跨阻放大器电路以及电子设备的制作方法

文档序号:16059520发布日期:2018-11-24 12:02阅读:236来源:国知局

本发明的实施例涉及使用与跨阻放大器(tia)级相关联的频率变换级接收和处理射频信号,尤其是radar频率信号。

背景技术

本发明特别地应用于、但不限于例如具有77ghz的频率的机动车辆radar信号的处理。



技术实现要素:

一个实施例提供了用于通过限制电压摆动在接收期间显著改进频率变换级的动态性能的设备,从而工作于电流模式以便不使性能退化。

一个实施例提供了在这一设备内的具有低功耗、具有可接受的增益、低噪声和基本上轨到轨的差分电压摆动的跨阻放大器级,也就是说,其峰值到峰值电压幅度接近于电源电压的值的跨阻放大器级。

一个实施例因此提供了一种包括差分电路架构的设备,该差分电路架构具有频率变换级,该频率变换级具有电流输出,利用该电流输出联合了具有低噪声水平以及高增益并且具有低功耗的跨阻放大器级。

一个方面提供了一种电子设备,包括:输入,用于接收具有第一频率的信号,该第一频率例如射频频率,诸如radar频率;以及差分架构电路,该差分架构电路包括:

具有电流输出的至少一个频率变换级,被耦合至输入,

跨阻放大器级,具有ab类类型的放大器末级、前置放大器级以及被配置以便偏置所述前置放大器级的自偏置共模控制级,前置放大器级被耦合在频率变换级的输出与放大器末级的输入之间并且包括第一双极型晶体管以及有源负载。

ab类类型的放大器末级使得能够具有低功耗。然而这一类型的电路具有低增益。前置放大器级因此被添加在末级的输入处,以便具有更高的增益。

此外,具有电流输出(而非电压输出)的频率变换级(例如吉尔伯特单元,这样的结构不暗示限制)使得能够具有良好的动态范围。

根据一个实施例,所述前置放大器级的所述有源负载包括第一pmos晶体管,并且所述共模控制级的输出连接至第一pmos晶体管的栅极。

将pmos晶体管与双极型晶体管的差分对结合使用使得能够获得具有高增益的低噪声、以及在温度方面并且与制作方法变化有关的良好的鲁棒性。

根据一个实施例,放大器末级包括被连接在这一末级的两个输出之间并且具有节点的模块,例如电阻模块,并且共模控制级包括第二双极型晶体管的差分对,一个第二双极型晶体管的基极旨在接收共模电压,并且另一第二双极型晶体管的基极连接至所述模块的所述节点,使得在这一节点处的电压旨在等于在末级的两个输出处存在的电压的总和的一半。

根据一个实施例,第二双极型晶体管的差分对的集电极连接至两个pmos晶体管,两个pmos晶体管被连接为电流镜,该电流镜允许这一控制级的自偏置。

根据一个实施例,末级包括两个ab类放大器,第一双极型晶体管的对的基极分别连接至频率变换级的两个电流输出,并且第一双极型晶体管的对的两个集电极分别连接至两个ab类放大器的两个输入。

根据一个实施例,频率变换级被配置以便执行输入信号的直接基带变换。

根据一个实施例,所述输入信号的所述第一频率是radar信号的频率。

附图说明

通过研究完全非限制性的实施例和所附附图,本发明的其它优点和特性将变得明显,在附图中:

图1至图3涉及本发明的实施例。

具体实施方式

图1示意性地描绘射频信号接收链。在该链中,天线1接收信号。这一信号由带通滤波器2预先滤波,随后由低噪声放大器(本领域技术人员在首字母缩略词lna之下已知)放大。以此方式获得的rf信号被发送至设备4和设备5的输入,设备4和设备5均包括与跨阻放大器21相关联的混频器20。rf信号分别与由局部振荡器(lo)6生成的信号和与由移相器7经过90°相移的相同信号混合,以便在两个信道i和q上获得相位正交的两个变换信号。虽然本发明可以应用于任何类型的接收链,尤其是具有非零中间频率的类型,但是该链在这一实例中是零中间频率(zif)类型,变换信号直接在基带中,也就是说其频率位于零周围。在设备4和5的输出处的基带信号基本上在常规模块8和9中处理,特别地具有均衡级、放大级以及低通和高通滤波级,随后被发送至模数转换器(adc)10和11的输入。

现在将参照图2和图3来更详细描述设备4的差分架构,理解的是该架构类似于设备5的架构。

在图2中,附图标记20表示具有电流输出的这样的频率变换级。

在图2的示例中,频率变换级是吉尔伯特单元,但是本发明不限于这一类型的级。因此,将也可能使用电流开关器件,例如,尤其是具有场效应晶体管(fet晶体管)的混频器,例如在亚微米mos技术的生产的情况下,诸如在完全耗尽型绝缘体上硅(fdsoi)类型的衬底上的28nm技术,或者具有电流输出的任何类型的频率变换级。

图2的吉尔伯特单元包括双极型晶体管的三个差分对npnqc1/qc2,qc3/qc4以及qc5/qc6,以及分别在其上接收射频信号rf和由局部振荡器生成的信号的输入端子rfinput和loinput,这些端子分别连接至晶体管qc5和qc6的基极,以及晶体管qc1,qc2,qc3和qc4的基极。

