一种批量制备薄层碳负载纳米ZnO吸波材料低温发泡工艺的制作方法

文档序号:22624365发布日期:2020-10-23 19:31阅读:327来源:国知局
一种批量制备薄层碳负载纳米ZnO吸波材料低温发泡工艺的制作方法

本发明属于航空航天和电磁吸收领域,特别是指一种批量制备薄层碳负载纳米zno吸波材料的低温发泡工艺。



背景技术:

吸波材料是指能够有效的吸收入射的电磁波,将电磁能转化为热能而消耗,从而使回波材料明显减弱的一类材料。其综合性能理想的吸波材料应当具有“薄、轻、宽、强”的特性,即材料厚度小,密度小,吸收带宽宽以及吸收强度强,同时材料还应具有良好的物理化学稳定性等。近年来,随着电磁波应用场景和应用领域的拓宽,电磁波的广泛应用带来了严重的电磁污染,已经达到威胁人类健康的地步。吸波材料由于呈现低反射率的特性,可以有效的损耗进入其内部的电磁波,使其在电磁屏蔽与电磁防护方面有着广阔的发展前景。吸波材料在实际应用中,吸收带宽往往是重要的性能指标之一,先前报道的材料中采用高温热解法解异双金属沸石咪唑酸盐骨架(co/zn-zifs)制备了氮掺杂氧化钴/钴/碳(coo/co/c)纳米复合材料,在7.2ghz时rl=-66.7db,有效带宽为5.1ghz,材料虽然吸波强度较高,但吸波频带窄,高成本和合成步骤复杂等不可避免的缺点,这常常限制了它们的普遍应用。

本发明利用低温发泡法以葡萄糖作为碳源,批量制备超带宽薄层碳负载纳米zno吸波材料,该工艺简单、所需原料廉价易得。多孔碳是一种典型的介电损耗材料,具有较好的电磁吸收性能,但在其吸收机制的基础上,只有介电损耗削弱了电磁阻抗匹配。金属氧化物在多孔碳中的加入可以进一步增强微波吸收,本发明通过低温发泡法调控锌离子的浓度,进而调控材料的壁厚和多级孔的结构,使材料从2d片状纳米结构转变为3d棒状网络结构,优化电磁参数,调节材料阻抗匹配和衰减特性的平衡,使吸波材料展现出完美吸收、厚度薄、质量轻、吸收频带宽的特点,而且低温发泡法有望推广制备多种多孔型纳米金属氧化物/薄层碳吸波材料,具有巨大的发展潜力。



技术实现要素:

本发明的目的是提供一种批量制备薄层碳负载纳米zno吸波材料的低温发泡工艺。可根据低温发泡法调控锌离子的浓度,进而调控材料的壁厚和多级孔的结构,使其表现出宽频吸收的特性。

为实现上述目的,本发明所采用的技术方案步骤如下:

一种批量制备薄层碳负载纳米zno吸波材料的低温发泡工艺,其特征在于,步骤如下:

(1)将葡萄糖与金属硝酸锌溶解在去离子水中形成均匀单一的混合溶液。

上述试验方案(1)特征在于,制备均匀混合的溶液所用葡萄糖的质量为1g,金属硝酸锌的质量为2g,溶解在10ml的去离子水中。

(2)将步骤1所制得的溶液移至鼓风干燥箱,低温下发泡聚合得到多孔、轻质的膨胀前驱体。

上述试验方案(2)特征在于,在120℃条件下干燥12个小时。

(3)将步骤2所制备的前驱体转移至管式炉中,在保护气氛氛围下升温到一定温度保温2小时,退火后得到薄层碳负载纳米zno吸波材料。

上述试验方案(3)特征在于,在保护气氛氮气氛围下以5℃/min升温到700℃,并在700℃下保温2小时。

(4)将步骤3所制得的薄层碳负载纳米zno吸波材料与透波材料按照材料:石蜡的比例加热至混合均匀,压制成环形管。

上述试验方案(4)特征在于,薄层碳负载纳米zno吸波材料与透波材料按照材料:石蜡=1:10的比例加热至混合均匀,压制成外径为7.0mm,内径为3.0mm的环形管,测试吸波性能。

相比于其他工艺,本发明的特点在于:

(1)本方法其工艺简单,成本低廉且易于工艺化生产;

(2)通过低温发泡法调节锌离子的浓度,来调控材料的壁厚、孔结构,优化电磁参数,调节吸波材料阻抗匹配和衰减特性的平衡。复合材料特殊的多级孔结构又使电磁波在材料内部发生多次散射和反射,进一步增强了电磁波的损耗,有效拓宽了吸波频带。

(3)700℃下碳化的材料具有优异的超带宽宽频吸波性能。吸波材料的吸收频带宽达到7.9ghz,能横跨半个x波段,并完全覆盖整个ku波段,具有较强的电磁波吸收能力。

