微生物燃料电池、微生物燃料电池系统以及微生物燃料电池的使用方法

文档序号:10618573阅读:684来源:国知局
微生物燃料电池、微生物燃料电池系统以及微生物燃料电池的使用方法
【专利摘要】本发明涉及一种微生物燃料电池(1),其具备:含有有机物的电解液(2),保持厌氧性微生物、并与电解液接触的负极(3),以及具有憎水层(41)和重叠在憎水层上的气体扩散层(42)的正极(4)。而且将负极的面积相对于气体扩散层的面积之比设定为T1,将正极在由电解液、负极以及正极构成的电极体系中的正极的电位下的最大电流密度相对于负极在该电极体系中的负极的电位下的最大电流密度之比设定为T2。在此情况下,T1和T2满足式(1)的关系:T21/2≤T1≤T22(1)。
【专利说明】
微生物燃料电池、微生物燃料电池系统从及微生物燃料电池 的使用方法
技术领域
[0001] 本发明设及微生物燃料电池、微生物燃料电池系统W及微生物燃料电池的使用方 法。
【背景技术】
[0002] 微生物燃料电池是通过微生物的催化作用(代谢反应、生物化学的转换)而将废水 中含有的有机物的化学能转换为电能、并使该有机物发生氧化分解的装置。也就是说,微生 物燃料电池通过微生物的作用而从有机物直接生产电能。因此,微生物燃料电池与利用从 有机物向生物气的转换步骤的W前的能量回收系统相比,可W期待能量回收效率的提高。 另外,微生物燃料电池不仅可W作为发电、而且也可W作为废水处理、有机性废弃物处理、 有机性废弃物处理的附属设备等加W利用。
[0003] 微生物燃料电池例如具有保持微生物的负极、和与氧化性物质接触的正极。而且 作为运样的微生物燃料电池,近年来,使用气体扩散电极作为正极的微生物燃料电池引人 注目(例如专利文献1)。该气体扩散电极由于为多孔质,因而气相中(例如大气中)的氧向正 极供给。也就是说,在负极生成的氨离子W及电子可W在正极与气相中的氧反应。
[0004] 现有技术文献
[0005] 专利文献
[0006] 专利文献1:日本特开2010-102953号公报

【发明内容】

[0007] 正如专利文献1那样,在由气体扩散电极构成的正极为多孔质的情况下,在正极的 电化学反应的效率非常高。另一方面,负极的电化学反应因为有微生物的参与,所W与正极 相比较,在负极不能得到充分的反应效率。也就是说,在由气体扩散电极构成的正极和负极 之间,产生性能失配。
[0008] 运样的微生物燃料电池的电极间的性能失配在W前并不引人注目,没有认识到由 此产生的问题。然而,电极间的性能失配意味着性能高的一方的电极材料过剩,因而从节约 资源的角度考虑,也要求失配问题的解决。
[0009] 本发明是鉴于运样的现有技术所具有的课题而完成的。而且本发明的目的在于: 提供一种可W缓和正极和负极之间的性能失配的微生物燃料电池。进而本发明的目的在 于:提供一种使用了该微生物燃料电池的微生物燃料电池系统W及微生物燃料电池的使用 方法。
[0010] 为了解决上述的课题,本发明的第一方式设及一种微生物燃料电池,其具备:含有 有机物的电解液,保持厌氧性微生物、并与电解液接触的负极,W及具有憎水层和重叠在憎 水层上的气体扩散层的正极。而且将负极的面积相对于气体扩散层的面积之比设定为Tl, 将正极在由电解液、负极W及正极构成的电极体系中的正极的电位下的最大电流密度相对 于负极在该电极体系中的负极的电位下的最大电流密度之比设定为T2。在此情况下,Tl和T2 满足如下的关系:
[00川 T2i/2《Ti《T22。
[0012] 本发明的第二方式设及一种微生物燃料电池的使用方法,其具有准备微生物燃料 电池的工序,其中,所述微生物燃料电池具备:含有有机物的电解液,保持厌氧性微生物、并 与电解液接触的负极,W及具有憎水层和重叠在憎水层上的气体扩散层的正极。而且将负 极的面积相对于气体扩散层的面积之比设定为Tl,将正极在由电解液、负极W及正极构成 的电极体系中的正极的电位下的最大电流密度相对于负极在该电极体系中的负极的电位 下的最大电流密度之比设定为T2。在此情况下,该使用方法具有WTi和T2满足如下关系的方 式使微生物燃料电池工作的工序;
[0013] T2i/2《Ti《T22。
【附图说明】
[0014] 图1是表示本实施方式的微生物燃料电池、W及具有该微生物燃料电池的微生物 燃料电池系统的概要的剖视图。
[0015] 图2(a)是表示本实施方式的正极的一个例子的剖视图,图2(b)是表示该正极的主 视图。
[0016] 图3是表示本实施方式的正极的其它例子的主视图。
[0017] 图4是表示本实施方式的正极的其它例子的主视图。
