晶片的加工方法与流程

文档序号:16992683发布日期:2019-03-02 01:05阅读:110来源:国知局
晶片的加工方法与流程

本发明涉及晶片的加工方法,将由交叉的多条分割预定线划分而在单晶硅基板的正面形成有多个器件的晶片分割成各个器件芯片。



背景技术:

由交叉的多条分割预定线划分而在正面上形成有ic、lsi等多个器件的晶片通过激光加工装置分割成各个器件芯片,分割得到的各器件芯片被用于移动电话、个人计算机等电气设备。

激光加工装置存在下述(1)至(3)的类型。

类型(1):将对于被加工物具有吸收性的波长的激光光线的聚光点定位在被加工物的上表面上而对被加工物照射激光光线,通过烧蚀形成作为分割的起点的槽(例如,参照专利文献1)。

类型(2):将对于被加工物具有透过性的波长的激光光线的聚光点定位于被加工物的内部而对被加工物照射激光光线,在被加工物的内部形成作为分割的起点的改质层(例如,参照专利文献2)。

类型(3):将对于被加工物具有透过性的波长的激光光线的聚光点定位于被加工物的内部而对被加工物照射激光光线,形成作为分割的起点的多个盾构隧道,该盾构隧道由从被加工物的正面至背面的细孔和围绕细孔的非晶质构成(例如,参照专利文献3)。

专利文献1:日本特开平10-305420号公报

专利文献2:日本特许第3408805号公报

专利文献3:日本特开2014-221483号公报

上述的(2)或(3)的方法具有如下的优点:当在实施激光加工而形成分割起点之后实施等离子蚀刻而将晶片分割成各个器件时,能够产生抗弯强度高的器件。

但是,在上述专利文献3公开的技术中,虽然能够在以蓝宝石(al2o3)、碳化硅(sic)、氮化镓(gan)为原材料的晶片中适当形成盾构隧道,但是存在下述问题:无法在以单晶硅作为原材料的晶片中形成适当的盾构隧道,因此无法通过盾构隧道形成与等离子蚀刻的复合加工而将单晶硅晶片分割成各个器件芯片。

另外,对于单晶硅晶片,虽然通过上述专利文献2公开的技术能够在分割预定线的内部形成改质层,但是存在下述问题:在分割预定线的上表面上层叠有teg等金属膜或被称为low-k膜的低介电常数绝缘体被膜的情况下,在改质层形成与等离子蚀刻的复合加工中也无法将单晶硅晶片分割成各个器件芯片。

认为若能够对单晶硅晶片形成适当的盾构隧道,则也能够对层叠在分割预定线的上表面上的金属膜或low-k膜形成细孔,因此能够通过盾构隧道形成与等离子蚀刻的复合加工将单晶硅晶片分割成各个器件。



技术实现要素:

由此,本发明的目的在于提供晶片的加工方法,能够在单晶硅晶片中形成适当的盾构隧道,能够通过盾构隧道形成与等离子蚀刻的复合加工将单晶硅晶片分割成各个器件芯片。

根据本发明,提供晶片的加工方法,将由交叉的多条分割预定线划分而在单晶硅基板的正面上形成有多个器件的晶片分割成各个器件芯片,其中,该晶片的加工方法具有如下的工序:保护部件配设工序,在晶片的正面上配设保护部件;盾构隧道形成工序,在实施了该保护部件配设工序之后,从晶片的背面对与分割预定线对应的区域照射对于单晶硅具有透过性的波长的激光光线而连续地形成多个盾构隧道,该盾构隧道由从背面至正面的细孔和围绕该细孔的非晶质构成;以及分割工序,在实施了该盾构隧道形成工序之后,通过等离子蚀刻对该盾构隧道进行蚀刻而将晶片分割成各个器件芯片,将该盾构隧道形成工序中所使用的激光光线的波长设定为1950nm以上。

优选在该盾构隧道形成工序中,按照使会聚激光光线的聚光透镜的数值孔径除以单晶硅的折射率而得的值为0.05~0.2的范围的方式设定该聚光透镜的数值孔径。

根据本发明,将在盾构隧道形成工序中使用的激光光线的波长设定为1950nm以上,因此能够沿着分割预定线形成适当的盾构隧道。另外,盾构隧道的围绕细孔的非晶质与构成晶片的基板的单晶硅相比蚀刻速率高,因此通过盾构隧道形成与等离子蚀刻的复合加工对沿着分割预定线形成的盾构隧道进行蚀刻,因此能够将晶片分割成各个器件芯片,并且能够生成抗弯强度高的器件芯片。另外,即使在分割预定线的上表面上层叠有金属膜或low-k膜,在盾构隧道形成工序中也能够在金属膜或low-k膜上形成针眼状的多个细孔,因此通过适当的外力赋予单元对在金属膜或low-k膜上形成有针眼状的细孔的晶片赋予外力,从而沿着针眼状的细孔将金属膜或low-k膜切断,从而能够将晶片分割成各个器件芯片。

