一种利用纤维素生产氢气的方法

文档序号:397980阅读:319来源:国知局
专利名称:一种利用纤维素生产氢气的方法
技术领域
本发明涉及一种生产氢气的方法。
背景技术
能源是人类赖以生存和持续发展的重要物质基础。而常规化石能源的储量极其有限,全球已探明的石油、天然气和煤炭储量将分别在今后40、60和100年左右耗尽。同时, 利用化石能源所造成的环境污染和气候变化对人类生存和发展也提出了严峻挑战。这使得开发新型、清洁、可再生的新能源变得非常必要和紧迫。生物质能源作为新兴能源之一,据估计,在未来40年将占全球总能耗的40%。氢气是生物质能源中最容易实现产业化的品种之一,它作为一种新型的清洁能源,具有来源广泛,燃烧值高,清洁无污染,存在形式多和应用范围广泛等优点。目前,生物制氢的底物多为糖类,虽然已经获得很高的产氢效率,却增加了产氢成本。纤维素是地球上最廉价、最丰富的可再生资源之一,同时,由于纤维素也是太阳能的转化载体之一,生产和利用纤维素产氢,并不会引起环境中(X)2总量的增加。因此,纤维素生物质已成为大规模氢气生产中极具吸引力的原料。利用纤维素生产氢气,其最大的瓶颈在于生产成本过高。由纤维素到氢气的转化目前有四种策略可以实现联合生物加工工艺(Consolidated BioProcessing, CBP)、分步水解和发酵(S印arate Hydrolysis and Fermentation, SHF)、同步糖化发酵(Simultaneous Saccharification and Fermentation, SSF)禾口同步糖化共发酵 (Simultaneous Saccharification and Co-Fermentation, SSCF)。其中联合生物力口工 (CBP)虽然能够将纤维素酶生产、水解糖化和戊糖己糖共发酵整合在同一反应器内由同一微生物或微生物群落完成,但是因为菌种资源有限,其应用受到极大的限制。由于绝大多数产氢菌不能直接利用纤维素发酵产氢,因此,SHF, SSF和SSCF工艺得到了较为广泛的应用。 因此现有技术利用纤维素生产氢气工艺需要进行纤维素原料的预处理、预处理物的糖化水解二个方面,而糖化水解过程使用的纤维素酶主要由美国sigma公司及丹麦的novozymes 公司生产,酶活单位为3-10U/mg的纤维素酶价格约为1KU/232元(即lg/232元),而水解 Ig纤维素一般需要投加25U左右的纤维素酶,约0. 4元,因此当利用纤维素大规模产氢时, 成本会大大增加。

发明内容
本发明要解决现有纤维素产氢方法成本高的问题,而提供一种利用纤维素生产氢气的方法。一种利用纤维素生产氢气的方法,具体是按以下步骤完成的一、培养将绿色木霉的孢子接种于液体产酶培养基中,在25 35°C、120 180r/min的有氧条件下悬浮培养3 6天;二、分离将步骤一培养3 6天液体产酶培养基在3 10°C,5000 10000r/min离心8 15min,分离得到上清液I即为粗酶液;三、配置纤维素溶液将纤维素原料粉碎至粒度为10 30mm,并采用热碱方法处理两个小时,然后加入到物质的量浓度为0. 05mol/L的柠檬酸-柠檬酸钠缓冲溶液中,配置成质量-体积浓度为20 50g/L的纤维素溶液;四、制备纤维素糖化液在30 70°C、pH 3 7的条件下, 将步骤二分离得到的粗酶液加入步骤三制备的纤维素溶液中,在搅拌速度为120 180r/ min放置2 6天,即得到纤维素糖化液;五、产氢10000 15000r/min的条件下将步骤四制备的纤维素糖化液离心10 30min,分离得到的上清液II,然后加入营养盐溶液,将营养盐溶液和分离得到的上清液II充分混勻后即为产氢菌液体发酵培养基,向产氢菌液体发酵培养基中通入纯度为99. 