[0018] 图5是表示本实施方式的正极的其它例子的主视图。
[0019] 图6是表示本实施方式的微生物燃料电池系统的其它例子的侧视图。
[0020] 图7是表示本实施方式的微生物燃料电池系统的其它例子的俯视图。
【具体实施方式】
[0021] 下面就本实施方式的微生物燃料电池、微生物燃料电池系统W及微生物燃料电池 的使用方法进行详细的说明。此外,为便于说明,附图的尺寸比例有所夸大,往往与实际的 比例不同。
[0022] [第一实施方式]
[0023] 本实施方式的微生物燃料电池1如图1所示,具有电解液2、负极3、正极4W及隔膜 5。电解液2含有有机物。负极3保持厌氧性微生物,并与电解液2接触。而且正极4由具有憎水 层41、和重叠在憎水层41上的气体扩散层42的气体扩散电极构成。
[0024] 而且将负极3的与负极3、正极4W及隔膜5的层叠方向垂直的方向(面方向)的面积 相对于气体扩散层42的面方向的面积之比([负极的面积]/[气体扩散层的面积])设定为 Ti。再者,将正极4在由电解液2、负极3W及正极4构成的电极体系中的正极4的电位下的最 大电流密度相对于负极3在该电极体系中的负极3的电位下的最大电流密度之比([正极的 最大电流密度]/ [负极的最大电流密度])设定为T2。在此情况下,Tl和T2满足式(1)的关系。
[0025] T2i/2《Ti《T22 (1)
[0026] 此外,本实施方式中的负极3的面积和气体扩散层42的面积不是实际面积,各自为 投影面积。
[0027] 另外,所谓"负极3在电极体系中的负极3的电位下的最大电流密度",是指负极3在 被编入负极3支配体系的通电量的电极体系中、且负极3的电位处于微生物燃料电池1的电 极体系中的负极3的电位时的最大电流密度。该值成为负极3的通电性能的指标。
[0028] 为了测定该负极3的最大电流密度,首先,准备相对于负极3具有充分大的通电性 能的电极作为对电极Counter e 1 ectrode)。对电极在电化学测定时优选为稳定的电极、例 如销电极或者碳电极,该对电极的面积优选为充分地大。此外,对电极也可W采用与微生物 燃料电池1中的正极4相同的材料构成。另外,作为参比电极,例如准备Ag/AgCl电极。
[0029] 接着,将负极3和对电极配置于电解液内。电解液含有浓度对电化学测定无妨的支 持电解质。然后,将负极3、对电极W及参比电极与恒电位仪连接,从而采用线性扫描伏安法 或者循环伏安法,得到负极3的电位和电流之间的关系。由该结果可W导出负极3的电位处 于微生物燃料电池1的电极体系的电位时的电流的值,再由该值可W算出负极3的电流密 度。此外,在电流密度的算出中使用的负极3的面积为负极3向面方向的投影面积。
[0030] 另一方面,所谓"正极4在电极体系中的正极4的电位下的最大电流密度",是指正 极4在被编入正极4支配整个体系的通电量的电极体系中、且正极4的电位处于微生物燃料 电池1的电极体系中的正极4的电位时的最大电流密度。该值成为正极4的通电性能的指标。
[0031] 为了测定该正极4的最大电流密度,首先,准备相对于正极4具有充分大的通电性 能的电极作为对电极。对电极在电化学测定时优选为稳定的电极、例如销电极或者碳电极, 该对电极的面积优选为充分地大。此外,对电极也可W采用与微生物燃料电池1中的负极3 相同的材料构成。另外,作为参比电极,例如准备Ag/Ag(n电极。
[0032] 接着,将正极4和对电极配置于电解液内。电解液含有浓度对电化学测定无妨的支 持电解质。然后,将正极4、对电极W及参比电极与恒电位仪连接,从而采用线性扫描伏安法 或者循环伏安法,得到正极4的电位和电流之间的关系。由该结果可W导出正极4的电位处 于微生物燃料电池1的电极体系的电位时的电流的值,再由该值可W算出正极4的电流密 度。此外,在电流密度的算出中使用的正极4的面积为正极4的气体扩散层42向面方向的投 影面积。
[0033] 本实施方式的微生物燃料电池1由于具有上述的构成,因而保持微生物的负极3的 面积相对于正极4的气体扩散层42的面积之比可W设定为与负极3和正极4的性能相适应的 适当的值。因此,微生物燃料电池1中的正极4和负极3之间的性能失配能够得W缓和。也就 是说,通过使Tl和T2满足T2i/2《Ti的关系,能够抑制微生物燃料电池1中的正极4的性能比负 极3的性能过于增大。再者,通过使Tl和T2满足Ti《T22的关系,能够抑制微生物燃料电池1中 的负极3的性能比正极4的性能过于增大。
[0034] 运样一来,在本实施方式中,将通常设定为同一值的负极3的面积和气体扩散层42 的面积设定为适当的值,微生物燃料电池1中的正极4和负极3之间的性能失配能够得W缓 和。
