用于对基底上的薄层进行激光结构化来制造一体式互连的薄层太阳能电池的方法以及薄...的制作方法

文档序号:10663834阅读:434来源:国知局
用于对基底上的薄层进行激光结构化来制造一体式互连的薄层太阳能电池的方法以及薄 ...的制作方法
【专利摘要】本发明涉及一种用于对基底上的薄层进行激光结构化来制造一体式互连的薄层太阳能电池的方法,该方法具有以下步骤:?提供具有激光波长的激光;?提供具有第一侧和第二侧的基底(1),该基底对于激光波长来说是透明的,其中,基底的第一侧具有金属的背电极薄层(2),并且在金属的背电极薄层(2)上布置有用于薄层太阳能电池的吸收薄层(3);?将激光射束(L)射入到基底上;?使激光射束(L)沿着刻写线在基底(1)上运动和/或使基底(1)相对于激光射束(L)沿着刻写线运动。根据本发明设置的是,激光射束(L)射入到基底(1)的第二侧上、穿过基底(1)落到金属的背电极薄层(2)上并且以在皮秒或飞秒范围内的激光脉冲以如下方式调节并且以如下方式运动,即,沿着刻写线烧蚀掉布置在金属的背电极薄层(2)上的吸收薄层(3),并且在基底上保留被激光影响过的金属的背电极薄层(2)。
【专利说明】
用于对基底上的薄层进行激光结构化来制造一体式互连的薄层太阳能电池的方法以及薄层太阳能模块的制造方法
技术领域
[0001]本发明涉及一种用于对基底上的薄层进行激光结构化来制造一体式互连的薄层太阳能电池的方法,并且还涉及一种薄层太阳能模块的制造方法。
【背景技术】
[0002]薄层太阳能模块通常具有一体式彼此串联互连的薄层太阳能电池。为了在基底结构中建立薄层太阳能电池的一体式互连,首先在基底上沉积背电极薄层。基底可以构造为具有例如三毫米厚的玻璃板,并且背电极薄层由具有数百纳米的层厚度的金属,例如钼构成。该背电极薄层在往往也被称为Pl结构化的第一结构化步骤中被划分为多个相邻的条带。在背电极薄层的这些条带之间延伸有具有通常小于一毫米的宽度的窄的沟槽,在这些沟槽的位置处,通过Pl结构化步骤去除背电极薄层,以便使各个条带彼此电绝缘。Pl结构化步骤通常借助激光来实现,激光的射束撞击背电极薄层,并且使该背电极薄层沿着刻写线被蒸发、升华和/或被烧蚀掉,并且因此形成所谓的Pl沟槽。
[0003]紧接着将吸收薄层沉积到背电极薄层的这些经结构化的条带上,吸收薄层全面地在经结构化的条带上并且在位于条带之间的Pl沟槽上延伸。该吸收薄层可以由多个子层构成并且通常具有小于两微米的厚度。随后进行被称为P2结构化步骤的过程。在此,与被遮盖的Pl沟槽相邻地,沿着所谓的P2沟槽去除吸收薄层直至背电极薄层。
[0004]其后接着,全面地在以P2沟槽结构化的吸收薄层上沉积透明的前面电极薄层。
[0005]紧接着进行所谓的P3结构化。再次与被遮盖的P2沟槽相邻且平行地沿着所谓的P3沟槽向下去除吸收薄层和前面电极薄层的层叠组直至背电极薄层。P3沟槽尽可能紧挨P2沟槽,然而由于最后的测量精度和定位精度限制了 P2与P3沟槽的最小间距。
[0006]在结束薄层沉积和Pl、P2和P3结构化的序列之后,存在有多个一体式彼此串联互连的薄层太阳能电池,它们形成了薄层太阳能模块。P2和P3沟槽彼此越紧密地定位,作为互连的薄层太阳能电池的有效区的吸收薄层的利用率就越高。
