一种锥体阵列型雷达隐身纺织材料及其制备方法

文档序号:26098840发布日期:2021-07-30 18:09阅读:146来源:国知局
一种锥体阵列型雷达隐身纺织材料及其制备方法

本发明涉及纺织材料技术领域,尤其是一种锥体阵列型雷达隐身纺织材料及其制备方法。



背景技术:

现代侦察与监视技术的飞速发展使与之相对抗的伪装、隐身技术成为现代战争的必需,伪装体系特别是伪装织物覆盖法是对抗侦察与监视的有效手段之一。为了提升武器装备的战场生存能力,世界很多国家都在研发应用更为先进的隐身遮障器材,美、法、俄、英、德、瑞典、以色列等世界军事强国都对多频谱伪装网给予了充分的重视。当前我国伪装遮帐材料与技术已经有了一定的发展,不过距离世界发达水平仍有差距。具体表现在隐身波段不够宽、机动性能差等方面。

目前的雷达伪装多以对电磁波强散射特性的不锈钢等导电纤维混纺织物制作布料基材,其主要对电磁波形成屏蔽散射作用,对雷达隐身有一定的强散射效果,但在波段匹配、衰减强度上还不理想,使得现有不锈钢等导电纤维制成的伪装网在雷达下仍然具有较大的雷达回波,目标明显,无法实现真正意义上的雷达隐身。



技术实现要素:

(一)要解决的技术问题

鉴于现有技术的上述缺点、不足,本发明提供一种锥体阵列型雷达隐身纺织材料及其制备方法,实现对电磁波吸收和散射双重作用,减少雷达回波,拓宽隐身频段,提高隐身性能。

(二)技术方案

为了达到上述目的,本发明采用的主要技术方案包括:

第一方面,本发明一种锥体阵列型雷达隐身纺织材料,包括:

至少一层复合纤维织物;在该复合纤维织物表面以热定型方式形成若干小椎体,这些椎体分布在纺织物表面形成规则的椎体阵列;

所述复合纤维织物含有按质量百分数计的:阻燃涤纶长丝15-25%、涤纶短纤维15-25%、热定型纤维8-15%、螺旋不锈钢纤维1%-30%、镀镍碳纤维1%-30%。

优选地,所述复合纤维织物含有按质量百分数计的:阻燃涤纶长丝20%、涤纶短纤维20%、热定型纤维10%、螺旋不锈钢纤维25%和镀镍碳纤维25%。

通过加热使得复合纤维织物中的热定型纤维受热融化后,使复合纤维织物脱离加热区进行凝固后,将粘附住排布在其周围的纤维,起到进一步固定纤维的作用,以便制作出椎体阵列的三维结构。热定型纤维为市售产品。

根据本发明的较佳实施例,所述螺旋不锈钢纤维长度10-50mm;所述镀镍碳纤维长度为10-50mm。

根据本发明的较佳实施例,所述小椎体为三棱锥、四棱锥、五棱锥、六棱锥、八棱锥或圆锥。

根据本发明的较佳实施例,所述小椎体的底面积为75-2500mm2,高度为10mm-30mm。

根据本发明的较佳实施例,所述小椎体为四棱锥时,其底面边长为10mm-50mm;所述小椎体为圆锥时,底面直径为10-30mm。

根据本发明的较佳实施例,所述锥体阵列型雷达隐身纺织材料包含相互叠合的双层或多层复合纤维织物,不同复合纤维织物表面的小椎体的规格不同。所述双层或多层复合纤维织物之间采用缝合或粘合的形式固定。优选地,每层复合纤维织物表面的小椎体为等高设计,以便于多层复合纤维织物的叠加组合使用。

优选地,所述小椎体为三棱锥、四棱锥、五棱锥、六棱锥或八棱锥时,其各条棱从底部到顶端为弧形过渡;所述小椎体为圆锥时,其顶面为抛物线形顶部。

根据本发明的较佳实施例,所述锥体阵列型雷达隐身纺织材料还包含高强度基布,所述高强度基布含有高分子量聚乙烯纤维;所述复合纤维织物缝合或粘接在所述高强度基布表面。

根据本发明的较佳实施例,所述复合纤维织物的电阻率为0.5ω/cm。

根据本发明的较佳实施例,所述复合纤维织物表面涂覆有表面涂层,所述表面涂层为吸波材料、防腐材料或阻燃材料。所述吸波材料包括但限于铁氧体系列、微粉、多晶铁磁性纤维、电介质陶瓷、导电纤维。