[0035] 下面参照图1,就本实施方式的微生物燃料电池IW及微生物燃料电池系统10的构 成进行更为详细的说明。
[0036] 如上所述,本实施方式的微生物燃料电池1具有负极3、正极4、隔膜5W及保持它们 的容器6。
[0037] 如图1所示,在容器6中配置有负极3、正极4W及隔膜5。在本实施方式中,负极3、隔 膜5W及正极4依次层叠在一起。具体地说,微生物燃料电池I被配置为:负极3与隔膜5的一 个面5a接触,正极4与隔膜5的面5a的相反侧的面化接触。而且正极4的气体扩散层42与隔膜 5接触,并且如后所述,憎水层41在充满气相的空间7侧露出。
[0038] 再者,容器6被构成为保持电解液2。另外,在容器6上形成有供给口 61和排出口 62。 由此,电解液2从微生物燃料电池1的外部通过供给口61向容器6内供给,进而通过微生物燃 料电池1处理后的电解液2经由排出口 62而向微生物燃料电池1的外部排出。
[0039] 电解液2含有有机物。此外,电解液2也可^含有1(此?〇4、1(2册〇4、(畑4)25〇4、1旨5〇4. 7出0、化(:1、〔曰(:12.2出0、船252〇3.甜2〇等电解质。
[0040] 负极3的材质例如优选为碳W及销之中的至少任一种。再者,在负极3上保持着厌 氧性微生物。例如负极3具有第一面3曰、和该第一面3a的相反侧的第二面3b,第一面3a隔着 隔膜5而与正极4相对置,在第二面3b上保持着厌氧性微生物。而且通过使含有厌氧性微生 物的生物膜重叠在负极3的第二面3b上并加W固定,在负极3上便保持着厌氧性微生物。此 夕F,所谓生物膜,通常是指包含微生物群落、和微生物群落所生产的胞外聚合物 (extracellular polymeric subs1:ance、EPS)的S维结构体。不过,厌氧性微生物也可W不 通过生物膜而保持在负极3上。
[0041] 保持在负极3上的厌氧性微生物例如优选为具有胞外电子转移机制的产电菌。具 体地说,作为厌氧性微生物,例如可W列举出地杆菌(Geobacter)属细菌、希瓦氏菌 (Shewane Ila)属细菌、气单胞菌(Aeromonas)属细菌、地发菌(Geothrix)属细菌、酵母菌 (Saccharomyces)属细菌。
[0042] 隔膜5只要能够使氨离子在负极3和正极4之间移动,其构成和材料就没有特别的 限定。隔膜5例如可W使用阳离子交换膜W及阴离子交换膜等质子传导性膜。另外,隔膜5也 可W使用无纺布、玻璃纤维膜W及滤纸等在膜的内部存在连续的空间、且氨离子可W从负 极3向正极4移动的材料。
[0043] 隔膜5例如优选为离子交换膜或者固体电解质膜。作为隔膜5的例子,可W列举出 化f ion(Du Pont株式会社生产,注册商标)、Fi Iemion(旭硝子株式会社生产,注册商标)等 具有质子传导性的氣树脂系离子交换膜。
[0044] 正极4由具有憎水层41、和W接触的方式重叠在憎水层41上的气体扩散层42的气 体扩散电极构成。
[0045] 憎水层41为同时具有憎水性和气体透过性的层。憎水层41被构成为:一边将微生 物燃料电池1的电化学体系中的气相和液相良好地分离,一边允许气体从气相向液相的移 动。也就是说,憎水层41被构成为:使空间7中的气相中的氧透过而向气体扩散层42移动。运 样的憎水层41优选为多孔质。在此情况下,憎水层41可W具有较高的气体透过性。
[0046] 气体扩散层42例如优选具有多孔质的导电性材料、和担载于该导电性材料上的催 化剂。此外,气体扩散层42也可W由多孔质且具有导电性的催化剂构成。
[0047] 在本实施方式中,负极3、隔膜5W及正极4配置于容器6内。再者,正极4中的憎水层 41设置于空间7侧。而且憎水层41的与气体扩散层42相反一侧的面在容器6外部的气相中露 出。由此,气相中的氧可W通过憎水层41而向气体扩散层42供给。另外,正极4的气体扩散层 42W隔着隔膜5而与负极3相对置的方式与隔膜5接触。
[004引在此,本实施方式的微生物燃料电池系统10具有两个微生物燃料电池1。也就是 说,本实施方式的微生物燃料电池系统10优选具有多个微生物燃料电池1。
[0049] 本实施方式如图1所示,两个微生物燃料电池1被配置为憎水层41相互对置。也就 是说,在两个微生物燃料电池1中,一个微生物燃料电池1的憎水层41和另一个微生物燃料 电池1的憎水层41隔开间隔而对置。由此,充满气相的空间7介于该两个憎水层41之间。微生 物燃料电池系统10被构成为:该空间7向外界空气开放,或者例如通过累而从外界空气向该 空间7供给空气。
