固定化微生物及其制造方法、采用其的反应装置的制作方法

文档序号:424985阅读:210来源:国知局
专利名称:固定化微生物及其制造方法、采用其的反应装置的制作方法
技术领域
本发明涉及一种用作环境保护中的下水或废水的有机物处理或除氮、或乙醇发酵或有价物生产中的生物催化剂的固定化微生物的制造方法及用其制造的固定化微生物以及采用该固定化微生物的反应装置背景技术采用微生物的反应,被用于环境净化领域或发酵工业,其中,在环境净化领域,用于有机成分的分解或氮成分的去除。特别是氮成分,以氨性氮、亚硝酸性氮、硝酸性氮、有机性氮,含在下水或工业废水中,这些氮成分,因成为1.湖泊富营养化的原因,2.河流溶解氧降低的原因等,所以需要去除。
以往,含有此种氮成分的废水,如果氮成分是微量浓度,采用离子交换法去除,也采用氯、臭氧的氧化进行氮的去除。此外,如果是中高浓度,采用生物处理,在生物处理中,采用利用好氧硝化和厌氧脱氮的氧化脱氮法(例如,参照专利文献1)。另外,在好氧硝化中,进行利用氨氧化细菌(Nitrosomonas,Nitrosococcus,Nitrosospira,Nitrosolobuss等)和亚硝酸氧化细菌,进行氨性氮或亚硝酸性氮的氧化,在厌氧脱氮中,进行利用从属营养细菌(Pseudomonas denitrificans等)的脱氮。好氧硝化的生物反应槽,以0.2~0.3kg-N/m3/天的负荷运转,以0.2~0.4kg-N/m3/天的负荷进行脱氮。因此,要处理下水总氮浓度为40~50mg/L的下水,在硝化槽,需要6~8小时的滞留时间,在脱氮槽,需要5~8小时,需要大规模的处理槽。
限定这些反应的是微生物保持量,通过在反应槽内保持高浓度的微生物,能够高速反应或净化。
作为保持高浓度的微生物的方法,开发了包含固定高浓度的微生物的固定化微生物,在下水处理中的除氮中,采用包含固定化的硝化细菌。此外,在发酵工业,正在进行在采用固定化酵母的乙醇的生产等方面的应用研究。
在微生物的固定化中,采用海藻酸或角叉菜胶等天然材料、光固化性树脂或聚乙二醇丙烯酸酯等合成高分子。此外,为固定化微生物,按以下观点,优选降低材料浓度,形成含水率高的凝胶。即,基于1.微生物容易增殖,微生物保持量增大,活性提高,2.用少量的材料完成,3.比重降低,在曝气反应槽的流动性好的理由。
可是,海藻酸或角叉菜胶等天然材料等,在0.5%~1%的范围,能够凝胶化,能够包含固定,但由于是天然的高分子,因此存在容易分解,在物性上载体的寿命短的缺陷。对此,合成高分子,具有不存在利用微生物的分解劣化的问题,能够长时间维持稳定的物性的优点。
专利文献1特开2000-288581号公报但是,合成高分子凝胶化需要8%以上的预聚合物浓度(材料浓度),不可能降低预聚合物浓度。特别是,在包含固定微生物的凝胶中,采用以7%以下凝胶化的合成聚合物的聚合法,现在确实还没有。

发明内容
本发明是针对如此的问题而提出的,目的是提供一种通过以材料浓度7%以下的低浓度聚合,能够降低材料浓度的、提供高活性、流动性好的固定化微生物的制造方法,及由此制造的固定化微生物和采用该固定化微生物的反应装置。
为达到上述目的,本发明1所述的发明,其特征在于,通过混合分子量3500以上20000以下的预聚合物、分子量71以上且相对于上述预聚合物分子量的比为0.045以下的交联剂和微生物,制作上述预聚合物和上述交联剂的合计浓度为1%以上7%以下的悬浊液;通过聚合该悬浊液,制造在聚合物内部包含固定微生物的固定化微生物。
为达到上述目的,本发明2所述的发明,其特征在于,将分子量3500以上20000以下的预聚合物,以预聚合物含量/交联剂含量的比达到0.5以上10以下的方式,与微生物混合,制作上述预聚合物和上述交联剂的合计浓度为1%以上7%以下的悬浊液;通过聚合该悬浊液,制造在聚合物内部包含固定微生物的固定化微生物。