附图说明

图1是示出实施保护部件配设工序的状态的晶片和保护部件的立体图。

图2是激光加工装置的立体图。

图3是示出单晶硅的光透过率与光的波长的一般关系的曲线图。

图4是示出实施盾构隧道形成工序的状态的立体图。

图5的(a)是形成有盾构隧道的晶片的剖视图,图5的(b)是盾构隧道的立体图。

图6是示出实施分割工序的状态的示意性立体图。

图7是示出已沿着分割预定线将晶片分割成各个器件芯片的状态的立体图。

标号说明

2:晶片;2a:晶片的正面;2b:晶片的背面;4:分割预定线;6:器件;10:保护带(保护部件);52:细孔;54:非晶质;56:盾构隧道;lb:脉冲激光光线。

具体实施方式

以下,参照附图对本发明的晶片的加工方法的实施方式进行说明。

在图1中示出能够通过本发明的晶片的加工方法实施加工的晶片2。由圆盘状的单晶硅基板形成的晶片2的正面2a由呈格子状形成的多条分割预定线4划分成多个矩形区域,在多个矩形区域分别形成有ic、lsi等器件6。

在本发明的晶片的加工方法中,首先实施保护部件配设工序,在晶片2的正面2a上配设保护部件。在本实施方式中,在晶片2的正面2a上粘贴作为保护部件的保护带10,该保护带10的周缘固定于环状框架8。

在实施了保护部件配设工序之后,实施盾构隧道形成工序,从晶片2的背面2b对与分割预定线4对应的区域照射对于单晶硅具有透过性的波长的激光光线,连续地形成由从晶片2的背面2b至正面2a的细孔和围绕细孔的非晶质构成的多个盾构隧道。盾构隧道形成工序例如可以使用图2所示的激光加工装置12来实施。激光加工装置12具有:保持单元14,其对晶片2等被加工物进行保持;以及激光光线照射单元16,其对保持单元14所保持的被加工物照射激光光线。保持单元14包含:x轴方向可动板20,其在x轴方向上移动自如地搭载于基台18上;y轴方向可动板22,其在y轴方向上移动自如地搭载在x轴方向可动板20上;支柱24,其固定于y轴方向可动板22的上表面上;以及卡盘工作台26,其旋转自如地搭载于支柱24的上端。x轴方向可动板20通过x轴方向移动单元32而沿着基台18上的导轨18a在x轴方向上移动,该x轴方向移动单元32具有沿x轴方向延伸的滚珠丝杠28和与滚珠丝杠28连结的电动机30。y轴方向可动板22通过y轴方向移动单元38沿着x轴方向可动板20上的导轨20a在y轴方向上移动,该y轴方向移动单元38具有沿y轴方向延伸的滚珠丝杠34和与滚珠丝杠34连结的电动机36。卡盘工作台26通过内置在支柱24的旋转单元(未图示)进行旋转。在卡盘工作台26的上表面上配置有与吸引单元连接的多孔质的吸附卡盘40。并且,卡盘工作台26通过利用吸引单元在吸附卡盘40的上表面上产生吸引力,能够对被加工物进行吸附并保持。如图2所示,在卡盘工作台26的周缘沿周向隔开间隔地配置有多个夹具42。另外,x轴方向是图2中箭头x所示的方向,y轴方向是图2中箭头y所示的方向,是与x轴方向垂直的方向。x轴方向和y轴方向所限制的平面实质上是水平的。

激光加工装置12的激光光线照射单元16包含从基台18的上表面向上方延伸、接着实质上水平延伸的框体44。在框体44中内置有激光振荡器(未图示),其振荡出在对于单晶硅具有透过性的范围内波长为1950nm以上的脉冲激光光线lb。另外,通常关于单晶硅的光透过率,如图3所示,存在下述趋势:从作为单晶硅的光学吸收端的光的波长1050nm附近起,随着光的波长增大,单晶硅的光透过率增加,在光的波长从约1200nm至约6000nm的范围内,单晶硅的光透过率约为55%,几乎恒定,在光的波长超过约6000nm的范围内,随着光的波长增大,单晶硅的光透过率减少。