[0050] 此外,在正极4和隔膜5之间也可W空出间隔,而且在负极3和隔膜5之间也可W空 出间隔。
[0051] 本实施方式的微生物燃料电池1如上所述,满足T2i/2《Ti《T22的关系。Tl和T2更优 选满足Ti《T2"的关系,进一步优选满足Ti《T2i'2的关系。另外,Tl和T2也优选满足 Tl的关系,进一步优选满足T2i/i'2《Ti的关系。
[0052] 为了使Tl和T2满足上述的关系,通常使气体扩散层42的面方向的面积比负极3的面 方向的面积有所减小。具体地说,气体扩散层42的主面42a的面积比负极3的主面(第一面 3曰、第二面3b)的面积有所减小。因此,气体扩散层42的面积相对于负极3的面积之比优选在 0.1~0.9的范围内。
[0053] 在此,本实施方式在从负极3、正极4W及隔膜5的层叠方向观察的情况下,正极4中 的憎水层41的投影面积与负极3的投影面积一致。但是,如上所述,在Tl和T2满足上述关系的 情况下,气体扩散层42的投影面积比憎水层41的投影面积有所减小。因此,在憎水层41的负 极3侧的面上,存在重叠有气体扩散层42的区域、和没有重叠气体扩散层42的区域。
[0054] 因此,本实施方式的正极4A如图2所示,气体扩散层42优选部分重叠在憎水层41 上。另外,在本实施方式中,气体扩散层42优选含有重叠在憎水层41上、且在与负极3W及正 极4的层叠方向垂直的方向上相互分离的多个层421。此外,运些层421各自重叠在憎水层41 的负极3侧的面上。
[0055] 再者,如图2所示,优选在憎水层41的负极3侧的面上,空出间隔且等间隔地排列着 气体扩散层42分离而成的层421。因此,难W产生负极3和气体扩散层42之间的距离过于增 大的部位。也就是说,如果负极3与面积比负极3小的气体扩散层42相对置,则在负极3上存 在不与气体扩散层42相对置的部分。而且在气体扩散层42由单一的层构成的情况下,将产 生负极3和气体扩散层42之间的距离过于增大的部位。但是,如果气体扩散层42分离为多个 层421、且运些层421与负极3相对置,则难W产生负极3和气体扩散层42之间的距离过于增 大的部位。因此,能够提高微生物燃料电池系统10的反应效率。
[0056] 此外,多个层421没有必要完全分离,例如为了确保层421彼此之间的电导通,也可 W经由布线而部分连接。
[0057] 另外,在本实施方式中,也可W在憎水层41上,重叠保持需氧性微生物的保持体 43。具体地说,如图2所示,在憎水层41的负极3侧的面的没有重叠气体扩散层42的区域,优 选保持需氧性微生物。例如,优选在与气体扩散层42W及憎水层41的层叠方向垂直的方向 上,于憎水层41的没有重叠气体扩散层42的区域重叠用于保持需氧性微生物的保持体43。 在此情况下,在需氧性微生物的作用下,能够高效地进行电解液2的净化处理。
[0058] 在本实施方式中,在憎水层41上确保有用于配置保持需氧性微生物的保持体43的 区域。因此,在微生物燃料电池1的内部,能够紧凑地配置用于保持需氧性微生物的保持体 43。再者,憎水层41由于具有通气性,因而可W通过憎水层41向需氧性微生物充分供给用于 其繁殖的氧。因此,不会招致微生物燃料电池1的大型化W及结构的复杂化而能够实现电解 液2有效的净化处理。
[0059] 作为需氧性微生物,例如可W列举出作为埃希氏菌化scherichia)属细菌的大肠 杆菌、作为假单胞菌(Pseudomonas)属细菌的绿脈杆菌、作为芽胞杆菌(Bacillus)属细菌的 枯草杆菌。另外,作为用于保持需氧性微生物的保持体43,例如可W使用无纺布状或者海绵 状的结构体。保持体43例如可W由选自聚乙締、聚丙締、聚乙二醇、聚氨醋W及聚乙締醇之 中的一种W上的材料进行制作。
[0060] 在本实施方式的微生物燃料电池1中,通过向容器6内供给电解液2,而且例如将负 极3和正极4与外部电路连接,微生物燃料电池1便处于闭路状态。然后,在负极3上,通过厌 氧性微生物的代谢而使电解液2中的有机物分解,从而产生电子、质子W及二氧化碳。运里 产生的电子从负极3流向外部电路,进而质子通过隔膜5而到达正极4。另一方面,在正极4 上,由气相供给的氧与质子和电子反应而被还原,从而生成水。通过运样的电化学反应,在 正极4和负极3之间产生电动势,同时电解液2中的有机物发生分解。因此,在可W进行发电 的同时,还可W进行电解液2中的有机物的分解处理。