99%的氮气,使产氢菌液体发酵培养基处于厌氧状态,然后加入产氢菌的种子液,在60°C下进行厌氧发酵产氢12 36h ;步骤一中所述绿色木霉的孢子接种量为IX IO12个/L IX IO16个/L ;步骤一中所述液体产酶培养基由KH2P04、(NH4)2SO4, MgSO4 WH2CKCaCl2、有机碳源、有机氮源和微量金属元素贮液I组成,其中KH2PO4的质量-体积浓度为1. 0 3. Og/L, (NH4)2SO4的质量-体积浓度为0. 5 2. Og/L, MgSO4 · 7H20的质量-体积浓度为0. 1 1. Og/L, CaCl2的质量-体积浓度为0. 1 1. Og/L,有机碳源的质量-体积浓度为20 40g/L,有机氮源的质量-体积浓度为3 10g/L,微量金属元素贮液 I占液体产酶培养基总体积的千分之一;步骤四中所述加入步骤二分离得到的粗酶液与步骤三制备的纤维素溶液的体积比为(1 10) 10 ;步骤五中所述加入的营养盐溶液与上清液II的体积比为1 (1 ;3);步骤五中所述加入产氢菌的种子液与产氢菌液体发酵培养基体积比为(0.5 2. 5) 25。本发明优点一、本发明使用对纤维素有较高降解能力的绿色木霉的粗酶液对预处理后的纤维素进行水解糖化,糖化率(糖化率是产糖量与纤维素中纤维素与半纤维素的比值)可以达到80 85%,没有采用商品酶,使产氢的成本降低了 60%;二、本发明开发了一种利用天然的纤维素原料,使用的绿色木霉所产生的纤维素酶将天然的纤维素原料(如稻草,玉米秸秆,小麦秸秆等)中的部分纤维素,半纤维素转化成可溶性还原糖,再利用转化的可溶性还原糖生产氢气的方法,这种方法不仅可以在降低底物成本,而且扩大了纤维素原料的利用范围;三、本发明采用纤维素糖化液的产氢量比直接采用纤维素溶液的产氢量提高45倍,因此提高了产氢效能。


图1是具体实施方式
二十七产出气体的色相色谱图。
具体实施例方式具体实施方式
一本实施方式一种利用纤维素生产氢气的方法,具体是按以下步骤完成的一、培养将绿色木霉的孢子接种于液体产酶培养基中,在25 35°C、120 180r/min的有氧条件下悬浮培养3 6天;二、分离将步骤一培养3 6天液体产酶培养基在3 10°C,5000 10000r/min离心8 15min,分离得到上清液I即为粗酶液;三、 配置纤维素溶液将纤维素原料粉碎至粒度为10 30mm,并采用热碱方法处理两个小时, 然后加入到物质的量浓度为0. 05mol/L的柠檬酸-柠檬酸钠缓冲溶液中,配置成质量-体积浓度为20 50g/L的纤维素溶液;四、制备纤维素糖化液在30 70°C、pH 3 7的条件下,将步骤二分离得到的粗酶液加入步骤三制备的纤维素溶液中,在搅拌速度为120 180r/min放置2 6天,即得到纤维素糖化液;五、产氢10000 15000r/min的条件下将步骤四制备的纤维素糖化液离心10 30min,分离得到的上清液II,然后加入营养盐溶液, 将营养盐溶液和分离得到的上清液II充分混勻后即为产氢菌液体发酵培养基,向产氢菌液体发酵培养基中通入纯度为99. 99%的氮气,使产氢菌液体发酵培养基处于厌氧状态,然后加入产氢菌的种子液,在60°C下进行厌氧发酵产氢12 36h。本实施方式步骤一中所述绿色木霉的孢子接种量为IXlO12个/L IXio16A/ L ;本实施方式步骤一中所述液体产酶培养基由KH2P04、(NH4)2SO4, MgSO4 · 7H20、CaCl2、有机碳源、有机氮源和微量金属元素贮液I组成,其中KH2PO4的质量-体积浓度为1. 0 3. Og/ L,(NH4)2SO4的质量-体积浓度为0. 5 2. Og/L, MgSO4 · 7H20的质量-体积浓度为0. 1 1. Og/L, CaCl2的质量-体积浓度为0. 1 1. Og/L,有机碳源的质量-体积浓度为20 40g/ L,有机氮源的质量-体积浓度为3 10g/L,微量金属元素贮液I占液体产酶培养基总体积的千分之一。