参照图2继续对激光光线照射单元16进行说明,在框体44的前端下表面上,在x轴方向上隔开间隔地安装有:聚光器46,其对卡盘工作台26所保持的被加工物照射脉冲激光光线lb;以及拍摄单元48,其对卡盘工作台26所保持的被加工物进行拍摄而检测出要进行激光加工的区域。聚光器46包含对激光振荡器所振荡的脉冲激光光线lb进行会聚的聚光透镜50。本实施方式中的聚光器46的聚光透镜50的数值孔径na设定为:数值孔径na除以单晶硅的折射率n的值s(s=na/n)为0.05~0.2的范围(0.05≤s≤0.2)。单晶硅的折射率n通常为3.7左右,在单晶硅的折射率n为3.7的情况下,聚光透镜50的数值孔径na设定为0.185~0.74的范围(0.185≤na≤0.74)。另外,拍摄单元48包含:通常的拍摄元件(ccd),其通过可见光线对被加工物进行拍摄;红外线照射单元,其对被加工物照射红外线;光学系统,其捕捉由红外线照射单元所照射的红外线;以及拍摄元件(红外线ccd),其输出与光学系统所捕捉的红外线相对应的电信号(均未图示)。

当使用上述激光加工装置12实施盾构隧道形成工序时,首先将晶片2的背面2b朝上而将晶片2吸附在卡盘工作台26的上表面上,并且利用多个夹具42对环状框架8的外周缘部进行固定。接着,利用拍摄单元48从上方对晶片2进行拍摄。接着,根据拍摄单元48所拍摄的晶片2的图像,利用x轴方向移动单元32、y轴方向移动单元38和旋转单元使卡盘工作台26移动和旋转,从而使格子状的分割预定线4与x轴方向和y轴方向一致,并且将聚光器46定位于与x轴方向一致的分割预定线4的一个端部的上方。此时,晶片2的背面2b朝上,形成有分割预定线4的正面2a朝下,但如上所述,拍摄单元48包含红外线照射单元、捕捉红外线的光学系统、以及输出与红外线相对应的电信号的拍摄元件(红外线ccd),因此能够从晶片2的背面2b透过而对正面2a的分割预定线4进行拍摄。接着,通过激光加工装置12的聚光点位置调整单元(未图示)将脉冲激光光线lb的聚光点定位于与分割预定线4相对应的区域的晶片2的内部。接着,如图4所示,实施盾构隧道形成加工,一边通过x轴方向移动单元32使卡盘工作台26以规定的进给速度相对于聚光点在x轴方向上移动,一边从晶片2的背面2b对与分割预定线4对应的区域照射对于单晶硅具有透过性的波长的脉冲激光光线lb。当进行盾构隧道形成加工时,如图5的(a)和图5的(b)所示,沿着分割预定线4连续地形成多个由从晶片2的背面2b至正面2a的细孔52和围绕细孔52的非晶质54构成的盾构隧道56。接着,按照分割预定线4的间隔的量,利用y轴方向移动单元38将卡盘工作台26相对于聚光点在y轴方向上进行转位进给。并且,通过交替地进行盾构隧道形成加工和转位进给,对与x轴方向一致的所有分割预定线4实施盾构隧道形成加工。另外,在通过旋转单元使卡盘工作台26旋转90度之后,交替重复盾构隧道形成加工和转位进给,从而对与先实施了盾构隧道形成加工的分割预定线4垂直的所有分割预定线4也实施盾构隧道形成加工,沿着格子状的分割预定线4形成盾构隧道56。

在盾构隧道形成工序中,重要的是将所使用的脉冲激光光线lb的波长设定为1950nm以上。如上所述,本实施方式中的激光加工装置12的激光振荡器振荡出在对于单晶硅具有透过性的范围内波长为1950nm以上的脉冲激光光线lb,因此通过使用激光加工装置12,能够在由单晶硅基板构成的晶片2中形成适当的盾构隧道56。另外,在盾构隧道形成工序中,按照使会聚激光光线的聚光器的数值孔径除以单晶硅的折射率而得的值为0.05~0.2的范围的方式设定聚光器的数值孔径。

在实施了盾构隧道形成工序之后,实施分割工序,通过等离子蚀刻对盾构隧道56进行蚀刻,将晶片2分割成具有各个器件6的芯片。参照图6进行说明,分割工序可以使用公知的蚀刻装置(未图示)来实施。在分割工序中,将形成有盾构隧道56的晶片2收纳在蚀刻装置的腔室中,接着对腔室内进行减压,然后向腔室内提供六氟化硫(sf6)等蚀刻气体,并且使用高频电源在腔室内产生等离子。由此,通过等离子蚀刻将沿着格子状的分割预定线4形成的盾构隧道56去除,如图7所示,将晶片2分割成在正面上具有器件6的各个芯片。