[0061] 本实施方式的微生物燃料电池1具备:含有有机物的电解液2,保持厌氧性微生物、 并与电解液2接触的负极3, W及具有憎水层41和重叠在憎水层41上的气体扩散层42的正极 4。而且将负极3的面积相对于气体扩散层42的面积之比设定为Tl,将正极在由电解液2、负 极3W及正极4构成的电极体系中的正极4的电位下的最大电流密度相对于负极在电极体系 中的负极3的电位下的最大电流密度之比设定为T2。在此情况下,Tl和T2满足式(1)的关系。
[0062] T2i/2《Ti《T22 (1)
[0063] 另外,微生物燃料电池1的使用方法具有准备微生物燃料电池1的工序,其中,所述 微生物燃料电池1具备:含有有机物的电解液2,保持厌氧性微生物、并与电解液接触的负极 3, W及具有憎水层41和重叠在憎水层41上的气体扩散层42的正极4。再者,将负极3的面积 相对于气体扩散层42的面积之比设定为Tl,将正极在由电解液2、负极3W及正极4构成的电 极体系中的正极4的电位下的最大电流密度相对于负极在电极体系中的负极3的电位下的 最大电流密度之比设定为T2。在此情况下,该使用方法具有WTi和T2满足式(1)的关系的方 式使微生物燃料电池1工作的工序。
[0064] T2i/2《Ti《T22 (1)
[0065] 换句话说,本实施方式WTi和T2满足上述关系的方式,使微生物燃料电池1处于闭 路状态而进行工作。因此,在使用本实施方式的微生物燃料电池1时,首先,对应处理的废水 (电解液2)的组成、例如废水中的电解质W及有机物各自的种类、浓度等进行调查,W选择 应处理的废水(电解液2)。接着,设计用于该废水处理的正极4和负极3。也就是说,根据废水 (电解液2)的组成而进行设计,W便Tl和T2满足规定的关系。其结果是,能够抑制微生物燃料 电池1中的正极4的性能比负极3的性能过于增大,相反,也能够抑制负极3的性能比正极4的 性能过于增大。
[0066] 下面就本实施方式中的正极4的憎水层41W及气体扩散层42进一步进行详细的说 明。
[0067] 憎水层41优选为具有憎水性的多孔质体。在此情况下,憎水层41可W具有较高的 气体透过性。运样的憎水层41例如优选由选自聚四氣乙締(PTFE)、二甲基聚硅氧烷(PDMS)、 聚乙締(PE) W及聚丙締(PP)之中的一种W上的材料进行制作。
[0068] 气体扩散层42例如可W设计为如下的构成:具有多孔质的导电性材料、和担载于 该导电性材料上的催化剂。此外,气体扩散层42也可W由多孔质且具有导电性的催化剂构 成。
[0069] 气体扩散层42中的导电性材料例如可W由选自碳系物质、导电性聚合物、半导体 W及金属之中的一种W上的材料构成。在此,所谓碳系物质,是指W碳为构成成分的物质。 作为碳系物质的例子,例如可W列举出石墨;活性炭:碳黑、化lean(注册商标)XC-72R、乙烘 黑、炉法碳黑、DenhiBIack啦等碳粉末;石墨拉、碳绒、碳织布等碳纤维;碳板;碳纸;W及碳 盘。另外,作为碳系物质的例子,也可W列举出碳纳米管、碳纳米角(carbon nanohorn)、碳 纳米簇之类的微细结构物质。
[0070] 所谓导电性聚合物,是具有导电性的高分子化合物的总称。作为导电性聚合物,例 如可W列举出W苯胺、氨基苯酪、二氨基苯酪、化咯、嚷吩、对苯、巧、巧喃、乙烘或者它们的 衍生物为构成单元的单一单体或者巧巾W上单体的聚合物。具体地说,作为导电性聚合物, 例如可W列举出聚苯胺、聚氨基苯酪、聚二氨基苯酪、聚化咯、聚嚷吩、聚对苯、聚巧、聚巧 喃、聚乙烘等。作为金属制导电性材料,例如可W列举出不诱钢网。在考虑得到的容易程度、 成本、耐蚀性、耐久性等的情况下,导电性材料优选为碳系物质。
[0071 ]另外,导电性材料的形状优选为粉末形状或者纤维形状。另外,导电性材料也可W 支持在支持体上。所谓支持体,是指其本身具有刚性,且能够赋予气体扩散电极W-定的形 状的构件。支持体既可W是绝缘体,也可W是导电体。在支持体为绝缘体的情况下,作为支 持体,例如可W列举出玻璃;塑料;合成橡胶;陶瓷;耐水或者憎水处理过的纸;木片等植物 片;骨片、贝壳等动物片等。作为多孔质结构的支持体,例如可W列举出多孔质陶瓷、多孔质 塑料、海绵等。在支持体为导电体的情况下,作为支持体,例如可W列举出碳纸、碳纤维、碳 棒等碳系物质;金属;导电性聚合物等。在支持体为导电体的情况下,担载着碳系材料的导 电性材料配置在支持体的表面上,从而支持体也可W作为集电体发挥作用。
[0072] 在此,气体扩散层42中的催化剂例如优选为渗杂了金属原子的碳系材料。作为金 属原子,并没有特别的限定,但优选为选自铁、饥、铭、儘、铁、钻、儀、铜、错、妮、钢、钉、锭、 钮、银、给、粗、鹤、鍊、饿、银、销W及金之中的至少一种金属原子。在此情况下,碳系材料特 别是作为用于促进氧还原反应W及氧生成反应的催化剂发挥优良的性能。碳系材料所含有 的金属原子的量可W进行适当的设定,W便使碳系材料具有优良的催化性能。