本发明的发明者,研究了固定化材料或交联剂的分子量、固定化材料和交联剂的合计浓度、固定化剂和交联剂的比率等,结果发现,能够阐明其相关关系,发现在预聚合物和交联剂的合计浓度为1%以上7%以下的低浓度下能够凝胶化的区域。即,如本发明1所述的发明,发现,通过规定成为母剂的预聚合物的分子量和交联剂的分子量,能够在预聚合物和交联剂的合计浓度(材料浓度)为1%~7%的极低浓度下进行固定化。此外,如本发明2所述的发明,通过以预聚合物含量/交联剂含量的比达到0.5以上10以下的方式,与微生物混合、聚合,发现能够在预聚合物和交联剂的合计浓度(材料浓度)为1%~7%的极低浓度下进行固定化。因此,如果采用本发明1或2所述的发明,能够提供高活性、流动性好、廉价的固定化微生物。另外,更优选预聚合物含量/交联剂含量的比在0.5以上6以下。此外,预聚合物的分子量,更优选5000以上18000以下。
本发明3所述的发明,如本发明1或2所述,其特征在于,作为上述交联剂,采用丙烯酰胺、丙烯酸、二甲基丙烯酰胺或甲基丙烯酸。本发明3所述的交联剂,作为本发明的交联剂,是最佳的交联剂,这些单体,富于反应性,通过与高分子母剂的组合,能够进行低浓度下的固定化。
本发明4所述的发明,如本发明1~3中任何一项所述,其特征在于,作为上述微生物,固定活性污泥。如此,通过在低浓度下固定活性污泥,能够减少材料,同时能够降低比重,扩大微生物的栖息区域。由此,能够提供高活性、流动性好的固定化微生物。
本发明5所述的发明,其特征在于,用如本发明1~4中任何一项所述的制造方法制造的固定化微生物。
本发明6所述的发明,其特征在于,具有采用如本发明5所述的固定化微生物进行生物反应的反应容器。
本发明7所述的发明,如本发明6所述,其特征在于,在上述反应容器的内部,具有使上述固定化微生物流动的流动部,上述固定化微生物沿该流动部和该流动部的外部移动。在上述制造方法中,由于能够制造比重1.01以下非常小的固定化微生物,所以能够用流动部和其外部使载体顺利移动。由此,能够提高反应容器内的生物处理的处理性能。
本发明8所述的发明,如本发明7所述,其特征在于,上述流动部,采用曝气或无氧气体或由反应生成的氮气,使上述固定化微生物流动。
如果采用本发明的固定化微生物的制造方法,由于采用最佳的分子量的预聚合物和交联剂,或以适当的含量比聚合预聚合物和交联剂,所以能够以材料浓度极低的浓度固定微生物。由此,能够减少材料,提供高活性、流动性好的固定化微生物。


图1是表示从试验1的结果得出的母剂的分子量和压缩强度的关系的图。
图2是表示从试验2的结果得出的母剂的分子量和压缩强度的关系的图。
图3是表示母剂的分子量和和交联剂的分子量的最佳范围的图。
图4是表示从试验3的结果得出的固定化材料的合计浓度和压缩强度的关系的图。
图5是表示从试验4的结果得出的固定化材料的合计浓度和压缩强度的关系的图。
图6是表示应用本发明的制造方法的生产线的实施方式的构成图。
图7是表示应用本发明的制造方法的生产线的实施方式的构成图。
图8是表示使用本发明的固定化微生物载体的废水处理装置的第一实施方式的构成图。
图9是表示使用本发明的固定化微生物载体的废水处理装置的第2实施方式的构成图。
图10是表示使用本发明的固定化微生物载体的废水处理装置的第3实施方式的构成图。
图11是表示使用本发明的固定化微生物载体的废水处理装置的第4实施方式的构成图。
图12是表示使用本发明的固定化微生物载体的废水处理装置的第5实施方式的构成图。
图13是表示采用本发明的固定化微生物的乙醇发酵装置的构成图。
图14是适合采用本发明的固定化微生物的处理装置的构成图。
图中10…废水处理装置、12…处理槽、14…原水导入管、16…散气管、18…载体分离网、20…流出管、22…载体具体实施方式
下面,参照附图,说明本发明的固定化微生物的制造方法的优选实施方式。首先,说明成为形成本发明的依据的试验结果。
(试验1)作为母剂,采用聚乙二醇二丙烯酸酯的分子量3000~24000,作为交联剂,采用丙烯酰胺。然后,混合母剂、交联剂、微生物等,以母剂和交联剂的合计浓度达到3%的方式,制作悬浊液,聚合凝胶化该悬浊液,形成3mm方形载体,制造固定化微生物。表1示出此时的固定化剂的组成。
表1 母剂和交联剂的浓度比研究用的固定化微生物的组成

按表1的组成,变化母剂和交联剂的浓度比,制作载体,测定制造后的压缩强度,研究了与母剂的分子量的关系。图1示出该研究结果。