[0007]尤其是在背电极薄层由金属,例如钼构成的情况下,P2和P3结构化步骤以机械方式借助细针来执行。在这些针上将出现磨损现象并且在对针进行定位时的机械的精确度被限制在十分之几毫米的范围内,或者在更高精确度的情况下需要极大的耗费。此外,在结构化时使用针的情况下通常导致使背电极薄层也受到影响,从而降低了太阳能模块的效率。
[0008]由WO2012/051574 A2公知了一种薄层太阳能模块的制造方法,在其中,尤其借助激光来执行P2和P3结构化。该方法具有以下步骤:
[0009]-提供具有激光波长的激光,
[0010]-提供具有第一侧和第二侧的基底,该基底对于激光波长来说是透明的,其中,基底的第一侧具有金属的背电极薄层,并且在金属的背电极薄层上布置有用于薄层太阳能电池的吸收薄层,
[0011 ]-将激光射束射入到基底的第一侧上,并且
[0012]-使激光射束沿着刻写线在基底上运动并且/或者使基底相对于激光射束沿着刻写线运动。在该方法中不可避免的是,被激光射束炸出来的薄层颗粒返回到结构沟槽中。在那里,这些颗粒尤其在P3结构化之后可能引起前电极薄层与背电极薄层之间短路。
[0013]此外,当在前电极薄层上例如施加形式为电子汇流网的具有几微米的层厚度的附加的层时,该方法是成问题的。前电极薄层和电子汇流网共同形成前电极结构。这些导电的结构通常具有直至ΙΟμπι范围内的层厚度。该层厚度与在其下的薄层叠组相比明显要大。从外部撞击到该结构上的激光射束在该层中被吸收并且不再向内直至作用到在其下的薄层叠组中。因此,也无法贯穿地产生所要求的Ρ3结构化。

【发明内容】

[0014]本发明的任务在于提供一种改进的用于对基底上的薄层进行激光结构化来制造一体式互连的薄层太阳能电池的方法,其克服了所提到的缺点。
[0015]根据本发明设置的是,激光射束射入到基底的第二侧上、穿过基底落到金属的背电极薄层上并且激光射束以在纳秒、皮秒或飞秒范围内的激光脉冲以如下方式调节并且以如下方式运动,即,沿着刻写线烧蚀掉布置在金属的背电极薄层上的吸收薄层,并且在基底上保留被激光影响过的金属的背电极薄层。所要求保护的时间范围被理解为大于I飞秒直至小于1000皮秒的范围。
[0016]本发明基于以下的令人惊喜的认识,S卩,在激光射束从背侧进入穿过对于激光射束来说足够透明的基底时,存在有结合基底与激光之间的相对运动来调节激光射束的参数窗口,其中,金属的背电极薄层很大程度上被完好地保留下来,而所有位于背电极薄层上的薄层(即使是数微米的层厚度)通过与激光射束的相互作用被去除。这在【背景技术】的基础上是令人惊喜的,这是因为所使用的激光射束具有对其来说金属的背电极薄层是不透明的的波长。重要的参数是每体积单位和每时间单位放出的激光能量的时间上和空间上的变化曲线。这取决于如下参数,例如波长、脉冲持续时间、脉冲能量、脉冲频率、脉冲直径、射束型廓和激光射束与基底之间的相对运动。保留下来的被激光射束影响过的背电极薄层在结构化沟槽的区域中通常损失了少于其层厚度的10%,优选少于5%。被激光影响过的层的品质至少就太阳能模块的效率方面要好于在以机械式进行的Ρ2或Ρ3结构化之后保留下来的背电极薄层的品质。
[0017]该用于执行该方法的认识能够实现的是,借助适当地调节的激光射束和匹配的射束与基底之间的相对运动执行Ρ2结构化和Ρ3结构化。存在如下的过程参数窗口,其中,材料以如下方式从薄层叠组中炸出,即,没有或极少的残渣保留在出现的沟槽中。这也适用于如下情况,即,没有纯粹的薄层叠组,而是分区段地存在有在薄层叠组上沉积的几微米厚的层。