[0073] 碳系材料进一步优选为渗杂有选自氮、棚、硫W及憐之中的一种W上非金属原子。 在碳系材料中渗杂的非金属原子的量也可W进行适当的设定,W便使碳系材料具有优良的 催化性能。
[0074] 碳系材料例如可W通过W石墨W及无定形碳等碳源原料为基、并在该碳源原料中 渗杂金属原子、和选自氮、棚、硫W及憐之中的一种W上非金属原子而得到。
[0075] 可W适当选择在碳系材料中渗杂的金属原子和非金属原子的组合。特别地,优选 非金属原子含有氮,金属原子含有铁。在此情况下,碳系材料可W具有特别优良的催化活 性。此外,非金属原子也可W仅为氮。另外,金属原子也可W仅为铁。
[0076] 也可W是非金属原子含有氮,金属原子含有钻和儘之中的至少一种。在此情况下, 碳系材料也可W具有特别优良的催化活性。此外,非金属原子也可W仅为氮。另外,金属原 子也可W仅为钻,仅为儘,或者仅为钻和儘。
[0077] 碳系材料的形状并没有特别的限制。例如,碳系材料既可W具有粒子状形状,也可 W具有片材状形状。具有片材状形状的碳系材料的尺寸并没有特别的限制,例如该碳系材 料也可W是微小的尺寸。具有片材状形状的碳系材料也可W是多孔质。具有片材状形状且 多孔质的碳系材料例如优选具有织布状、无纺布状等形状。运样的碳系材料即使没有导电 性材料,也可W构成气体扩散层42。
[0078] 构成为气体扩散层42中的催化剂的碳系材料可W采用如下的方法进行调配。首 先,准备含有例如包含选自氮、棚、硫W及憐之中的至少一种非金属的非金属化合物、和金 属化合物、和碳源原料的混合物。然后,在800°C~1000°C的溫度下,对该混合物加热45秒W 上且低于600秒。由此,可W得到构成为催化剂的碳系材料。
[0079] 在此,作为碳源原料,如上所述,例如可W使用石墨或者无定形碳。再者,作为金属 化合物,只要是含有能够与被渗杂于碳源原料中的非金属原子形成配位键的金属原子的化 合物,就没有特别的限制。金属化合物例如可W使用选自金属的氯化物、硝酸盐、硫酸盐、漠 化物、舰化物、氣化物等无机金属盐;醋酸盐等有机金属盐;无机金属盐的水合物;W及有机 金属盐的水合物之中的至少一种。例如在铁渗杂于石墨中的情况下,金属化合物优选含有 氯化铁(m)。另外,在钻渗杂于石墨中的情况下,金属化合物优选含有氯化钻。另外,在儘渗 杂于碳源原料中的情况下,金属化合物优选含有醋酸儘。关于金属化合物的使用量,例如金 属化合物中的金属原子相对于碳源原料的比例优选决定在5~30质量%的范围内,该比例 更优选决定在5~20质量%的范围内。
[0080] 非金属化合物如上所述,优选为选自氮、棚、硫W及憐之中的至少一种非金属的化 合物。作为非金属化合物,例如可W使用选自五乙撑六胺、乙二胺、四乙撑五胺、=乙撑四 胺、乙二胺、辛基棚酸、1,2-双(二乙基麟乙烧)、亚憐酸S苯醋、二苄基二硫酸 (benzyldisulfide)之中的至少一种化合物。非金属化合物的使用量可W根据非金属原子 在碳源原料中的渗杂量而适当设定。关于非金属化合物的使用量,金属化合物中的金属原 子和非金属化合物中的非金属原子的摩尔比优选决定在1:1~1: 2的范围内,更优选决定在 1:1.5~1:1.8的范围内。
[0081] 在调配构成为催化剂的碳系材料时,含有非金属化合物、金属化合物和碳源原料 的混合物例如采用如下的方法来得到。首先,将碳源原料、金属化合物和非金属化合物混 合,进而根据需要添加乙醇等溶剂而对总量进行调整。进而采用超声波分散法使它们分散。 接着,在适当的溫度(例如60°C)下将其加热,然后使混合物干燥而将溶剂除去。由此,便得 到含有非金属化合物、金属化合物和碳源原料的混合物。
[0082] 接着,对得到的混合物例如在还原性气氛下或者不活泼气体气氛下进行加热。由 此,在碳源原料中渗杂有非金属原子,进而通过使非金属原子和金属原子形成配位键,也渗 杂有金属原子。加热溫度优选在800°C~1000°C的范围内,加热时间优选在45秒W上且低于 600秒的范围内。由于加热时间为短时间,因而可W高效地制造碳系材料,而且碳系材料的 催化活性进一步提高。此外,在加热处理中,加热开始时的混合物的升溫速度优选为50°C/s W上。运样的快速加热使碳系材料的催化活性得到进一步提高。
[0083] 另外,也可W对碳系材料进一步进行酸清洗。例如也可W采用均化器,使碳系材料 在纯水中分散30分钟,然后将该碳系材料盛入2M硫酸中,在80°C下揽拌3小时。在此情况下, 可W抑制金属成分从碳系材料中的溶出。