由图1看出,如果母剂的分子量低于5000,载体的强度开始降低,如果低于3500,载体的强度大大降低。认为,这是因为,分子量越少,载体的强度越降低,如果分子量低于3500,载体的强度显著降低。
在母剂的分子量超过18000时,载体的强度也开始下降,如果分子量超过20000,载体的强度显著下降。认为,这是由于如果母剂的分子量超过20000,难于聚合之故。因此,母剂的分子量,考虑优选3500以上20000以下,更优选5000以上18000以下。
另外,由图1看出,母剂和交联剂的浓度比可在0.5以上10以下,如果超出此范围,载体强度急剧降低。因此,考虑母剂和交联剂的浓度比,考虑优选0.5以上10以下,更优选0.5以上6以下。
另外,如果单独(即无交联剂)聚合使用试验1中所用种类的母剂,分子量在8000以上,不聚合。此外,在分子量低于8000时,能够以含量8%以上聚合凝胶化,但如试验1,以3%左右不聚合,不凝胶化。
(试验2)下面,研究交联剂的分子量。与试验1同样,作为母剂,采用聚乙二醇二丙烯酸酯的分子量3000~24000。母剂和交联剂的浓度比为4,变化研究交联剂的分子量。交联剂,通过采用乙二醇丙烯酸酯、聚乙二醇丙烯酸酯、丙烯酰胺,使分子量变化。母剂和交联剂的合计浓度调到3%,进行研究。表2示出研究所用的固定化剂的组成。
表2 交联剂分子量研究用的固定化微生物的组成

按表2的组成,将母剂和交联剂的合计浓度调到3%,进行聚合凝胶化,形成3mm方形载体,测定压缩强度。图2示出测定的压缩强度和交联剂的分子量的关系。由图2看出,与母剂的分子量对应,存在交联剂的最佳分子量。即,存在使载体强度增大的交联剂的分子量范围。表3示出在母剂的各分子量下的最佳交联剂分子量。此外,图3示出从该结果得出的母剂分子量和交联剂分子量的最佳范围。
表3 在母剂的各分子量的最佳交联剂分子量

从表3或图3看出,为增加载体的强度,优选将交联剂的分子量提高到71以上。另外,交联剂的分子量,相对于母剂的分子量的比,优选在0.045以下。通过如此将母剂的分子量或交联剂的分子量设定在最佳范围内,能够提高载体的强度。
(试验3)以在试验1、2中得到的最佳条件为基础,研究了材料浓度的最佳值。作为母剂,采用聚乙二醇二丙烯酸酯的分子量3500~20000,作为交联剂,采用丙烯酰胺。将母剂和交联剂的浓度比设定为4,合计材料浓度为0.5%~10%,以此作为参数,分别制作固定化微生物,测定压缩强度。表4示出研究所用的固定化剂的组成。
表4 材料浓度研究用的固定化微生物的组成

此外,图4示出测定的压缩强度和固定化材料的合计浓度的关系。此外,在该图中,作为以往法,只采用聚乙二醇二丙烯酸酯的分子量2000、10000,也示出固定化的固定化微生物的压缩强度。表5示出该以往法中的组成。
表5 以往法的固定化微生物的组成

从图4看出,在以往法中,固定化材料如果不在10%以上,不能得到足够的强度,特别是在7%以下,完全得不到足够强度。认为这是因在以往法中只有高分子材料,难进行聚合,聚合不稳定之故。
对此,在本发明中,即使在低浓度下,也能够得到足够的压缩强度,由此得出,作为得到压缩强度的浓度范围,优选1%以上7%以下,更优选2%以上6%以下,最优选3%以上4%以下。这是因为,在本发明中,由于低分子的交联剂进入,所以即使在低材料浓度下,预聚合物的反应基也连锁聚合,能够提高凝胶强度。
可是,作为固定化的微生物,采用纯菌株、纯酵母等真核生物、原核生物、活性污泥等混合微生物,其总菌数优选按105个/mL以上固定化。载体内部的微生物如果达到106个/mL以上,表现出活性。因此,通过按105个/ml以上进行固定化,在载体内部,增殖到106个/mL以上,在短时间内表现出活性。
介绍一例进行固定化的微生物。在废水处理中,有(1)活性污泥、脱氮细菌、厌氧性氨氧化细菌等负荷微生物、(2)微胞藻(アオコ)属分解菌、PCB分解菌、二噁英分解菌、环境激素分解菌等纯微生物等。
在发酵工业,有(1)氨基酸发酵菌、(2)乙醇发酵微生物、(3)有机酸发酵菌、(4)酯交换酶生产菌等。
