在单个芯片上仅支持两种不同类型的电容器中的一种:具有低电容密度的高压电容器或者具有高电容密度的低压电容器。例如,高压电容器可以被用在高压应用中(例如,当电源被用来给i/o设备供电时)。为了实现高压电容器,介电层117的厚度可以被增大。让介电层117变得更厚允许mim电容器结构110经受更高的电压而不被击穿。然而,这降低了mim电容器结构110的电容密度。

低压电容器可以被用在低压应用中(例如,当电源被用来给核心设备供电时)。为了实现具有高电容密度的低压电容器,介电层117的厚度可以被减小。使得介电层117更薄增加了mim电容器结构110的电容密度。然而,这降低了介电层117的击穿电压,这可能使得mim电容器结构110不适于用于高压应用。

当芯片设计者使用mim电容器结构110来在芯片上实现解耦电容器时,芯片设计者只能从以下两个选项中选择一者:实现具有低电容密度的高压电容器(通过增大介电层117的厚度)或者实现具有高电容密度的低电压电容器(通过减小介电层117的厚度)。一旦选择了其中一个选项,就必须对整个芯片实现该选项。这种办法的问题在于,芯片可能包括高压设备(例如,i/o设备)和低压设备(例如,核心设备)二者。因此,想要能够在同一芯片上提供具有低电容密度的高压电容器与具有高电容密度的低压电容器两者的mim电容器结构。

本公开的实施例提供了相比于图1中所示的mim电容器结构110而言能够使用一个附加金属层来在同一芯片上提供具有高电容密度的低压电容器以及高压电容器二者的mim电容器结构。

以下,图2示出了根据本公开的一实施例的mim电容器结构210。如以下进一步所讨论的,mim电容器结构210可以被用来在同一芯片上使用三个金属层l1、l2与l3来实现低压电容器212和高压电容器250二者。每一个金属层可包括钛(ti)、氮化钛、钽(ta)、氮化钽(tan)、铜(cu)、另一种类型的金属、或者其任何组合。

在图2中,第一与第三金属层l1与l3分别是这三个金属层l1、l2与l3中的最底层与最顶层,并且第二金属层l2是中间金属层。在该实施例中,该芯片的电源具有低电源电压vdd-低(例如,用于对核心设备供电)以及高电源电压vdd-高(例如,用于对i/o设备供电),其中vdd-高高于vdd-低。例如,vdd-高可以是vdd-低的两倍那样高或者更高。

低压电容器212包括从第一金属层l1形成的第一电极215、从第二金属层l2形成的第二电极220、以及从第三金属层l3形成的第三电极225。第一、第二和第三电极215、220和225可以通过使用定义第一、第二和第三电极215、220和225的掩模(例如,光刻掩模)来图案化第一、第二和第三金属层l1、l2和l3来形成。以下提供了用于从金属层形成电极的过程的示例。低压电容器212还包括部署在第一与第二电极215和220之间的第一介电层217,以及部署在第二与第三电极220和225之间的第二介电层222。第一和第二介电层217与222可以具有大致相同的厚度或者不同的厚度。每个介电层可以包括单层介电材料层或者多层不同介电材料层。

第二电极220藉由通孔232耦合到第一电源轨242,并且第一和第三电极215与225分别藉由通孔237与235耦合到第二电源轨245。第一电源轨242可以被耦合到电源的vdd-低,并且第二电源轨245可以被耦合到电源的vss,或者反之。将会领会,每个电极215、220与225可以藉由不止一个通孔被耦合到对应电源轨。

由此,低压电容器212是使用所有的三个金属层l1、l2与l3来实现的。低压电容器212包括相比于图1中的mim电容器结构110而言的一个附加金属层。然而,低压电容器212可提供大约两倍于图1中的mim电容器结构110的电容密度。这是因为,低压电容器212在电极之间具有大约两倍的表面区域(即,第一与第二电极215和220之间的表面区域,以及第二与第三电极220和225之间的表面区域)。由此,低压电容器212相比于图1中的mim电容器结构110能够以一个附加金属层为代价达成大约两倍的电容密度。较高的电容密度对于解耦电容器而言是合乎需要的。这是因为集成电路中较高的电流(由于更多的电路系统)以及较快的电流(由于较高的频率),这要求增加的解耦电容密度以降低电源上的噪声。