[0084] 根据运样的制造方法,可W得到不活泼金属化合物W及金属结晶的含量明显地 低、而且导电性较高的碳系材料。
[0085] [第二实施方式]
[0086] 接着,基于附图,就第二实施方式的微生物燃料电池1A、微生物燃料电池系统IOA 进行详细的说明。此外,对于与第一实施方式相同的构成标注相同的符号,并将重复的说明 予W省略。
[0087] 本实施方式的微生物燃料电池IA也与第一实施方式同样,需要Tl和T2满足式(1)的 关系。再者,本实施方式的正极4B与上述的正极4A同样,气体扩散层42优选部分地重叠在憎 水层41上的一部分上。
[0088] 不过,本实施方式如图3所示,气体扩散层42优选部分地设置在正极4B的上部。也 就是说,层叠于憎水层41上的气体扩散层42优选部分地设置在垂直方向Y的上部,在下部则 没有设置气体扩散层42。如后所述,在微生物燃料电池IA如图6和图7那样沿着与垂直方向Y 垂直的层叠方向Z配置的情况下,与微生物燃料电池IA的下部相比,上部具有发电性能较高 的倾向。因此,优选将气体扩散层42部分地设置在正极4B的上部,进而与气体扩散层42相对 应,负极3也设置在正极4B的上部。运样一来,通过在发电性能降低的下部不设置气体扩散 层42W及负极3,便可W避免整个微生物燃料电池IA的发电性能的降低。另外,由于可W降 低气体扩散层42和负极3的使用量,因而能够降低整个微生物燃料电池系统IOA的成本。
[0089] 此外,在本说明书中,所谓"气体扩散层42设置在正极4B的上部",是指如图3所示 那样,在憎水层41的垂直方向Y的下边41a并不设置气体扩散层42。
[0090] 另外,如图4W及图5所示,在本实施方式中,气体扩散层42优选含有重叠在憎水层 41的上部、且在与气体扩散层42和憎水层41的层叠方向垂直的方向上相互分离的多个层 421。另外,优选在憎水层41的负极3侧的面上,空出间隔且等间隔地排列着气体扩散层42分 离而成的层421。因此,难W产生负极3和气体扩散层42之间的距离过于增大的部位。其结果 是,能够提高微生物燃料电池系统IOA的反应效率。
[0091] 此外,多个层421也可W如图4所示,W设置在正极4C的上部、且沿着与垂直方向Y 垂直的面方向X分离的状态进行配置。另外,多个层421也可W如图5所示,W设置在正极4D 的上部、且沿着垂直方向Y分离的状态进行配置。
[0092] 在本实施方式的正极4B、4C、4D中,优选将气体扩散层42部分地设置在正极的上 部,并在没有设置气体扩散层42的正极的下部,设置用于保持需氧性微生物的保持体43。也 就是说,如图6所示,在正极的发电效率高的上部设置气体扩散层42,进而在对应的位置设 置负极3W及隔膜5。而且通过在发电效率较低的下部设置用于保持需氧性微生物的保持体 43,在提高发电效率的同时,进而可W实现电解液2的有效的净化处理。另外,如上所述,憎 水层41由于具有通气性,因而可W通过憎水层41向需氧性微生物充分供给用于其繁殖的 氧。因此,不会招致微生物燃料电池1的大型化W及结构的复杂化而可W进行电解液2的净 化处理。
[0093] 如上所述,用于保持需氧性微生物的保持体43优选设置在正极4B、4C、4D的下部。 但是,不仅可W配置在正极的下部,而且也可W配置在正极4C和4D中的气体扩散层42分离 而成的层421之间的空间。保持体43的净化性能无论在正极的上部还是在下部几乎没有差 另IJ,因而通过配置在层421之间,可W提高电解液2的净化效率。
[0094]本实施方式的微生物燃料电池系统IOA包含多个具有上述正极4B、4C、4D的微生物 燃料电池1A。另外,如图6所示,与第一实施方式同样,在微生物燃料电池系统IOA中,两个微 生物燃料电池1被配置为憎水层41相互对置。因此,充满气相的空间7介于两个憎水层41之 间。而且微生物燃料电池系统IOA也被构成为:该空间7向外界空气开放,或者例如通过累而 从外界空气向该空间7供给空气。
[00M] 微生物燃料电池系统IOA包含多个微生物燃料电池组100,该微生物燃料电池组 100由W憎水层41相互对置的方式配置的微生物燃料电池IA构成。具体地说,如图6所示,微 生物燃料电池系统IOA将多个微生物燃料电池组100沿着层叠方向Z进行配置。此时,电解液 2也沿着层叠方向Z,通过供给口 61向容器6内供给,并经由排出口 62向容器6的外部排出。运 样一来,通过包含多个微生物燃料电池组100,可W更加提高微生物燃料电池系统IOA的发 电效率和净化效率。