图5表示固定化材料的合计浓度和硝化速度的关系。由该图得知,如果降低固定化材料浓度,活性提高。这是因为,通过固定化浓度的降低,生物的繁殖空间扩大。因此,得出,通过减小固定化材料的合计浓度,能够提高活性。如此的倾向,也在后述的实施例的微生物或其它微生物中出现。
另外,固定化微生物的形状,可以成型成球状或筒状等的载体、绳状材料、凝胶状载体、无纺布状材料等凹凸多的形状。此外,作为载体,可以采用1~5mm方形或球状载体。
上述研究结果表明,通过以预聚合物含量/交联剂含量的比达到0.5以上10以下的方式,将分子量3500以上20000以下的预聚合物和交联剂与微生物混合,能够制作上述预聚合物和上述交联剂的合计浓度为1%~7%的悬浊液,通过聚合该悬浊液,制造固定化微生物载体,能够进行材料浓度为1%~7%的极低浓度下的固定化。此外,通过将交联剂的分子量设定在71以上且在预聚合物分子量的0.045以下,能够提高载体的强度。由此,能够用少量的材料,提供活性高、流动性好的固定化微生物。
下面,说明用上述的制造方法制造固定化微生物的生产线的实施方式。图6是表示制造方形载体的生产线的构成图。图7是表示制造球形载体的生产线的构成图。
图6所示的生产线100,具有预聚合物原料槽101、交联剂原料槽102,从该预聚合物原料槽101和交联剂原料槽102,向原料调整稳定化槽103供料。然后,在原料调整稳定化槽103混合原料,预聚合物和交联剂络合,稳定化。通过该稳定化操作,聚合后的载体强度提高。该稳定化需要12~24小时。向此液中,供给来自聚合促进剂槽104的聚合促进剂。供给了聚合促进剂的混合液,从原料调整稳定化槽103送出,向该混合液中供给活性污泥槽105的活性污泥,再供给聚合引发剂槽106的聚合引发剂,然后送到管道搅拌器107。另外,经管道搅拌器107混合后,供给聚合成型部108,在聚合成型部108,进行聚合的固定化微生物的裁断,成型成方形的载体。成型的固定化微生物,送入固定化微生物保管容器109内,保管。
用如此的生产线,如果按上述制造,能够用少量的材料,制造活性高、流动性好的固定化微生物。另外,为维持活性污泥中的微生物的活性,原料调整稳定化槽103中的原料液和活性污泥的接触时间越短越好。
另外,图7所示的生产线110,具有海藻酸碱槽111,能够向从原料调整稳定化槽103送出的混合液中供给海藻酸碱。供给的海藻酸碱,优选以在混合液中浓度达到0.1%~0.5%的方式供给。供给了海藻酸碱的混合液,在供给了聚合引发剂后,由管道搅拌器107混合。在管道搅拌器107的后段,设置滴下聚合成型部112,向氯化钙溶液中滴下混合液,能够制造球形载体。氯化钙溶液的浓度,优选0.5%~5%,除该氯化钙外,也可以采用铝等。
用上述制造方法制造的固定化微生物,用在具有进行生物反应的反应容器的反应装置上。以下,作为反应装置的例子,说明废水处理装置或乙醇发酵装置。
图8是表示废水处理装置的第一实施方式的构成图。该图所示的废水处理装置10,具有处理槽12,原水导入管14连接在该处理槽12上。含有有机物的废水,从该原水导入管14导入,贮留在处理槽12。在处理槽12的内部,投入用上述方法制造的固定化微生物载体(以下,称为载体)22、22…。通过该载体22与废水接触,载体22内部的细菌分解有机物,净化废水。用载体分离网(筛)18,将净化的处理水与载体分离,从流出管20流出。
可是,用本发明的方法制造的载体22,如上所述,由于材料浓度为1%~7%,非常低,所以微生物的保持量大,载体的活性高。因此,采用该载体22的废水处理装置10,具有高的处理性能。此外,载体22,由于比重小,流动性好,所以能够利用曝气空气,顺利地在处理槽12内旋转。因此,不存在或是沉淀在处理槽12内,或是形成滞留区的顾虑,能够维持稳定的处理性能。
图9是表示废水处理装置的第2实施方式的构成图。该图所示的废水处理装置30,处理槽32的底面朝单侧的侧面倾斜,在其最下部设置散气管16。此外,在处理槽32中,在与流出管20的连接部,设置隔板34,利用该隔板34,除下部外,隔开处理槽32的内部。另外,对于具有与上述的第一实施方式同样的功能的部件,附加相同的符号,省略其说明。