高压电容器250使用第一金属层l1(最底部金属层)和第三金属层l3(最顶部金属层)来实现而不使用第二金属层l2(中间金属层)实现。高压电容器250包括从第一金属层l1形成的第四电极255以及从第三金属层l3形成的第五电极260。第四和第五电极255和260可以通过使用定义第四和第五电极255与260的掩模(例如,光刻掩模)来图案化第一和第三金属层l1和l3来形成。

高压电容器250还包括部署在第四与第五电极255和260之间的第三介电层262。第三介电层362厚于低压电容器210的第一介电层217或第二介电层222,并且因此能够耐受高压而不被击穿。例如,第三介电层262可以具有大约等于第一与第二介电层217与222厚度的总和的厚度。

第四电极255藉由通孔275被耦合到第三电源轨285,并且第五电极260藉由通孔272被耦合到第四电源轨282。第四电源轨282可以耦合到电源的vdd-高,并且第三电源轨285可以耦合到电源的vss,或者反之。

由此,mim电容器结构210能够通过使用所有三个金属层l1、l2和l3来形成低压电容器212以及使用第一和第三金属层l1和l3(最底部与最顶部金属层)来形成高压电容器250来在同一芯片上提供具有高电容密度的低压电容器212以及高压电容器250两者。mim电容器结构210相比与图1中的mim电容器结构110而言能够以一个附加金属层为代价来达成这一点。

虽然为了便于解说,低压电容器210与高压电容器250被示为互相紧邻,但是将会领会,这些电容器可以在芯片上被分隔得更远。进一步,虽然图2中示出了一个低压电容器212和一个高压电容器250,但是将会领会,在基于图2中所示的mim电容器结构210的芯片上可以制造任何数目的低压电容器和高压电容器。

介电层217、222和262可以包括高k介电材料,诸如举例而言,基于铪的高k材料、基于钽的高k材料、或其任何组合。为诸介电层使用高k材料增加了给定电介质厚度的电容密度。

图3示出了其中可以制造mim电容器结构210的芯片305的示例。芯片305包括至少9个互连金属m1到m9,其中在这些互连金属之间有绝缘体。图3中所示,m1是最底部互连金属,而m9是最上部互连金属。互连金属m1到m9可以被用来互连芯片305的各种组件。为了便于解说,图3中未示出互连这些互连金属m1到m9的结构(例如,通孔)。

在图3中所示的示例中,mim电容器结构210位于芯片305的互连金属m8与m9之间,其中电源轨242、245、282和285是从互连金属m9来形成的。电容器212和250可以被部署在互连金属m8与m9之间的绝缘体310(例如,氧化硅、氮化硅等)内。在一个实施例中,绝缘体310具有低于mim电容器结构210的介电层217、222和262的介电常数k以使寄生电容最小化。例如,绝缘体310的部署在第三金属层l3与互连金属m9之间的部分可以具有较低的介电常数k来使上电极225和260与互连金属m9之间的寄生电容最小化。类似地,绝缘体310的部署在第一金属层l1与互连金属m8之间的部分可以具有较低的介电常数k来使下电极215和255与互连金属m8之间的寄生电容最小化。

将会领会,本公开的实施例并不限于图3中所示的示例。例如,将会领会,mim电容器210并不限于如图3中的示例所示地位于互连金属m9与m8之间,并且一般而言,mim电容器结构210可以位于任何两个毗邻互连金属之间。也将领会,在芯片305内,毗邻互连金属之间的间隔以及互连金属的厚度可以变动。

图4示出了根据本公开另一实施例的mim电容器结构410。mim电容器结构410可以被用来使用三个金属层l1、l2与l3来在同一芯片上实现低压电容器412和高压电容器450二者。在图4中,第二与第三金属层l2和l3之间的间隔大于第一与第二金属层l1和l2之间的间隔。

低压电容器412包括从第一金属层l1形成的第一电极415以及从第二金属层l2形成的第二电极420。第一和第二电极415和420可以通过使用定义第一和第二电极415和420的掩模(例如,光刻掩模)图案化第一和第二金属层l1和l2来形成。低压电容器412还包括部署在第一与第二电极415和420之间的第一介电层422。

第一电极415藉由通孔437被耦合到第一电源轨442,并且第二电极藉由通孔432被耦合到第二电源轨445。第一电源轨442可以耦合到电源的vdd-低,并且第二电源轨445可以耦合到电源的vss。由此,低压电容器412可以耦合在电源的vdd-低与vss之间。