晶体管qc1的集电极连接至晶体管qc3的集电极、电流输出端子in以及pmos晶体管mc2的漏极,pmos晶体管mc2与pmos晶体管mc1被连接为电流镜,pmos晶体管mc1的漏极连接至参考电流的输入端子irefn。

对称地,晶体管qc4的集电极连接至晶体管qc2的集电极、电流输出端子ip以及pmos晶体管mc3的漏极,pmos晶体管mc3与pmos晶体管mc4被连接为电流镜,pmos晶体管mc4的漏极连接至参考电流的输入端子irefp。pmos晶体管的源极对于它们的一部分而言连接至电源端子vdd。

由晶体管mc1,mc2和mc3,mc4形成的电流镜使得能够设置流经mc2和mc3的偏置电流。

负电流输出端子in和正电流输出端子ip连接至跨阻放大器级21的输入端子,跨阻放大器级21将在频率变换级的输出处的动态电流转换成电压。

图3图示了根据本发明的一个实施例的跨阻放大器。

跨阻放大器21包括放大器末级42,放大器末级42包括两个ab类放大器43和44以及电阻负载模块45,电阻负载模块45被连接在这些放大器的输出out1和out2之间并且具有节点vm。

两个反馈电阻器60和60’分别连接在输出out2、out1与负电流输出端子in和正电流输出端子ip之间。

放大器43和44包括多个mos晶体管,并且它们的输出是轨到轨输出,也就是说,这些放大器的输出电压可以达到接近电源电压的值。

现在将更详细描述具有类似于放大器43的结构的放大器44。放大器43的元件的附图标记相对于放大器44的相同元件的附图标记被添加后缀“’”。

ab放大器自身包括推挽配置的mos晶体管m1和m2。

在此将再次回忆,ab类类型的放大器是在a类和b类之间的折中。ab类放大器的中性点位于a类放大器的中性点和b类放大器的中性点之间。

晶体管m3,m4以及电流源i3和i4形成放大器m1、m2的偏置级。

晶体管m5,m7和电流源i7以及晶体管m6,m8和电流源i8使得能够对偏置级进行偏置。

在输出out2处的电压摆动从每个电源轨在处于几十毫伏的两个值之间变化,例如对于2.5v的电源电压而言但不限于从0.25v至2.25v。

电压vss是接地。

晶体管m1和m’1的栅极形成这一末级42的输入e2和e1。

ab类放大器的优点在于它们具有低功耗。然而,这样的放大器的增益低。

为了具有更高的增益,前置放大器级41被耦合在频率变换级20的输出in、ip与放大器末级42的输入e1、e2之间。

前置放大器级41包括双极型晶体管q1和q2的差分对,双极型晶体管q1和q2的基极分别连接至频率变换级的电流输出ip和in之间,并且双极型晶体管q1和q2的集电极分别连接至放大器43和44的输入。

使用双极型晶体管使得能够具有低噪声水平。

电压前置放大器级41此外包括连接至双极型晶体管q1和q2的集电极的有源负载46,并且在这一实例中包括两个pmos晶体管m9和m10以便增加增益。

pmos晶体管的栅极经由它们的栅极(节点vg)连接至自偏置共模控制级40的输出,自偏置共模控制级40被配置以便对前置放大器级41进行偏置。

这一共模控制级40自身也包括双极型晶体管q3和q4的差分对。

晶体管q4的基极连接至端子mc,端子mc接收共模电压,也就是说,等于电源电压的平均值的电压,在此等于vdd和vss。在这一示例中,这一共模电压等于1.25v。

晶体管q3的基极对于其一部分而言连接至放大器末级的模块45的节点vm。共模控制回路因此产生,使得在节点vm处的电压等于在末级的输出端子out1和out2处存在的电压的平均值。两个输出电压因此在位于共模电压vdd/2周围的反相位中振荡。

最后,双极型晶体管q3和q4的集电极连接至两个pmos晶体管m11和m12的漏极,两个pmos晶体管m11和m12被连接为电流镜(以便对这一级40进行自偏置)并且两个pmos晶体管m11和m12的栅极经由节点vg连接至pmos晶体管m9和m10的栅极,pmos晶体管m9和m10形成前置放大器级41的有源负载46。

因此,获得了具有低噪声水平和高增益并且具有低功耗以及轨到轨输出的跨组放大器。

最后,因此获得了在动态范围方面具有改进的性能的混频器。

因此,借由示例,对于具有等于77ghz的radar频率的rf信号而言,在143欧姆的反馈电阻器的帮助下获得了43dbω的增益,其针对来自频率变换级的7ma的动态电流为2.5伏特的电源给出了2伏特的峰值到峰值的电压摆动、8ma数量级的动态功耗以及3ma的空闲功耗、以及小于17nv/√hz的噪声。

本发明不限于刚刚描述的实施例;相反,其涵盖所有变型。

因此,虽然如上所述的接收链具有如上所示的zif类型的架构,但是能够具有包含多个频率变换级的链,以便执行具有中间频率的相继变换,以便到达基带,以及诸如在每个频率变换级之后的级21之类的跨组放大器级。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1