对于按上述构成的废水处理装置30,载体22与来自散气管16的曝气空气一同上升,在隔板34的附近下降,沿处理槽32的底面,向散气管16侧流动,再次与曝气空气一同上升,在处理槽32内旋转。即,载体22通过单侧曝气的旋转流流动。在如此的废水处理装置30中,特别重要的是,载体22确实沿处理槽32内流动(即载体22的流动性)。本实施方式的载体22,如前所述,固定化材料的合计浓度为1%~7%,比较小,能够大大减小比重。具体是,能够将载体22的比重减小到1.005~1.01。因此,如果在废水处理装置30中采用本发明的载体22,由于载体22的流动性极好,所以能够得到高的处理性能。
图10是表示废水处理装置的第3实施方式的构成图。该图所示的废水处理装置40,处理槽42的底面从两侧朝中央倾斜,在其中央的最下部设置散气管16。此外,在处理槽42的中央部,设置与其周围隔开的隔板44、44,该隔板44、44,除处理槽42的上部和下部外而隔开。在处理槽42的两侧面,连接流出管20、20,在各流出管20的附近设置隔板46、46,隔开处理槽42的上部。
如上构成的废水处理装置40,在载体22与曝气空气一同沿隔板44、44的内侧上升后,沿该隔板44、44的外侧下降,沿处理槽42的底面移动,再次与曝气空气一同上升,在处理槽42内旋转。即使在如此的废水处理装置40,载体22的流动性也非常重要。因此,如果采用本发明的载体22,由于载体22的比重减小到1.005~1.01,因此流动性极好,所以能够大幅度提高处理性能。
图11是表示废水处理装置的第4实施方式的构成图。该图所示的废水处理装置50,原水配管14连接在处理槽52的下端,流出管20连接在处理槽52的上部侧面。此外,在处理槽52的内部,设置将处理槽52的内部分成上下的筛网54、54,在该筛网54、54的之间,充填载体22、22…。
在如上构成的废水处理装置50中,从原水配管14导入的废水,在处理槽52的内部,形成上向流,与充填部的载体22接触,被生物处理,得到净化。然后,净化后的水从流出管20流出。即使在如此的废水处理装置50中,如果采用本发明的载体22,由于载体22的材料浓度为1%~7%,非常低,载体22内的微生物容易增殖,活性高,所以能够得到高的处理性能。
图12是表示第5实施方式的废水处理装置的构成图。该图所示的废水处理装置60,是实施利用厌氧性反应的废水处理的装置,处理槽62的底面从两侧朝中央倾斜,在其中央的最下部设置散气管16。从散气管16吹出无氧气体,吹出的无氧气体,由与处理槽62的上部连接的气体配管68回收。另外,通过驱动设在气体配管68上的泵69,反复送到处理槽62内,进行循环利用。另外,在处理槽62的中央部,设置与其周围隔开的隔板64、64,在处理槽62的两侧面的附近,设置隔板66、66。
在如上构成的废水处理装置60中,由于从散气管16供给无氧气体,因此处理槽62的内部被保持在厌氧条件下。因此,在载体22内,增殖厌氧性微生物,利用该厌氧性微生物进行厌氧性处理。即使在如此的废水处理装置60中,如果采用本发明的载体22,由于载体22的材料浓度为1%~7%,非常低,载体22内的微生物容易增殖,活性高,所以能够得到高的处理性能。此外,由于能够将载体22的比重减小到1.005~1.01,因此能够利用供给少量气体形成的空气上升效果,使载体22流动。
图13是表示采用固定化微生物的乙醇发酵装置的构成图。该图所示的乙醇发酵装置70,具有发酵槽72,原水导入管14连接在该发酵槽72上。从原水导入管14流入培养液(发酵原料),该培养液贮留在发酵槽72内。在发酵槽72的内部,设置搅拌机的搅拌叶片74,通过使该搅拌叶片74旋转,能够搅拌发酵槽72内部。此外,在发酵槽72的底部,设置散气管16,能够根据需要曝气空气。另外,在发酵槽72的内部,投入用本发明的方法制造的载体22。因此,在发酵槽72的内部,载体22与培养液接触,载体22内的微生物资化或同化培养液的基质,生成发酵产物。发酵产物经载体分离网(筛)18与载体22分离,从流出管20流出。另外,本装置为连续式,但也可以是分批式的发酵装置。