高压电容器450包括第二电极420以及从第三金属层l3形成的第三电极425。由此,第二电极420对于低压电容器412和高压电容器450两者来说是共用的,并且可以被耦合到电源的vss。高压电容器450还包括部署在第二与第三电极420和425之间的第二介电层417。因为第二与第三金属层l2和l3之间的间隔大于第一与第二金属层l1和l2之间的间隔,所以第二介电层417具有大于第一介电层422的厚度。第二介电层417的较大厚度允许高压电容器450相比于低压电容器412而言得以维持较高电压而不被击穿。

第三电极415藉由通孔435被耦合到第三电源轨447。第三电源轨447可以被耦合到电源的vdd-高。如以上所讨论的,第二电极420可以被耦合到电源的vss。由此,高压电容器450可以被耦合在电源的vdd-高与vss之间。

由此,mim电容器结构410能够通过在第一、第二和第三金属层l1、l2和l3之间使用不同的间隔来在同一芯片上提供低压电容器412和高压电容器450二者。mim电容器结构410相比与图1中的mim电容器结构110而言能够以一个附加金属层为代价来达成这一点。

虽然高压电容器450在图4中的示例中被示为在低压电容器412之上,将会领会,低压电容器412可以在高压电容器450之上。这可以通过使得第一与第二金属层l1和l2之间的介电层厚于第二与第三金属层l2和l3之间的介电层以在底部上形成高压电容器450来完成。在这种情形中,高压电容器450的电极是从第一和第二金属层l2和l3形成的,并且低压电容器412的电极是从第二和第三金属层l2和l3形成的。从第一金属层l1形成的高电压电容器450的电极可以被耦合到vdd-高,并且从第三金属层l3形成的低压电容器412的电极可以被耦合至vdd-低。与之前一样,为这两个电容器所共用并且从金属层l2形成的电极可以被耦合到vss。

虽然图4中示出了一个低压电容器412和一个高压电容器450,将会领会,在基于图4中所示的mim电容器结构410的芯片上可以制造任何数目的低压电容器和高压电容器。

在不要求高压操作的芯片区域中,高压电容器450可以被用于低压应用。在该情形中,高压电容器450可以与低压电容器412并联耦合以增加该区域中低压器件的解耦电容密度。这可以通过将高压电容器450的第三电极425耦合到电源的vdd-低而非vdd-高来完成。由此,高压电容器450可以被用于在高压操作的芯片区域(例如,具有i/o设备的芯片区域)中的高压应用,并且可以被用以增加不要求高压操作的芯片区域(例如,具有核心器件的芯片区域)中的低压应用的解耦电容密度

介电层417和422可包括高k介电材料,诸如,例如,基于铪的高k材料、基于钽的高k材料、或者其任何组合。为诸介电层使用高k材料增加了给定电介质厚度的电容密度。

图5示出了其中可以制造mim电容器结构410的芯片505的示例。芯片505至少包括9个互连金属m1到m9,在诸互连金属之间有绝缘体。在图5中所示的示例中,mim电容器结构410位于芯片505的互连金属m8与m9之间,其中电源轨442、445与447是从互连金属m9来形成的。电容器412和450可以被部署在互连金属m8与m9之间的绝缘体410(例如,氧化硅、氮化硅等)内。

在一个实施例中,绝缘体150具有低于mim电容器结构410的介电层417和422的介电常数k以使得寄生电容最小化。例如,绝缘体510的部署在第三金属层l3与互连金属m9之间的部分可以具有较低的介电常数k以使得第三电极425与互连金属m9之间的寄生电容最小化。类似地,绝缘体510的部署在第一金属层l1与互连金属m8之间的部分可以具有较低的介电常数k以使得第一电极415与互连金属m8之间的寄生电容最小化。将会领会,本公开的实施例并不限于图5中所示的示例。例如,将会领会,mim电容器410并不限于如图5中的示例所示地位于互连金属m9与m8之间,并且一般而言,mim电容器结构410可以位于任何两个毗邻互连金属之间。

图6示出了根据本公开的实施例的用作芯片中的低压电路610的解耦电容器的低压电容器612的电路图。低压电容器612可以使用图2中的低压电容器212或图4中的低压电容器412来实现。低压电容器612可以经由包括一个或多个互连金属的电源轨615来被耦合到低压电路610。低压电容器612衰减电源轨615上的噪声。该噪声可以从耦合到电源轨615的其他电路(未示出)被引入到电源轨615中。