[0018]优选地,该方法的变型方案因此如下这样地构造,S卩,在吸收薄层上布置有前电极结构,并且在刻写线的区域中将吸收薄层与处于其上的前电极结构一起烧蚀掉。该前电极结构具有一个或多个薄层,薄层由透明的导电的氧化物(TCO)构成,例如由经掺杂或未经掺杂的氧化锌构成并且例如有一微米厚。
[0019]此外有利的是,借助从背侧射入的激光射束执行Ρ2结构化和Ρ3结构化。因此,优选以如下方式改进该方法,即,在激光射束沿着刻写线运动之后并且/或者在基底相对于激光射束地沿着刻写线运动之后,将前电极结构施加到经结构化的吸收薄层上,并且紧接着使激光射束沿着与刻写线横向错开的另外的刻写线射入到基底的第二侧上、穿过基底落到金属的背电极薄层上,并且激光射束以在纳秒、皮秒或飞秒范围内的激光脉冲以如下方式调节并且激光射束与基底之间的相对运动以如下方式执行,即,沿着另外的刻写线将布置在金属的背电极薄层上的吸收薄层和前电极结构一起烧蚀掉,并且在基底上保留被激光影响过的金属的背电极薄层。
[0020]用于进行激光结构化的方法的有利的变型方案在于,前电极结构构造为前电极薄层或构造为具有布置在其上的金属的栅格网状的金属的电子汇流结构的前电极薄层。
[0021]优选以如下方式使用针对所有至此所描述的变型方案的用于进行激光结构化的方法,即,使用由玻璃构成的基底。
[0022]优选在吸收薄层由三元的或四元的半导体,例如CIGS或CIS构成的情况下使用用于进行激光结构化的方法。
[0023]适用于用于进行激光结构化的方法的所有上述的变型方案的是,在接近红外线范围内或可见光的频谱范围内选择激光波长。可能的激光波长例如为515nm、532nm、1030nm、1047nm、1053nm、1060nm、1064nm、1080nm和1150nm。少量掺杂的固态激光器是尤其适合的。因此,可能的激光波长是其基波波长和更高次的谐波。
[0024]特别整洁的切割线优选通过如下方式来实现,即,使激光射束和/或基底运动,从而确保沿着刻写线的激光脉冲的10 %至50 %在空间上重叠。
[0025]将如下范围设置为针对激光脉冲所使用的脉冲能量的另外的优选的范围是有利的,即,每脉冲的脉冲能量在IyJ至10yJ的范围内、优选在15yJ至30yJ的范围内来选择。
[0026]此外,本发明涉及一种对由在基底结构中的一体式互连的薄层太阳能电池构成的薄层太阳能模块的制造方法,该方法具有以下步骤:
[0027]-提供玻璃基底,
[0028]-在玻璃基底上沉积出金属的背电极薄层,
[0029]-对金属的背电极薄层执行Pl激光结构化步骤,
[0030]-在经结构化的金属的背电极薄层上沉积出吸收薄层,
[0031 ]-对吸收薄层执行P2激光结构化步骤,
[0032]-在经结构化的吸收薄层上沉积出前电极薄层,
[0033]-对吸收薄层连同前电极薄层一起执行P3激光结构化步骤,
[0034]-利用前面封装元件来以持久不受天气影响的方式封装一体式互连的薄层太阳能电池,以及
[0035]-将持久不受天气影响的电太阳能模块联接装置接驳在基底上。
[0036]根据本发明设置的是,根据上文说明的用于进行激光结构化的方法变型方案中的其中一个来执行P2激光结构化步骤和/或P3激光结构化步骤。
[0037]在制造方法的优选的改进方案中设置的是,在封装和接驳联接装置的方法步骤之前执行下面的另外的方法步骤:
[0038]-将激光射束射入到基底上,