本实施方式步骤四中所述加入步骤二分离得到的粗酶液与步骤三制备的纤维素溶液的体积比为(1 10) 10。本实施方式步骤五中所述加入的营养盐溶液与上清液II的体积比为1 (1 3);本实施方式步骤五中所述加入产氢菌的种子液与产氢菌液体发酵培养基体积比为 (0. 5 2.幻25。本实施方式使用对纤维素有较高降解能力的绿色木霉的粗酶液对预处理后的纤维素进行水解糖化,糖化率(糖化率是产糖量与纤维素中纤维素与半纤维素的比值)可以达到80 85%,没有采用商品酶,使产氢的成本降低了 60%。目前的绝大多数产氢菌株以葡萄糖或淀粉等为底物生产氢气,少数产氢菌株能够利用五碳糖如木糖生产氢气,这种直接使用葡萄糖、淀粉或木糖等物质生产氢气存在成本高的问题;本实施方式从实际出发,根据我国纤维素原料储量十分丰富的特点,开发了一种利用天然的纤维素原料,使用的绿色木霉所产生的纤维素酶将天然的纤维素原料(如稻草,玉米秸秆,小麦秸秆等)中的部分纤维素,半纤维素转化成可溶性还原糖,再利用转化的可溶性还原糖生产氢气的方法,这种方法不仅可以在降低底物成本,而且扩大了纤维素原料的利用范围。本实施方式采用纤维素糖化液的产氢量比直接采用纤维素溶液的产氢量提高45 倍,因此提高了产氢效能。
具体实施方式
二 本实施方式与具体实施方式
一不同点是步骤一中所述的绿色木霉是真菌iTrichoderma viride,编号3. 2876,分离号糖研37。其它与具体实施方式
一相同。
具体实施方式
三本实施方式与具体实施方式
一或二之一不同点是步骤一中所述液体产酶培养基中KH2PO4的质量-体积浓度为2. Og/L, (NH4)2SO4的质量-体积浓度为 1. 4g/L,MgSO4 · 7H20的质量-体积浓度为0. 3g/L,CaCl2的质量-体积浓度为0. 3g/L,有机碳源的质量-体积浓度为30g/L,有机氮源的质量-体积浓度为5g/L。其它与具体实施方式
一或二相同。
具体实施方式
四本实施方式与具体实施方式
一至三之一不同点是步骤一中所述液体产酶培养基中的有机碳源为葡萄糖、微晶纤维素、麸皮、稻草、玉米秸秆或小麦秸秆中的一种或者两种及两种以上任意配比的混合物。其它与具体实施方式
一至三相同。
具体实施方式
五本实施方式与具体实施方式
一至四之一不同点是步骤一中所述液体产酶培养基中的有机碳源是麸皮和玉米秸秆的混合物,其中麸皮与玉米秸秆的质量比为2 1。其它与具体实施方式
一至四相同。
具体实施方式
六本实施方式与具体实施方式
一至五之一不同点是步骤一中所述液体产酶培养基中的有机氮源为豆饼粉、尿素、蛋白胨或酵母浸粉中的一种或者两种及两种以上任意配比的混合物。其它与具体实施方式
一至五相同。
具体实施方式
七本实施方式与具体实施方式
一至六之一不同点是步骤一中所述液体产酶培养基中的微量金属元素贮液I是由FeSO4 · 7H20、MgS04、ZnSO4 · 7H20和CoCl2 组成,其中FeSO4 · 7H20的质量-体积浓度为3 7g/L,MgSO4的质量-体积浓度为0. 5 3. Og/L,ZnSO4 ·7Η20的质量-体积浓度为1. 0 2. Og/L, CoCl2的质量-体积浓度为1. O 3.0g/L。其它与具体实施方式
一至六相同。
具体实施方式
八本实施方式与具体实施方式
一至七之一不同点是步骤一中所述液体产酶培养基中的微量金属元素贮液I是由FeSO4 · 7H20、MgS04、ZnSO4 · 7H20和CoCl2 组成,其中FeSO4 · 7H20的质量-体积浓度为5. Og/L, MgSO4的质量-体积浓度为1. 6g/L, ZnSO4 · 7H20的质量-体积浓度为1. 4g/L,CoCl2的质量-体积浓度为2. Og/L。其它与具体实施方式
一至七相同。
具体实施方式
九本实施方式与具体实施方式