电源轨615可包括低压电容器612与低压电路610之间的电阻,其可以用图6中的电阻器620表示。该电阻是不想要的,因为其引入了减缓向低压电路610供应电流的响应时间的rc时间常数。该电阻可以通过将低压电容器612制造得尽可能靠近低压电路610以使得低压电容器612与低压电路610之间的电源轨615的长度最小化来被降低。就这一点而言,金属层l1、l2和l3可以在整个芯片上可用,这允许低压电容器612被制造得紧邻使用金属层l1、l2和l3中的两个或更多个金属层的低压电路。

低压电容器612还经由电源轨615被耦合到电源的vdd-低(例如,0.9v)。电源轨615可包括电源与低压电容器612之间的附加电阻。同样,一个或多个解耦电容器(未示出)和/或一个或多个电路(未示出)可以被耦合到电源与低压电容器612之间的电源轨615。低压电路610可以包括若被曝露于比vdd-低高得多的电压就可能被损坏的一个或多个核心器件(例如,具有相对薄的栅极氧化物的核心晶体管)。

图7示出了根据本公开的实施例的用作芯片中的高压电路710的解耦电容器的高压电容器750的电路图。高压电容器750可以使用图2中的高压电容器250或图4中的高压电容器450来实现。高压电容器750可以经由包括一个或多个互连金属的电源轨715来被耦合到高压电路710。高压电容器750衰减电源轨715上的噪声。该噪声可以从耦合到电源轨715的其他电路(未示出)被引入到电源轨715中。

电源轨715可包括高压电容器750与高压电路710之间的电阻,其可以由图7中的电阻器720来表示。该电阻可以通过将高压电容器750制造得尽可能靠近高压电路710以使得高压电容器710与高压电路710之间的电源轨715的长度最小化来被降低。就这一点来说,金属层l1、l2和l3可以在整个芯片上可用,这允许高压电容器750被制造成紧邻使用金属层l1、l2和l3中的两个金属层的低压电路(例如,图2中的高压电容器250的金属层l1与l3,以及图4中的高压电容器450的金属层l2与l3)。

高压电容器750也经由电源轨715被耦合到电源的vdd-高(例如,1.8v到5.0v)。电源轨715可包括电源与高压电容器750之间的附加电阻。同样,一个或多个解耦电容器(未示出)和/或一个或多个电路(未示出)可以被耦合到电源与高压电容器750之间的电源轨715。

高压电路710可包括用于将芯片接口到一个或多个外部设备(片外设备)的一个或多个i/o器件。例如,i/o器件可包括具有厚于芯片中的核心晶体管的栅极氧化物的i/o晶体管,并且因此能够维持比核心晶体管更高的电压。这些i/o器件可以位于芯片的外围附近,并且可以被用来驱动高压信号去往一个或多个外部设备和/或从一个或多个外部设备接收高压信号。i/o器件可以通过将高压信号转换成低压信号以及反之的一个或多个电压-电平移位器(未示出)来与芯片中的核心器件通信。

图8a-8k解说了根据本公开实施例的用于制造图2中的mim电容器结构210的示例性过程。图8a示出了沉积在绝缘层810之上的下绝缘层810和第一金属层l1。下绝缘层810可以具有比mim电容器结构210的介电层217、222和262低的介电常数k,并且可以被形成在互连金属m8(未示出)或者另一互连金属之上。第一金属层l1可以使用任何沉积技术(例如,溅射、化学气相沉积(cvd)等)被沉积在下绝缘层810之上。

图8b示出了已被图案化和蚀刻以形成低压电容器212的第一电极215以及高压电容器250的第四电极255之后的第一金属层l1。第一金属层l1可以使用常规的光刻技术或者另一技术被图案化和蚀刻。

图8c示出了沉积在第一和第四电极215和255之上的下介电层815。下介电层815可以使用cvd或另一技术来沉积,并且可以具有比下绝缘层810更高的介电常数k。

图8d示出了沉积在下介电层815之上的第二金属层l2。第二金属层l2可以使用任何沉积技术(例如,溅射、化学气相沉积(cvd)等)被沉积在下介电层815之上。

图8e示出了已被图案化和蚀刻(例如,使用光刻或另一技术)以形成低压电容器212的第二电极220之后的第二金属层l2。第二金属层l2的与高压电容器250的第四电极255交叠的部分被移除(蚀刻掉),因为第二金属层l2并不被用于高压电容器250。介电层815的在第一与第二电极215和220之间的部分形成了低压电容器212的第一介电层217。