即使在如此构成的乙醇发酵装置70中,如果采用上述的载体22,由于载体22的比重为1.005~1.01,能够利用少量的气体供给或搅拌使载体22流动,所以载体22和基质的接触效率高,反应性强。
图14是适合采用本发明的固定化微生物的处理装置的构成图。该图所示的处理装置80,具有厌氧性氨氧化槽82和硝化槽84,在厌氧性氨氧化槽82上连接原水导入管88,含有氨和亚硝酸的废水被导入厌氧性氨氧化槽82。在厌氧性氨氧化槽82的内部,充填绳状的固定化微生物载体。废水中的基质与绳状的载体接触,通过载体内的厌氧性氨氧化细菌的作用,同时对氨和亚硝酸进行脱氮。该厌氧性氨氧化槽82的处理水流入硝化槽84,在硝化槽84氧化残存的氨。其处理水,在沉淀池86固液分离游离物质,上清液从流出部90流出。另外,在沉淀池88沉降分离的部分活性污泥,通过污泥反送管92,返送到厌氧性氨氧化槽82。
即使在如此构成的处理装置80中,通过采用根据本发明制造的固定化微生物,能够提高处理性能。
以下,说明本发明能使用的固定化材料的母剂预聚合物和交联剂的具体例。
(单甲基丙烯酸酯类)聚乙二醇单甲基丙烯酸酯、聚戊二醇单甲基丙烯酸酯、聚丙二醇单甲基丙烯酸酯、甲氧基二甘醇甲基丙烯酸酯、甲氧基聚乙二醇甲基丙烯酸酯、甲基丙烯酰氧基乙基加加氢二烯苯二甲酸酯、甲基丙烯酰氧基乙基加氢二烯琥珀酸、3-氯-2-羟基丙基甲基丙烯酸酯、硬脂基甲基丙烯酸酯、2-羟基甲基丙烯酸酯、乙基甲基丙烯酸酯。
(单丙烯酸酯类)2-羟基乙基丙烯酸酯、2-羟基丙基丙烯酸酯、异丁基丙烯酸酯、t-丁基丙烯酸酯、异辛基丙烯酸酯、十二烷基丙烯酸酯、硬脂基丙烯酸酯、异冰片基丙烯酸酯、环己基丙烯酸酯、甲氧基三乙二醇丙烯酸酯、2-乙氧基乙基丙烯酸酯、四氢呋喃丙烯酸酯、苯氧基乙基丙烯酸酯、壬基苯氧基聚乙二醇丙烯酸酯、壬基苯氧基聚丙二醇丙烯酸酯、硅改质丙烯酸酯、聚丙二醇单丙烯酸酯、苯氧基乙基丙烯酸酯、苯氧基二甘醇丙烯酸酯、苯氧基聚乙二醇丙烯酸酯、甲氧基聚乙二醇丙烯酸酯、丙烯酰氧基乙基加氢二烯琥珀酸酯、十二烷基丙烯酸酯等。
(二甲基丙烯酸酯类)1,3-丁二醇二甲基丙烯酸酯、1,4-丁二醇二甲基丙烯酸酯、乙二醇二甲基丙烯酸酯、二乙二醇二甲基丙烯酸酯、三乙二醇二甲基丙烯酸酯、聚乙二醇二甲基丙烯酸酯、丁二醇二甲基丙烯酸酯、己二醇二甲基丙烯酸酯、新戊二醇二甲基丙烯酸酯、聚丁二醇二甲基丙烯酸酯、2-羟基-1,3-甲基丙烯酰基丙烷、2,2-双4-甲基丙烯酰基乙氧基苯基丙烷、3,2-双4-甲基丙烯酰基二乙氧基苯基丙烷、2,2-双4-甲基丙烯酰基聚乙氧基苯基丙烷等。
(二丙烯酸酯类)乙氧基化新戊二醇二丙烯酸酯、聚乙二醇二丙烯酸酯、1,6-己二醇二丙烯酸酯、新戊二醇二丙烯酸酯、三丙二醇二丙烯酸酯、聚丙二醇二丙烯酸酯、2,2-双4-丙烯酰基二乙氧基苯基丙烷、2-羟基-1-丙烯酰基-3-甲基丙烯酰基丙烷等。
(三甲基丙烯酸酯类)三羟甲基丙烷三甲基丙烯酸酯等。
(三丙烯酸酯类)三羟甲基丙烷三丙烯酸酯、季戊四醇三丙烯酸酯、三羟甲基丙烷EO加成三丙烯酸酯、丙三醇PO加成三丙烯酸酯、乙氧基化三羟甲基丙烷三丙烯酸酯。
(四丙烯酸酯类)季戊四醇四丙烯酸酯、乙氧基化季戊四醇四丙烯酸酯、丙氧基化季戊四醇四丙烯酸酯、二(三羟甲基丙烷)四丙烯酸酯等。
(氨基甲酸乙酯丙烯酸酯类)氨基甲酸乙酯丙烯酸酯、氨基甲酸乙酯二甲基丙烯酸酯、氨基甲酸乙酯三甲基丙烯酸酯等。
(其它)丙烯酰胺、丙烯酸、二甲基丙烯酰胺。
此外,本发明中的聚合,采用过硫酸钾的自由基聚合最佳,但也可以是采用紫外线或电子束的聚合或氧化还原聚合。在采用过硫酸钾的聚合中,过硫酸钾的添加量优选0.001%~0.25%,优选添加0.001%~0.5%的胺系的聚合促进剂。作为胺系的聚合促进剂,优选β二甲胺基丙腈、N,N,N’,N’-四甲基乙二胺、亚硫酸钠等。
下面,说明后述的实施例中的酵母的计测方法。表6示出酵母培养用的使用培养基。
表6 试验用的培养基

采用表6的培养基,用稀释平板法培养酵母,进行菌落计数,计测酵母的个体数。关于包含载体,进行匀浆,对悬浊液,采用与先前相同的培养基,计测个体数。作为一例,载体中的酵母个体数的换算方法如下式。