(4)实验项目是通过多孔碳和氧化锌粒子的界面结合,进一步调节了复合材料的介电常数,多孔碳上附着着氧化锌粒子形成了微型电容器结构增强了复合材料的吸波性能。而且材料的填充量低,仅为11.11wt.%,并能大量制备。且材料具有其薄、轻、宽的吸波性能,能大量应用于工业和军事领域中,且将为开发各种新兴应用的高性能吸波材料开辟新的途径。

附图说明:

图1是实施例1在低温发泡法下发泡聚合的膨胀前驱体图。

图2是实施例1薄层碳负载纳米zno吸波材料的xrd图。

图3是实施例1薄层碳负载纳米zno吸波材料的三维吸波图。

具体实施方式

以下结合实施例对本发明作进一步说明。

实施例1

取葡萄糖1g,硝酸锌2g溶解在10ml的去离子水中形成均匀混合的溶液。将所制得的溶液移至鼓风干燥箱,在120℃条件下干燥12个小时,发泡聚合得到多孔、轻质的膨胀前驱体。将所制备的前驱体转移至管式炉中,在保护气氛氮气氛围下5℃/min升温到700℃,并在700℃下保温2小时,退火后得到薄层碳负载纳米zno复合材料。然后按照复合材料与透波材料按照材料:石蜡=1:10的比例加热至混合均匀,压制成外径为7.0mm,内径为3.0mm的环形管,测试其吸波性能。

图1是本实施例1在低温发泡法下发泡聚合的膨胀前驱体图,图中可以看出,膨胀前驱体呈多孔的蜂窝状。图2是实施例1薄层碳负载纳米zno复合材料的xrd图,图中可以看出,多个衍射峰分别对应zn0不同的晶面,且峰强较大,半峰宽较窄,说明此条件下获得的zno晶粒较为完整。图3是实施例1薄层碳负载纳米zno复合材料的三维吸波图。图中表明,样品在厚度为3mm,频率为13ghz时rl值为-24db,带宽达到了7.9ghz,覆盖了整个ku波段。在厚度为4mm,频率为9ghz时rl值为-19.9db,带宽达到了5ghz覆盖了整个x波段。

以上所述仅是本发明的优选实施方式,本技术领域的普通技术人员应当了解,本发明不受实施例限制,还可以做出若干修改和润饰,这些修改和润饰也在本发明要求的保护范围内。



技术特征:

1.一种批量制备薄层碳负载纳米zno吸波材料的低温发泡工艺,其特征在于,步骤如下:

(1)将葡萄糖与金属硝酸锌溶解在去离子水中形成均匀单一的混合溶液;

(2)将步骤1所制得的溶液移至鼓风干燥箱,低温下发泡聚合得到多孔、轻质的膨胀前驱体;

(3)将步骤2所制备的前驱体转移至管式炉中,在保护气氛氛围下升温到一定温度保温2小时,退火后得到薄层碳负载纳米zno吸波材料;

(4)将步骤3所制得的薄层碳负载纳米zno吸波材料与透波材料按照材料:石蜡的一定比例加热至混合均匀,压制成环形管。

2.根据权利要求1所述的方法,其特征在于:制备均匀混合的溶液所用葡萄糖的质量为1g,金属硝酸锌的质量为2g,溶解在10ml的去离子水中形成均匀混合的溶液。

3.根据权利要求1所述的方法,其特征在于:将步骤1所制得的溶液移至鼓风干燥箱,在120℃条件下干燥12个小时,发泡聚合得到多孔、轻质的膨胀前驱体。

4.根据权利要求1所述的方法,其特征在于:将步骤2所制备的前驱体转移至管式炉中,在保护气氛氮气氛围下5℃/min升温到700℃,并在700摄氏度下保温2小时,退火后得到薄层碳负载纳米zno吸波材料。

5.根据权利要求1所述的方法,其特征在于:将步骤3所制得的薄层碳负载纳米zno吸波材料与透波材料按照材料:石蜡=1:10的比例加热至混合均匀,压制成外径为7.0mm,内径为3.0mm的环形管测试吸波性能。


技术总结
本发明提供一种批量制备薄层碳负载纳米ZnO吸波材料的低温发泡工艺,包括如下步骤:以葡萄糖和硝酸锌为原料,室温下,葡萄糖与金属硝酸锌溶解在去离子水中形成均匀单一的混合溶液,移至鼓风干燥箱。在120℃条件下,发泡膨胀形成多孔、轻质的前驱体,经700℃热处理后得到薄层碳负载纳米ZnO吸波材料。本方法属于航空航天和电磁吸收领域,通过低温发泡法能够实现复合材料孔结构的调控,制备工艺简单,所制得的吸波材料,吸波性能优异,厚度薄,质量轻,解决了传统吸波材料吸波频带窄的问题,能完全覆盖X和Ku波段。低温发泡法有望推广为普适的多孔型薄层碳负载纳米金属氧化物吸波材料,并为后期建立多孔结构与吸波性能的变量关系奠定实验基础。

技术研发人员:丁春艳;吴松松;张文婷;温广武
受保护的技术使用者:山东理工大学
技术研发日:2020.07.27
技术公布日:2020.10.23
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1