图8f示出了沉积在第二电极220和下介电层815之上的上介电层820(例如,使用cvd或另一技术)。上介电层820可以具有高于下绝缘层810的介电常数k。

图8g示出了沉积在介电层820之上(例如,使用溅射、化学气相沉积(cvd)等)的第三金属层l3。图8h示出了被图案化和蚀刻以形成低压电容器212的第三电极225以及高压电容器250的第五电极260之后的第三金属层l3(例如,使用光刻技术或者另一技术)。上介电层820的在第二与第三电极220和225之间的部分形成了低压电容器212的第二介电层222,并且下和上介电层815和820的在第四与第五电极255和260之间的部分形成了高压电容器250的第三介电层262。

图8i示出了沉积在第三和第五电极225和260之上的上层绝缘层825(例如,使用cvd或另一技术)。上层绝缘层825可具有低于mim电容器结构210的介电层217、222和262的介电常数k。

图8j示出了贯通介电层815和820以及绝缘层825地形成以分别提供到电极220、225、215、260和255的电连接的通孔232、235、237、272和275。图8j还示出了沉积在绝缘层825(例如,使用溅射、cvd等)之上的互连金属830。互连金属830是在通孔形成之后沉积的,并且可以对应于图2中的示例中所示的互连金属m9或者另一互连金属。

通孔232、235、237、272和275可以通过在介电层815和820以及绝缘层825中蚀刻孔洞并且在这些孔洞中沉积导电材料来形成。将会领会,通孔232、235、237、272和275可以在多个工艺步骤上形成。例如,通孔232、235、237、272和275可以通过在分别的工艺步骤中在介电层815和820以及绝缘层825中的每一者中蚀刻孔洞,并且在分别的工艺步骤中将(诸)导电材料沉积在介电层815和820以及绝缘层825中的每一者的孔洞中来形成。虽然图8j示出了通孔232、235、237、272和275是在电极215、220、225、255和260形成之后被形成的,但是将会领会,这些通孔可以在与用于形成电极215、220、225、255和260的工艺步骤穿插的多个工艺步骤上形成。

图8k示出了被图案化和蚀刻以形成电源轨242、245、282和285(例如,使用光刻技术或者另一技术)之后的互连金属830。

将会领会,图8a-8k中所示的步骤的次序仅用作示例,并且这些步骤可以用不同的次序来执行。例如,下介电层815可以在第一和第四电极215和255形成之后被沉积在第一金属层l1之上。在这一示例中,下介电层815的诸部分可以被选择性地蚀刻掉以曝露第一金属层l1的要被移除已形成第一和第四电极215和255的诸部分。第一金属层l1被曝露的诸部分可以随后被蚀刻掉以形成第一和第四电极215和255。

进一步,将会领会,电极215、220、225、255和260各自可以使用不同于以上所讨论的示例性技术的技术地来从各自相应的金属层形成。例如,第一电极215可以通过在绝缘层810中蚀刻进对应于第一电极的沟槽来形成。该沟槽可以具有与要在其中形成的第一电极215相同的规模。第一金属层l1可以随后被沉积在绝缘层810之上,其中第一金属层l1的一部分填充该沟槽,从而形成第一电极215。第一金属层l1在该沟槽之上的多余部分可以随后使用化学-机械抛光(cmp)或者另一整平技术来被移除。

图9a-9k解说了根据本公开实施例的用于制造图4中的mim电容器结构410的示例性过程。图9a示出了下绝缘层910和沉积在下绝缘层910之上的第一金属层l1。下绝缘层910可以具有比mim电容器结构410的介电层417和422低的介电常数k,并且可以被形成在互连金属m8(未示出)或者另一互连金属之上。第一金属层l1可以使用任何沉积技术(例如,溅射、化学气相沉积(cvd)等)被沉积在下绝缘层910之上。