[0039]-使激光射束沿着至少一条切割线在基底上运动并且/或者使基底相对于激光射束运动,用以借助激光射束与基底之间的相对运动产生至少一个绝缘沟槽,其中,激光射束射入到基底的第二侧上、穿过基底落到金属的背电极薄层上,并且激光射束以在皮秒范围内的或飞秒范围内的激光脉冲以如下方式调节并且激光射束与基底之间的相对运动以如下方式实施,即,连同金属的背电极薄层一起将布置在该金属的背电极薄层上的吸收薄层和布置在该吸收薄层上的前电极结构沿着切割线从基底烧蚀掉。
[0040]可以以如下方式来调节激光且同一激光的列举的激光参数,S卩,与在P2至P3激光结构化步骤中不同地烧蚀掉钼薄层以及所有在其上的层。通过这些绝缘沟槽,在相同的基底上生成子太阳能模块。以这种方式,可以用唯一的激光装置实现对薄层太阳能模块进行整个一体式结构化。由此,制造成本相对于现有技术明显更低廉。
【附图说明】
[0041 ]结合下面所述的附图详细阐述了实施例。其中:
[0042]图1至图9示出用于制造薄层太阳能模块的层沉积的、结构化的和封装的连续且纯示意性的流程,其中,多次使用根据本发明的用于对薄层进行激光结构化的方法。
【具体实施方式】
[0043]根据图1提供了玻璃基底I,并且如图2所示喷涂有例如形式为100纳米至200纳米厚的钼层的背电极薄层。根据图3借助激光射束L对背电极薄层进行周期性的结构化。借助光学件使激光射束L沿着基底I运动并且/或者使基底在位置固定的激光射束L下运动。结果是在背电极薄层2的钼薄层中出现沿着通过激光射束L与基底I之间的相对运动限定出的沟槽P1。紧接着,如图4所示,在背电极薄层2的经结构化的条带上沉积出吸收薄层3,吸收薄层全面地在经结构化的条带上并且在条带之间的沟槽Pl上延伸。该吸收薄层3可以由多个子层组成,例如由与CdS缓冲层组合的且通常具有小于两微米的厚度的CIGS(Cu(In,Ga)(Se,S)2)层构成。
[0044]随后,根据图5进行被称为P2结构化步骤的过程。在此,与被遮盖的沟槽Pl相邻地沿着沟槽P2去除吸收薄层3直至背电极薄层2。该过程步骤又通过使用激光射束L来进行。但是与在Pl结构化步骤中不同的是,激光现在从下方首先穿过玻璃基底I对准背电极薄层。可以以如下方式合适地来调节激光参数,即,从背电极薄层2起感应出震荡波,震荡波全面地烧蚀掉在背电极薄层2上的吸收薄层3,而背电极薄层2本身却基本上没有受损。通过显微镜能看到的是,背电极薄层2受到激光射束L的影响。因此,通常使层厚度减小,但是材料损失非常少,从而使背电极薄层2的保留下来的金属薄层足以实现一体式互连的太阳能模块的功能。此外,与背电极薄层2的由机械式的刮划方法保留的表面相比特性更好。
[0045]紧随其后地,根据图6在以沟槽P2结构化的吸收薄层3上全面地沉积透明的前面电极薄层40。
[0046]为了使前电极结构4完整,在图7所示的步骤中,在透明的前面电极薄层40上施加电极汇流结构41。电极汇流结构41由不透明的良好导电的网状结构构成,其明显少于太阳能模块的光入射面I %地覆盖。通常,这些网状结构实现为具有数微米的厚的层。
[0047]紧接着,根据图8进行所谓的P3结构化。再次与被遮盖的沟槽P2相邻且平行地沿着P3沟槽向下去除吸收薄层3和前面电极薄层4的层叠组直至背电极薄层2。该P3结构化同样如图5所示的P2结构化那样通过激光射束L来进行,该激光射束从下方穿过玻璃基底I被射到背电极薄层2上。再次以如下方式选择对激光参数和基底I与激光射束L之间的相对运动的调节,g卩,所有在由钼形成的背电极薄层2以上的薄层和具有数微米厚度的层被烧蚀掉。保留有足够厚的且适合于其微观结构的背电极薄层2。