优选地,防腐材料为石墨烯和/或cnt增强的聚氨酯涂层,且在该聚氨酯涂层表面形成了仿荷叶表面的微纳米级凸起疏水结构,用于提高防腐性能。

第二方面,本发明还提供一种锥体阵列型雷达隐身纺织材料的制备方法,其包括:

s1:将如下质量配比的不同纤维,混纺制得复合纤维织物;

阻燃涤纶长丝15-25%、涤纶短纤维15-25%、热定型纤维8-15%、螺旋不锈钢纤维1%-30%、镀镍碳纤维1%-30%;

s2:采用热定型模板,将s1制备的复合纤维织物热定型成表面具有椎体阵列的三维结构。

根据本发明制备方法的较佳实施例,还包括步骤s3:在步骤s2得到的复合纤维织物表面喷涂吸波材料涂层;或者:将步骤s2得到的经过不同规格的热定型模板处理后的复合纤维织物进行叠合;或者:将步骤s2得到的经过不同规格的热定型模板处理后的复合纤维织物进行叠合,叠合后再缝合/粘接到高强度基布表面,制得雷达隐身纺织材料。

优选地,所述喷涂可采用超音速火焰喷涂设备实现,所述吸波材料为吸波材料,包括但不限于:铁氧体系列(包括fesial铁磁性非晶态空心微球等)、微粉、多晶铁磁性纤维、电介质陶瓷、导电纤维等。

(三)有益效果

本发明采用阻燃涤纶长丝、热定型纤维、不锈钢纤维、镀镍碳纤维(导电导磁双复纤维)和涤纶短纤维混纺制成复合纤维织物,实现了对电磁波的吸收和散射的双重作用,极大降低了雷达回波率,提高隐身性能。在此基础上,进一步采用热定型方法引入椎体阵列超材料雷达隐身三维结构设计,进一步提高隐身性能、拓宽雷达隐身频段。

其中,镀镍碳纤维和短切不锈钢螺旋纤维都都具有导电性,通过在该复合纤维织物中各成分的含量配比的调节,实现对复合纤维织物电导率的调节控制。对材料表面椎体阵列的规格进行调节,以调节雷达隐身频段。

据研究发现,随着椎体凸的尺寸增大,雷达波反射率峰值向低频移动,但同时高频性能有所减弱。因此本发明进一步地,以不同规格的热定型模板制作表面具有不同规格大小的椎体阵列的复合纤维织物,然后将这些复合纤维织物进行双层或者多层的叠合,以拓宽雷达隐身频段。

此外,在本发明的一些实施例中,还设置了高强度基布,以供支撑复合纤维织物,重解决强度问题。

在本发明的另一些实施例中,还通过在经过热定型模板处理的复合纤维织物表面形成表面涂层,例如防腐涂层、阻燃涂层或吸波涂层等,实现不同的功能。特别地,还可以喷涂复合涂层,即阻燃防腐涂层,阻燃吸波涂层,防腐吸波涂层等等。优选可通过喷涂吸波材料涂层,进一步减少雷达回波,提高隐身性能。

附图说明

图1为本发明实施例1的锥体阵列型雷达隐身纺织材料示意图。

图2为本发明实施例2的锥体阵列型雷达隐身纺织材料示意图。

图3为本发明实施例3的锥体阵列型雷达隐身纺织材料示意图。

图4为复合纤维织物的电阻率对雷达反射率的影响曲线。

具体实施方式

为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。

实施例1

如图1所示,为本发明的较佳实施例1。本实施例的锥体阵列型雷达隐身纺织材料60由一层复合纤维织物10组成,该复合纤维织物10由按质量分数计20%的阻燃涤纶长丝(细度400d)、20%的涤纶短纤维(细度20d,长度为32mm)、10%热定型纤维、25%螺旋不锈钢纤维(直径0.04mm)和25%镀镍碳纤维混纺而成。螺旋不锈钢纤维长度32-35mm;其中,镀镍碳纤维长度为30mm。镀镍碳纤维为化学镀镍或电镀镍,碳纤维密度为1.75g/cm3,直径为6-8μm,镍镀层厚度为1.5μm。