图9b示出了已被图案化和蚀刻以形成第一电极415的第一金属层l1。第一金属层l1可以使用常规的光刻技术或者另一技术被图案化和蚀刻。

图9c示出了沉积在第一电极415之上的下介电层915。下介电层915可以使用cvd或另一技术来沉积,并且可以具有比绝缘层910高的介电常数k。

图9d示出了沉积在下介电层915之上的第二金属层l2。第二金属层l2可以使用任何沉积技术(例如,溅射、化学气相沉积(cvd)等)被沉积在下介电层915之上。

图9e示出了被图案化和蚀刻以形成第二电极420(例如,使用光刻或另一技术)之后的第二金属层l2。下介电层915的在第一与第二电极415和420之间的部分形成了图4中所示的第一介电层422。

图9f示出了沉积在第二电极420上的上介电层920(例如,使用cvd或另一技术)。上介电层920可以具有高于下绝缘层的介电常数k。介电层920还可以具有比介电层915的厚度大的厚度。

图9g示出了沉积在上介电层920之上(例如,使用溅射、化学气相沉积(cvd)等)的第三金属层l3。图9h示出了被图案化和蚀刻以形成第三电极425(例如,使用光刻或另一技术)之后的第三金属层l3。上介电层920的在第二与第三电极920和925之间的部分形成了第二介电层417。

图9i示出了沉积在第三电极925上的上绝缘层925(例如,使用cvd或另一技术)。上绝缘层925可具有低于mim电容器结构410的介电层417和422的介电常数k。

图9j示出了贯通介电层915和920以及绝缘层925地形成以分别提供到电极420、425和415的电连接的通孔432、435和437。图9j还示出了沉积在绝缘层925(例如,使用溅射、cvd等)之上的互连金属930。互连金属930是在通孔形成之后沉积的,并且可以对应于图4中的示例中所示的互连金属m9、或者另一互连金属。

图9k示出了已被图案化和蚀刻以形成电源轨445、447和442(例如,使用光刻技术或者另一技术)之后的互连金属930。

图10示出了根据本公开实施例的用于制造电容器结构(例如,mim电容器结构210)的方法1000。

在步骤1010,第一金属层被沉积在绝缘层之上。例如,第一金属层(例如,第一金属层l1)可以使用溅射、cvd或者另一沉积技术被沉积在绝缘层(例如,下绝缘层810)上。

在步骤1020,第一电极和第二电极从第一金属层形成。例如,第一电极(例如,第一电极215)和第二电极(例如第四电极255)可以通过使用常规光刻技术或另一技术来图案化和蚀刻第一金属层来形成。

在步骤1030,第一介电层被沉积在第一和第二电极上。例如,第一介电层(例如,下介电层815)可以使用cvd或另一技术来沉积,并且可以具有比绝缘层高的介电常数k。

在步骤1040,第二金属层被沉积在第一介电层之上。例如,第二金属层(例如,第二金属层l2)可以使用溅射、cvd或者另一沉积技术被沉积在第一介电层上。

在步骤1050,第三电极从第二金属层形成,其中第三电极与第一电极交叠。例如,第三电极(例如,第二电极220)可以通过将第二金属层图案化来形成。

在步骤1060,第二金属层的与第二电极交叠的部分被移除。例如,第二金属层的该部分可以用与被用来从第二金属层形成第三电极相同的蚀刻工艺来移除。

在步骤1070,第二介电层被沉积在第三电极和第一介电层上。例如,第二介电层(例如,上介电层820)可以使用cvd或另一技术来沉积,并且可以具有比该绝缘层高的介电常数k。

在步骤1080,第三金属层被沉积在第二介电层之上。例如,第三金属层(例如,第三金属层l3)可以使用溅射、cvd或者另一沉积技术被沉积在第一介电层上。

在步骤1090,第四电极和第五电极从第三金属层形成,其中第四电极与第一和第三电极交叠,并且第五电极与第二电极交叠。例如,第四和第五电极(例如,第三电极225和第五电极260)可以通过图案化或蚀刻第三金属层来形成。

图11示出了根据本公开另一个实施例的用于制造电容器结构(例如,mim电容器结构410)的方法1100。

在步骤1110,第一金属层被沉积在绝缘层之上。例如,第一金属层(例如,第一金属层l1)可以使用溅射、cvd或者另一沉积技术被沉积在绝缘层(例如,下绝缘层910)上。