[0048]在根据图9的最后的步骤中,首先将前面封装元件5涂装到光入射侧上。该前面封装元件5例如可以由第二玻璃板形成,该第二玻璃板具有在其下的由EVA(Ethy lenviny Iacetat乙稀/醋酸乙稀共聚物)或足以不受天气影响的聚合物薄膜构成的薄膜。由此,一体式互连的薄层电池以持久不受天气影响的方式被封装。此外,还在模块上装配有用于与串联互连的薄层电池电接触的太阳能模块联接装置6。在图9中未示出从太阳能模块联接装置6经过基底I到达薄层电池的电接触。
[0049]适用于在例如1064nm和532nm的激光波长的情况下进行所述的P2或P3结构化的激光参数为在皮秒范围内的脉冲长度,其中脉冲能量在1yJ至35yJ的范围内,其中,相对运动以如下方式来调节,即,实现了两个相继跟随的脉冲的在空间上的重叠在10%至50%的范围内。
[0050]附图标记列表[0051 ] I 基底
[0052]2 背电极薄层
[0053]3 吸收薄层
[0054]4 前面电极结构
[0055]40前电极薄层
[0056]41电极汇流结构
[0057]5 前面封装元件
[0058]6 太阳能模块联接装置
[0059]Pl背电极薄层的结构化沟槽
[0060]P2吸收薄层的结构化沟槽[0061 ] P3前电极结构的结构化沟槽
[0062] L 激光射束
【主权项】
1.一种用于对基底上的薄层进行激光结构化来制造一体式互连的薄层太阳能电池的方法,所述方法具有以下步骤: -提供具有激光波长的激光, -提供具有第一侧和第二侧的基底(I),所述基底对于所述激光波长来说是透明的,其中,所述基底的第一侧具有金属的背电极薄层(2),并且在所述金属的背电极薄层(2)上布置有用于薄层太阳能电池的吸收薄层(3), -将激光射束(L)射入到所述基底上, -使所述激光射束(U沿着刻写线在所述基底(I)上运动并且/或者使所述基底(I)相对于所述激光射束(L)沿着刻写线运动, 其特征在于, 所述激光射束(L)射入到所述基底(I)的第二侧上、穿过所述基底(I)落到所述金属的背电极薄层(2)上并且所述激光射束以在纳秒、皮秒或飞秒范围内的激光脉冲以如下方式调节并且以如下方式运动,即,沿着所述刻写线烧蚀掉布置在所述金属的背电极薄层(2)上的吸收薄层(3),并且在所述基底上保留被激光影响过的金属的背电极薄层(2)。2.根据权利要求1所述的用于进行激光结构化的方法,其特征在于,在所述吸收薄层(3)上布置有前电极结构(4),并且在所述刻写线的区域中将所述吸收薄层(3)连同在所述吸收薄层上的前电极结构(4) 一起烧蚀掉。3.根据权利要求1所述的用于进行激光结构化的方法,其特征在于,在所述激光射束(L)沿着所述刻写线运动之后并且/或者在所述基底(I)相对于所述激光射束(L)沿着所述刻写线运动之后,将前电极结构(4)施加到经结构化的吸收薄层上,并且紧接着使所述激光射束沿着与所述刻写线横向错开的另外的刻写线射入到所述基底(I)的第二侧上、穿过所述基底(I)落到所述金属的背电极薄层(2)上,并且所述激光射束以在纳秒、皮秒或飞秒范围内的激光脉冲以如下方式调节并且激光射束(L)与基底(I)之间的相对运动以如下方式执行,即,沿着所述另外的刻写线将布置在所述金属的背电极薄层(2)上的吸收薄层(3)连同所述前电极结构(4) 一起烧蚀掉,并且在所述基底上保留被激光影响过的金属的背电极薄层(2)。