在混纺完成后,采用热定型金属模板对复合纤维织物进行热定型处理,冷却后,在复合纤维织物10表面形成椎体阵列的三维结构。其中,该椎体阵列的三维结构包含若干个小椎体11,小椎体11为四棱锥,底面为正方形,边长为20mm,高度为15mm,各条棱从底部到顶端为弧形过渡,使小椎体11形成不尖锐的顶端。

对本实施例的锥体阵列型雷达隐身纺织材料60的吸波性能进行测试,结果显示:对2-110ghz的雷达辐射波均可实现-10db到-20db的衰减能力。说明本实施例的锥体阵列型雷达隐身纺织材料60,在非常宽的频率范围内实现了对电磁波较大衰减,具有优异的雷达隐身能力。

实施例2

如图2所示,为本发明的较佳实施例2。本实施例的锥体阵列型雷达隐身纺织材料70包含两层复合纤维织物101和102。

下层的复合纤维织物101由按质量分数计20%的阻燃涤纶长丝(细度300d)、20%的涤纶短纤维(细度22d,长度为64mm)、10%热定型纤维、20%螺旋不锈钢纤维(直径0.05mm)和30%镀镍碳纤维混纺而成。螺旋不锈钢纤维长度32-35mm;其中,镀镍碳纤维长度为30mm。镀镍碳纤维为化学镀镍或电镀镍,碳纤维密度为1.75g/cm3,直径为6-8μm,镍镀层厚度为1.5μm。

在混纺完成后,采用热定型金属模板对复合纤维织物进行热定型处理,冷却后,在复合纤维织物101表面形成椎体阵列的三维结构。其中,该椎体阵列的三维结构包含若干个小椎体11,小椎体11为四棱锥体,底面边长24mm,高度为20mm,各条棱从底部到顶端为弧形过渡,使小椎体11形成不尖锐的顶端。

按照上述相同的方法和组分制备上层的复合纤维织物102,但在采用热定型金属模板进行热定型处理时,使用椎体规格不同的热定型金属模板,使处理后,在复合纤维织物102表面形成的小椎体11为四棱锥体,底面边长18mm,高度为16mm,各条棱从底部到顶端为弧形过渡,使小椎体11形成不尖锐的顶端。

将复合纤维织物101和复合纤维织物102进行叠合在一起,并在接触位置涂胶粘接固定。

将复合纤维织物101和复合纤维织物102的进行雷达波反射率测试,结果发现复合纤维织物101的雷达波反射率峰值向低频移动,同时高频雷达波的反射率降低,说明当椎体阵列中小椎体的尺寸变大时,不利于高频雷达波的反射。反之,当椎体阵列中小椎体的尺寸变小时,不利于低频雷达波的反射。为了获得较宽的雷达波衰减频段,可将椎体尺寸较大的复合纤维织物101和椎体尺寸较小的复合纤维织物102叠层组合。对本实施例的锥体阵列型雷达隐身纺织材料70的吸波性能进行测试,结果显示:在2-110ghz均可实现-22b到-30db的衰减能力。

本实施例是双层组合为例进行说明。在不考虑锥体阵列型雷达隐身纺织材料厚度和重量的情况下,还可将设置多层复合纤维织物,且这些复合纤维织物上的椎体尺寸大小呈梯度变化,然后将这些复合纤维织物进行多层叠合组合,以适应于更宽频段的雷达波衰减功能。

实施例3

实施例3是在实施例2的基础上,本实施例的锥体阵列型雷达隐身纺织材料80增设一层高强度基布20。该高强度基布20可由400d高强聚乙烯和涤纶的复合纱纺织得到。例如,可由300d氨纶丝和500d涤纶丝外包缠双层400d高强聚乙烯纤维制得混合纱线,以混合纱线为纺丝制得该高强度基布20。该高强度基布20具有一定弹性和高强度。

然后以将实施例2双层组合的复合纤维织物101和复合纤维织物102,缝合在高强度基布20表面,制得本实施例的锥体阵列型雷达隐身纺织材料80。

实施例4

本实施例在实施例2的基础上,对已经过热定型金属模板处理的复合纤维织物101和复合纤维织物102表面,分别喷涂吸波涂层,该吸波涂层为铁氧体吸波涂层。

此外,通过调节复合纤维织物各纤维的比例,得到一系列电阻率的复合纤维织物,测试不同电阻率的复合纤维织物对雷达反射率衰减的影响。结果如图4所示,当电阻率设计为0.5时,织物具有最佳的衰减性能。

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1