在步骤1120,第一电极从第一金属层被形成。例如,第一电极(例如,第一电极415)可以通过使用常规光刻技术或另一技术来图案化和蚀刻第一金属层来形成。

在步骤1130,第一介电层被沉积在第一电极上。例如,第一介电层(例如,下介电层915)可以使用cvd或另一技术来沉积,并且可以具有比该绝缘层更高的介电常数k。

在步骤1140,第二金属层被沉积在第一介电层之上。例如,第二金属层(例如,第二金属层l2)可以使用溅射、cvd或者另一沉积技术被沉积在第一介电层上。

在步骤1150,第二电极从第二金属层被形成。例如,第二电极(例如,第二电极420)可以通过使用常规光刻技术或另一技术来图案化和蚀刻第二金属层来形成。

在步骤1160,第二介电层被沉积在第二电极上,其中第一和第二介电层具有不同的厚度。例如,第二介电层(例如,上介电层920)可以厚于(例如,百分之50或更多)第一介电层(例如,下介电层915)。

在步骤1170,第三金属层被沉积在第二介电层之上。例如,第三金属层(例如,第三金属层l3)可以使用溅射、cvd或者另一沉积技术被沉积在第二介电层上。

在步骤1180,第三电极从第三金属层被形成。例如,第三电极(例如,第三电极425)可以通过使用常规光刻技术或另一技术来图案化和蚀刻第二金属层来形成。

将会领会,以上所讨论的方法1000和1100并不限于图10和11中所示的步骤的次序,并且有些步骤可以按不同的次序发生。进一步,将会领会,其中一个步骤可以在与其中另一个步骤大致相同的时间被执行。

虽然本公开的实施例在以上被使用三个金属层l1、l2和l3的示例来讨论,将会领会本公开并不限于该示例。例如,在一个实施例中,第四金属层l4可以被添加在第三金属层l3之上。在该实施例中,低压电容器1212可以包括从所有四个金属层l1、l2、l3和l4形成的电极,图12中示出了其一个示例。与图2中所示的低压电容器212相比,本示例中的低压电容器1212包括从第四金属层l4形成的附加电极1225,以及从第三和第四金属层l3和l4形成的在电极225和1225之间的附加介电层1217。附加电极1225可以藉由通孔1232被耦合到第一电源242。本示例中的低压电容器1212与图1中的mim电容器110相比,以两个附加金属层为代价提供了电容密度的三倍增长。

而且,在该实施例中,高压电容器1350和低压电容器1312两者均可以通过移除(不使用)第三金属层l3来形成,图13中示出了其一示例。在该示例中,高压电容器1350可以包括从第二和第四金属层l2和l4形成的电极220和1325,并且低压电容器1312包括从第一和第二金属层l1和l2形成的电极215和220。由于移除了第二和第四金属层l2和l4之间的第三金属层l3,所以高压电容器1350具有比低压电容器1312厚的介电层1317。高压电容器1350的顶部电极可以藉由通孔1332被耦合到附加电源轨1342。在该示例中,电容器1312和1350二者共用的电极220可以被耦合到电源的vss,高压电容器1350的顶部电极1325可以被耦合到电源的vdd-高,而低压电容器1312的底部电极215可以被耦合到电源的vdd-低。图12和13中所示的电容器可以被制造在同一芯片上。

在图13中所示的示例中,高电容器1350被示为在低压电容器1312之上。将会领会,通过移除第二金属层l2而非第三金属层l3,高压电容器1350可以被置于底部。在这种情形中,高压电容器可以包括从第一和第三金属层l1和l3形成的电极,并且低压电容器可以包括从第三和第四金属层l3和l4形成的电极。

如以上所讨论的,本公开的方面可以被延展到四个金属层l1、l2、l3和l4。一般而言,本公开的方面可以被延展到任何数目的金属层。例如,一般而言,低压电容器可以使用任何数目的金属层来形成,其中从奇数的金属层形成的电极可以被耦合到vss,而从偶数的金属层形成的电极可以被耦合到vdd-低,或者反之。一般而言,高压电容器可以通过移除(不使用)用于低压电容器的其中一个或多个金属层来形成。

提供对本公开的先前描述是为使得本领域任何技术人员皆能够制作或使用本公开。对本公开的各种修改对本领域技术人员来说都将是显而易见的,且本文中所定义的普适原理可被应用到其他变型而不会脱离本公开的精神或范围。由此,本公开并非旨在被限定于本文中所描述的示例,而是应被授予与本文中所公开的原理和新颖特征相一致的最广范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1