一至八之一不同点是步骤一中在 29°CU50r/min的有氧条件下悬浮培养4天。其它与具体实施方式
一至八相同。
具体实施方式
十本实施方式与具体实施方式
一至九之一不同点是步骤二中将步骤一培养4天液体产酶培养基在4°C,8000r/min离心lOmin,分离得到上清液I即为粗酶液。其它与具体实施方式
一至九相同。
具体实施方式
十一本实施方式与具体实施方式
一至十之一不同点是步骤三中所述的纤维素原料是农业废弃物、工业处理的植物废物或能源作物,或者农业废弃物和工业处理的植物废物任意配比的混合物、农业废弃物和能源作物任意配比的混合物、能源作物和工业处理的植物废物任意配比的混合物,或者农业废弃物、工业处理的植物废物和能源作物三种物质任意配比的混合物。其它与具体实施方式
一至十相同。
具体实施方式
十二 本实施方式与具体实施方式
十一的不同点是所述的农业废弃物为玉米秸秆、稻草秸秆、小麦秸秆或蔗渣;所述工业处理的植物废物为锯屑或纸浆;所述能源作物为狗尾草。其它与具体实施方式
十一相同。
具体实施方式
十三本实施方式与具体实施方式
一至十二之一不同点是步骤三中所述的热碱方法是在100°c条件下采用质量分数为2%的氢氧化钠溶液处理粒度为10 30mm的纤维素原料。其它与具体实施方式
一至十二相同。
具体实施方式
十四本实施方式与具体实施方式
十三不同点是步骤三中所述的热碱方法时,粒度为10 30mm的纤维素原料与质量分数为2%的氢氧化钠溶液的固液比 (所述的固液比是粒度为10 30mm的纤维素原料的质量与质量分数为2%的氢氧化钠溶液的体积之比)为1 10。其它与具体实施方式
十三相同。
具体实施方式
十五本实施方式与具体实施方式
一至十四之一不同点是步骤三中采用热碱方法2h,然后加入到物质的量浓度为0. 05mol/L的柠檬酸-柠檬酸钠缓冲溶液中,配置成质量-体积浓度为35g/L的纤维素溶液。其它与具体实施方式
一至十四相同。
具体实施方式
十六本实施方式与具体实施方式
一至十五之一不同点是步骤四中在50°C、pH5的条件下,将步骤二分离得到的粗酶液加入步骤三制备的纤维素溶液中,在搅拌速度为150r/min放置3天,即得到纤维素糖化液。其它与具体实施方式
一至十五相同。
具体实施方式
十七本实施方式与具体实施方式
一至十六之一不同点是步骤四中所述加入步骤二分离得到的粗酶液与步骤三制备的纤维素溶液的体积比为0 5) 10。其它与具体实施方式
一至十六相同。
具体实施方式
十八本实施方式与具体实施方式
一至十七之一不同点是步骤四中所述加入步骤二分离得到的粗酶液与步骤三制备的纤维素溶液的体积比为3 7。其它与具体实施方式
一至十七相同。
具体实施方式
十九本实施方式与具体实施方式
一至十八之一不同点是步骤五中在13000r/min的条件下将步骤四制备的纤维素糖化液离心20min,分离得到的上清液 II。其它与具体实施方式
一至十八相同具体实施方式
二十本实施方式与具体实施方式
一至十九之一不同点是步骤五中所述的产氢菌为热解糖厌氧芽孢杆菌W16 (Thermoanaerobacterium thermosaccharoIyticum W16), Thermoanaerobacterium thermosaccharoIyticum W16 在 2008 年第 33 期第 61M-6132 页的《hternational Journal of Hydrogen Energy)) 中干丨J 登的名禾尔为"Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharoIyticum W16,,的文章中公开。其它与具体实施方式
一至十九相同。
具体实施方式
二十一本实施方式与具体实施方式