如上所述,本实施方式的晶片的加工方法包含:保护部件配设工序,在晶片2的正面2a上配设保护部件;盾构隧道形成工序,从晶片2的背面2b对与分割预定线4对应的区域照射对于单晶硅具有透过性的波长的脉冲激光光线lb,从而连续地形成由从背面2b至正面2a的细孔52和围绕细孔52的非晶质54构成的多个盾构隧道56;以及分割工序,通过等离子蚀刻对盾构隧道56进行蚀刻而将晶片2分割成各个芯片。将在盾构隧道形成工序中所使用的脉冲激光光线lb的波长设定为1950nm以上,因此能够沿着分割预定线4形成适当的盾构隧道56。另外,盾构隧道56的围绕细孔52的非晶质54与构成晶片2的基板的单晶硅相比蚀刻速率高,因此通过盾构隧道形成与等离子蚀刻的复合加工对沿着格子状的分割预定线4形成的盾构隧道56进行蚀刻,因此能够将晶片2分割成在正面上具有器件6的各个芯片,并且能够生成抗弯强度高的芯片。另外,即使在分割预定线4的上表面上层叠有teg等金属膜或low-k膜,在盾构隧道形成工序中也能够在金属膜或low-k膜上形成针眼状的多个细孔,因此通过对粘贴有晶片2的保护带10进行扩展的带扩展装置等适当的外力赋予单元对在金属膜或low-k膜上形成有针眼状的细孔的晶片2赋予外力,从而沿着针眼状的细孔将金属膜或low-k膜切断,能够将晶片2分割成在正面上具有器件6的各个芯片。

这里,关于能够在单晶硅晶片中形成适当的盾构隧道的激光光线的条件,根据本发明人已进行的实验结果进行说明。关于单晶硅晶片,由于对规定的波长范围的红外线具有55%左右的透过性,因此推测当尝试使用光学吸收端附近的1030nm的波长的激光光线形成盾构隧道时,虽然通过激光光线的透过在单晶硅晶片的内部形成改质层,但是由于激光光线的吸收而妨碍盾构隧道的形成,无法形成适当的盾构隧道,因此本发明人一边使激光光线的波长从单晶硅晶片的光学吸收端附近起增长一边进行实验。

[实验1]

本发明人为了发现能够在单晶硅晶片中形成适当的盾构隧道的激光光线的波长,在下述条件下将激光光线的聚光点定位于单晶硅晶片的内部,一边使单晶硅晶片与聚光点以规定的进给速度相对地移动,一边对单晶硅晶片照射激光光线。另外,单晶硅的折射率n为3.7左右,因此参照上述专利文献3公开的实验,按照0.05≤s≤0.2的范围内的s=na/n=na/3.7=0.135的方式将聚光透镜的数值孔径na设为0.5。

单晶硅晶片的厚度:700μm

脉冲激光光线的波长:1034~2200nm

聚光透镜的数值孔径na:0.5

平均输出:3w

重复频率:50khz

脉冲宽度:10ns

进给速度:500mm/s

[实验1的结果]

[基于实验1的结论]

根据实验1的结果,可以说能够在单晶硅晶片中形成适当的盾构隧道的激光光线的波长在对于单晶硅晶片具有透过性的范围内为1950nm以上。另外,直至波长达到约6000nm,与上述的形成了良好的盾构隧道的波长范围同样地,单晶硅的光透过率约为55%(参照图3),因此认为能够在单晶硅晶片中形成良好的盾构隧道。

[实验2]

本发明人为了发现用于在单晶硅晶片中形成适当的盾构隧道的、单晶硅的折射率n与聚光透镜的数值孔径na的关系,在下述条件下将激光光线的聚光点定位于单晶硅晶片的内部,一边使单晶硅晶片与聚光点以规定的进给速度相对地移动,一边对单晶硅晶片照射激光光线。

单晶硅晶片的厚度:700μm

脉冲激光光线的波长:1950nm

平均输出:3w

重复频率:50khz

脉冲宽度:10ns

进给速度:500mm/s

[实验2的结果]

[基于实验2的结论]

根据实验2的结果,可以说能够在单晶硅晶片中形成适当的盾构隧道的、单晶硅的折射率n与聚光透镜的数值孔径na的关系为0.05≤na/n≤0.2。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1