[0096] 再者,在本实施方式中,微生物燃料电池组100正如图7的箭头A所示的那样,电解 液2在容器6的内部优选配置为W波状流动。具体地说,多个微生物燃料电池组100沿着层叠 方向Z进行配置。此时,多个微生物燃料电池组100被配置为:微生物燃料电池组100的侧面 IOOa在容器6的左壁6a和右壁6b交替接触。在微生物燃料电池系统IOB中,通过使电解液2W 波状流动,可W提高电解液2与负极3W及保持体43的接触效率,其结果是,可W更加提高发 电效率W及净化效率。
[0097] 此外,图6和图7所示的微生物燃料电池组100的配置并非仅限定于第二实施方式 的微生物燃料电池IA的情况,也可W适用于第一实施方式的微生物燃料电池1的情况。另 夕h本实施方式的微生物燃料电池系统也可W任意组合第一实施方式的微生物燃料电池1 和第二实施方式的微生物燃料电池1A。
[0098] 运里引用日本特愿2014-025391号(申请日:2014年2月13日)的全部内容。
[0099] W上沿着实施例对本实施方式的内容进行了说明,但本实施方式并不局限于运些 记载,能够进行各种变形和改良对本领域技术人员来说是显而易见的。
[0100] 产业上的可利用性
[0101] 根据本发明,通过将用于保持微生物的负极的面积相对于正极的气体扩散层的面 积之比设定为与负极和正极的性能相适应的适当的值,能够使微生物燃料电池中的正极和 负极之间的性能失配得W缓和。
[0102] 符号说明:
[0103] UlA微生物燃料电池
[0104] 2电解液
[0105] 3 负极
[0106] 4、4A、4B、4C、4D 正极
[0107] 6 容器 [010引 7空间
[0109] 10、10A、IOB微生物燃料电池系统
[0110] 41憎水层
[011。 42气体扩散层
[0112] 100微生物燃料电池组
【主权项】
1. 一种微生物燃料电池,其具备: 含有有机物的电解液, 保持厌氧性微生物、并与所述电解液接触的负极,以及 具有憎水层和重叠在所述憎水层上的气体扩散层的正极;其中, 将所述负极的面积相对于所述气体扩散层的面积之比设定为Ti,将所述正极在由所述 电解液、所述负极以及所述正极构成的电极体系中的所述正极的电位下的最大电流密度相 对于所述负极在所述电极体系中的所述负极的电位下的最大电流密度之比设定为τ 2时,Ti 和T2〗两足如下的关系: T21/2^Ti^T22〇2. 根据权利要求1所述的微生物燃料电池,其中,在所述憎水层上,重叠着用于保持需 氧性微生物的保持体。3. 根据权利要求1或2所述的微生物燃料电池,其中,所述气体扩散层部分地重叠在所 述憎水层上。4. 根据权利要求1~3中任一项所述的微生物燃料电池,其中,所述气体扩散层含有重 叠在所述憎水层上、且在与所述负极以及所述正极的层叠方向垂直的方向上相互分离的多 个层。5. 根据权利要求1~4中任一项所述的微生物燃料电池,其中,所述气体扩散层部分地 设置在所述正极的上部。6. 根据权利要求1~3中任一项所述的微生物燃料电池,其中,所述气体扩散层具有多 孔质的导电性材料、和担载于所述导电性材料上的催化剂。7. 根据权利要求6所述的微生物燃料电池,其中,所述催化剂为掺杂了金属原子的碳系 材料。8. -种微生物燃料电池系统,其中,具有多个权利要求1~7中任一项所述的微生物燃 料电池。9. 根据权利要求8所述的微生物燃料电池系统,其中,两个所述微生物燃料电池以所述 憎水层相互对置的方式配置。10. 根据权利要求9所述的微生物燃料电池系统,其中,微生物燃料电池系统包含多个 微生物燃料电池组,所述微生物燃料电池组由以所述憎水层相互对置的方式配置的所述微 生物燃料电池构成。11. 一种微生物燃料电池的使用方法,其具有如下的工序: 准备微生物燃料电池的工序,其中,所述微生物燃料电池具备:含有有机物的电解液, 保持厌氧性微生物、并与所述电解液接触的负极,以及具有憎水层和重叠在所述憎水层上 的气体扩散层的正极;和 &TjPT2满足如下的关系的方式使所述微生物燃料电池工作的工序, T21/2^Ti^T22 其中,将所述负极的面积相对于所述气体扩散层的面积之比设定为Ti,将所述正极在由 所述电解液、所述负极以及所述正极构成的电极体系中的所述正极的电位下的最大电流密 度相对于所述负极在所述电极体系中的所述负极的电位下的最大电流密度之比设定为T 2。
【文档编号】H01M8/16GK105981208SQ201580008113
【公开日】2016年9月28日
【申请日】2015年1月22日
【发明人】铃木雄也, 碓冰宏明
【申请人】松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1