Xp=Xo×(Vp+Vw)/Vp此处,Xp载体内部的酵母数(个/mL)、Xo用培养基菌落形成后的原液的酵母数(个/mL)、Vp原液制作中供给试验的载体量(mL)、Vw原液制作中添加的灭菌水液量(mL)。
按表7的组成制作固定化微生物载体。载体的尺寸为3mm方形。
表7 材料浓度研究用的固定化微生物的组成

在图9的处理槽32内,投入该载体,使槽内载体充填率达到10%。然后,处理含有氨性氮100~160mg/L、无机的机械工厂废水。滞留时间设定6小时。此外,作为以往法,分3种制作表8的固定化微生物载体,用与图9相同的装置,采用相同的废水,按滞留时间6小时进行处理。表9示出其结果。
表8 以往法的固定化微生物的组成

表9 实施例1的处理性能结果 载体的硝化速度以平均值表示。
从表9看出,本法与以往法1~3相比较,载体内部的硝化细菌数非常大。因此,本法,硝化速度快,处理性能非常高。因此,处理水所含的氨性氮的浓度非常低。
用图14的装置处理亚硝酸浓度200mg/L、氨浓度250mg/L的无机废水。在本实施例中,按以下制作了固定化载体(包含固定化厌氧性氨氧化细菌载体)。
种污泥,是用氨和亚硝酸集中培养得到的具有脱氮速度1.2kg-N/m3/day的能力的污泥,以初期浓度8×108cell/cm3作为固定化的种菌,进行试验。用离心分离法回收种菌,在聚乙二醇二丙烯酸酯和分子量2600的聚乙二醇单甲基丙烯酸酯中悬浊该菌和活性污泥,通过添加过硫酸钾聚合,得到包括菌的凝胶。各自的添加量如下。
厌氧性氨氧化细菌4×105cell/cm3、总菌数3×108cell/cm3、聚乙二醇二丙烯酸酯3%、聚乙二醇二甲基丙烯酸酯2%、N,N,N’,N’-四甲基乙二胺0.05%、过硫酸钾0.025%。
将该凝胶成型成直径3mm的绳状,得到绳状固定化微生物。将该载体20%充填到图14的厌氧性氨氧化槽82中。在硝化槽84,同样得到固定化活性污泥的绳状固定化微生物,10%充填到硝化槽。各自的槽的运转条件如下。
厌氧性氨氧化槽用滞留时间6小时开始运转,用3小时进行恒定运转。20%充填绳状固定化微生物。
硝化槽滞留时间3小时、20%充填绳状固定化微生物作为以往法,种污泥,是用氨和亚硝酸集中培养得到的具有脱氮速度1.2kg-N/m3/day的能力的污泥,以初期浓度8×108cell/cm3作为固定化的种菌,进行试验。用离心分离法回收种菌,在分子量1000的聚乙二醇二丙烯酸酯中悬浊该菌和活性污泥,通过添加过硫酸钾聚合,得到包括菌的凝胶。各自的添加量如下。
厌氧性氨氧化细菌4×105cell/cm3、总菌数3×108cell/cm3、聚乙二醇二丙烯酸酯15%、N,N,N’,N’-四甲基乙二胺0.5%、过硫酸钾0.25%。
将该凝胶成型成直径3mm的绳状,得到绳状固定化微生物。然后,与前面同样,将该载体20%充填到图14的厌氧性氨氧化槽82中。在硝化槽84,同样得到固定化活性污泥的绳状固定化微生物,10%充填到硝化槽。用该装置,在与前面相同的运转条件下,运转处理的固定化微生物作为以往法。表10示出处理结果。
表10 实施例2的处理性能结果 从表10看出,在本法中,与以往法相比,厌氧性氨氧化细菌浓度增大。这是因为,本发明的固定化微生物,由于固定化剂浓度低,所以菌的生息空间大,菌保持量增加之故。因此,在本法中,与以往法相比,能够得到水质高的处理水。另外,在本法中,由于采用交联剂,能够得到足够的压缩强度。
示出在乙醇发酵中采用固定化微生物的例子。乙醇发酵用的酵母采用Saccharomyces cerevisiae 0C2。在分子量12000的季戊四醇四丙烯酸酯和二甲基丙烯酰胺的混合液中悬浊该酵母,通过添加N,N,N’,N’-四甲基乙二胺和过硫酸钾,进行聚合,得到包括菌的凝胶。各自的添加量如下。
酵母2×107cell/cm3、季戊四醇四丙烯酸酯2%、和二甲基丙烯酰胺2%、二甲基丙烯酰胺2%、N,N,N’,N’-四甲基乙二胺0.05%、过硫酸钾0.025%。