4.根据权利要求2或3所述的用于进行激光结构化的方法,其特征在于,所述前电极结构(4)构造为前电极薄层(40)或构造为具有布置在前电极薄层上的金属的栅格网状的电极汇集结构(41)的前电极薄层(40)。5.根据上述权利要求中任一项所述的用于进行激光结构化的方法,其特征在于,所述基底(I)由玻璃构成。6.根据上述权利要求中任一项所述的用于进行激光结构化的方法,其特征在于,所述吸收薄层(2)构造为三元的或四元的半导体。7.根据上述权利要求中任一项所述的用于进行激光结构化的方法,其特征在于,所述激光射束(L)的激光波长在接近红外线范围内或可见光的频谱范围内来选择。8.根据上述权利要求中任一项所述的用于进行激光结构化的方法,其特征在于,使所述激光射束(L)和/或所述基底(I)运动,从而确保沿着所述刻写线的激光脉冲的10%至50%在空间上重叠。9.根据上述权利要求中任一项所述的用于进行激光结构化的方法,其特征在于,每脉冲的脉冲能量在IyJ至I OOyJ的范围内、优选在15μ J至30μ J的范围内来选择。10.—种对由在基底结构中的一体式互连的薄层太阳能电池构成的薄层太阳能模块的制造方法,所述方法具有以下步骤: -提供由玻璃构成的基底(I), -在所述基底(I)上沉积出金属的背电极薄层, -对所述金属的背电极薄层(2)执行Pl激光结构化步骤, -在经结构化的金属的背电极薄层(2)上沉积出吸收薄层(3), -对所述吸收薄层(3)执行Ρ2激光结构化步骤, -在经结构化的吸收薄层(3)上沉积出前电极薄层(40), -对所述吸收薄层(3)与所述前电极薄层(40) —起执行Ρ3激光结构化步骤, -利用前面封装元件(5)以持久不受天气影响的方式封装一体式互连的薄层太阳能电池,以及 -将持久不受天气影响的电太阳能模块连接装置(6)接驳在所述基底(I)上, 其特征在于,根据权利要求1至9中任一项所述的用于进行激光结构化的方法来执行Ρ2激光结构化步骤和/或Ρ3激光结构化步骤。11.根据权利要求10所述的制造方法,其特征在于,在封装和接驳联接装置的方法步骤之前执行下面的另外的方法步骤: -将激光射束(L)射入到所述基底上, -使所述激光射束(L)沿着至少一条切割线(S)在所述基底(I)上运动并且/或者使所述基底(I)相对于所述激光射束(L)运动,用以借助激光射束(L)与基底(I)之间的相对运动产生至少一个绝缘沟槽(I 1、12、13、14),其中,所述激光射束(I)射入到所述基底(I)的第二侧上、穿过所述基底(I)落到所述金属的背电极薄层(2)上,并且所述激光射束以在皮秒或飞秒范围内的激光脉冲以如下方式调节并且所述激光射束(L)与基底(I)之间的相对运动以如下方式实施,即,连同所述金属的背电极薄层(2)—起将布置在所述金属的背电极薄层上的吸收薄层(3)和布置在所述吸收薄层上的前电极结构(4)沿着分割线(S)从所述基底(I)烧蚀掉。
【文档编号】H01L31/0463GK106030827SQ201480048072
【公开日】2016年10月12日
【申请日】2014年8月28日
【发明人】迪尔克·赫尔曼, 斯特凡·马沙尔, 帕特里克·蒙德
【申请人】北京铂阳顶荣光伏科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1