将该凝胶成型成3mm方形的载体状,得到固定化微生物。然后,将该载体投入到图13的发酵槽72中,用表11的培养基培养。在当初3天里,采用分批培养,以2vvm通气,使酵母增殖。之后,停止通气,以60rpm搅拌,同时连续投入培养基,进行培养。从滞留时间8小时开始,缓慢缩短滞留时间,将滞留时间3小时的运转设定成恒定状,求出此时的收率。酵母的个体数,如前所述。在用表6的培养基进行稀释平板、培养后,进行菌落计数计测。
表11 连续发酵用的试验培氧基

将上述的试验作为本法A。同样,作为交联剂采用丙烯酸的试验作为本法B。同样,作为交联剂,采用甲基丙烯酸的试验作为本法C。这些交联剂浓度,与前面同样为2%。
此外,作为以往法,制作用下列组成固定化的3mm方形的固定化微生物,用相同的条件培养,进行研究。乙醇发酵用的酵母采用Saccharomycescerevisiae 0C2。在分子量1000的聚乙二醇丙烯酸酯和丙烯酰胺的混合液中悬浊该酵母,通过添加N,N,N’,N’-四甲基乙二胺和过硫酸钾,进行聚合,得到包括菌的以往法的凝胶。各自的添加量如下。
酵母2×107cell/cm3、聚乙二醇丙烯酸酯16%、丙烯酰胺2%、N,N,N’,N’-四甲基乙二胺0.05%、过硫酸钾0.025%。
发酵试验的结果见表12。
表12 实施例3中的连续发酵试验结果 从表12看出,本法A、B、C的酵母的个体数大于以往法。这是因为,本法的凝胶浓度低,酵母的增殖率高,能够得到高的乙醇收率。此外,本法A、B、C的凝胶强度高,载体物性稳定。因此,即使在运转6个月的时候,活性和物性也无变化。对此,在以往法中,强度低,在5个月后就发现载体的磨损。
权利要求
1.一种固定化微生物的制造方法,其特征在于,通过对分子量3500以上20000以下的预聚合物、分子量71以上且相对于上述预聚合物分子量的比为0.045以下的交联剂以及微生物进行混合,制作上述预聚合物和上述交联剂的合计浓度为1%以上7%以下的悬浊液;通过聚合该悬浊液,制造在聚合物内部包含固定有微生物的固定化微生物。
2.一种固定化微生物的制造方法,其特征在于,将分子量3500以上20000以下的预聚合物和交联剂,以预聚合物含量/交联剂含量的比达到0.5以上10以下的方式,与微生物混合,制作上述预聚合物和上述交联剂的合计浓度为1%以上7%以下的悬浊液;通过聚合该悬浊液,制造在聚合物内部包含固定有微生物的固定化微生物。
3.如权利要求1或2所述的固定化微生物的制造方法,其特征在于,作为上述交联剂,采用丙烯酰胺、丙烯酸、二甲基丙烯酰胺或甲基丙烯酸。
4.如权利要求1~3中任何一项所述的固定化微生物的制造方法,其特征在于,作为上述微生物,对活性污泥进行固定化。
5.一种固定化微生物,其特征在于,用权利要求1~4中任何一项所述的制造方法制造。
6.一种反应装置,其特征在于,具有采用权利要求5所述的固定化微生物进行生物反应的反应容器。
7.如权利要求6所述的反应装置,其特征在于,在上述反应容器的内部,具有使上述固定化微生物流动的流动部,上述固定化微生物在该流动部和该流动部的外部移动。
8.如权利要求7所述的反应装置,其特征在于,上述流动部,采用曝气空气或无氧气体或由反应生成的氮气,使上述固定化微生物流动。
全文摘要
本发明提供一种固定化微生物的制造方法,通过对分子量3500以上20000以下的预聚合物、分子量71以上且相对于上述预聚合物分子量的比为0.045以下的交联剂以及微生物进行混合,制作上述预聚合物和上述交联剂的合计浓度为1%以上7%以下的悬浊液;通过聚合该悬浊液,制造在聚合物内部包含固定有微生物的固定化微生物。另外,本发明还提供根据上述方法制造的固定化微生物以及使用该固定化微生物的反应装置。根据本发明能够以材料浓度极低的浓度固定微生物,并且由此能够减少材料,提供高活性、流动性好的固定化微生物。
文档编号C12N11/02GK1740100SQ20041009006
公开日2006年3月1日 申请日期2004年11月1日 优先权日2004年8月27日
发明者角野立夫, 青山光太郎, 井坂和一, 安部直树 申请人:日立工程设备建设株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1