一至二十之一不同点是步骤五中所述营养盐溶液由氯化铵、氯化钠、磷酸氢二钾、半胱氨酸、MgCl2 · 6H20、氯化钾、酵母粉、蛋白胨、微量金属元素贮液II、维生素贮液和0. 1%0 (w/v)的刃天青制备而成;其中所述的微量金属元素贮液II由氯化亚铁、氯化锌、硼酸、MnCl2 · 4H20、CuCl2 · 2H20、CoCl2 · 6H20、 NiCl2 · 6H20、Na2MO4 · H20、钨酸钠和NiijeO4 · 5H20制备而成,微量金属元素贮液II中氯化亚铁的质量-体积浓度为1. 5g/L,氯化锌的质量-体积浓度为70mg/L,硼酸的质量-体积浓度为6mg/L,MnCl2 · 4H20的质量-体积浓度为0. lg/L,CuCl2 · 2H20的质量-体积浓度为 2mg/L, CoCl2 ·6Η20的质量-体积浓度为0. 19g/L,NiCl2 ·6Η20的质量-体积浓度为2%ig/L, Na2MO4 -H2O的质量-体积浓度为36mg/L,钨酸钠的质量-体积浓度为15mg/L,NajeO4 ·5Η20 的质量-体积浓度为15mg/L ;其中所述的维生素贮液由硫辛酸、生物素、烟酸、盐酸硫胺素、 对氨基苯甲酸、叶酸、泛酸钙、维生素B12和盐酸吡哆醇制备而成,维生素贮液中硫辛酸的质量-体积浓度为50. Omg/L,生物素的质量-体积浓度为20. Omg/L, 0. 35g/L的烟酸,盐酸硫胺素的质量-体积浓度5. Omg/L为,对氨基苯甲酸的质量-体积浓度为50. Omg/L,叶酸的质量-体积浓度为20. Omg/L,泛酸钙的质量-体积浓度为50. Omg/L,维生素B12的质量-体积浓度为1. Omg/L,盐酸吡哆醇的质量-体积浓度为100. Omg/L。其它与具体实施方式
一至二十相同。
具体实施方式
二十二 本实施方式与具体实施方式
一至二十一之一不同点是步骤五中所述加入的营养盐溶液与上清液II的体积比为3 7。其它与具体实施方式
一至二十一相同。
具体实施方式
二十三本实施方式与具体实施方式
一至二十二之一不同点是步骤五中制备的产氢菌液体发酵培养基中氯化铵的质量-体积浓度为1.0g/L、氯化钠的质量-体积浓度为1. Og/L、磷酸氢二钾的质量-体积浓度为3g/L、磷酸二氢钾的质量-体积浓度为1. 5g/L、半胱氨酸的质量-体积浓度为0. 5g/L、MgCl2 · 6H20的质量-体积浓度为 0. 5g/L、氯化钾的质量-体积浓度为0. 2g/L、酵母粉的质量-体积浓度为2g/L、蛋白胨的质量-体积浓度为2g/L、微量金属元素贮液II占产氢菌液体发酵培养基总体积的千分之一、 维生素贮液占产氢菌液体发酵培养基总体积的千分之一、0.1%。(w/v)的刃天青占产氢菌液体发酵培养基总体积的千分之一。其它与具体实施方式
一至二十二相同。
具体实施方式
二十四本实施方式与具体实施方式
一至二十三之一不同点是步骤五中所述的产氢菌的种子液是产氢菌培养至对数期的液体悬浊液。其它与具体实施方式
一至二十三相同。
具体实施方式
二十五本实施方式与具体实施方式
一至二十四之一不同点是步骤五中所述加入产氢菌的种子液与产氢菌液体发酵培养基体积比为1 25。其它与具体实施方式
一至二十四相同。
具体实施方式
二十六本实施方式与具体实施方式
一至二十五之一不同点是步骤五中在60°C下进行厌氧发酵产氢Mh。其它与具体实施方式
一至二十五相同。
具体实施方式
二十七本实施方式与具体实施方式
一至二十六之一不同点是本实施方式具体是按以下步骤完成的一、培养将真菌Trichoderma viride的孢子接种于液体产酶培养基中,在、 150r/min的有氧条件下悬浮培养4天;二、分离将步骤一培养4天液体产酶培养基在4°C, 8000r/min离心lOmin,分离得到上清液I即为粗酶液;三、配置纤维素溶液将玉米秸秆粉碎至粒度为10 30mm,并采用热碱方法处理池,然后加入到物质的量浓度为0. 05mol/L 的柠檬酸-柠檬酸钠缓冲溶液中,配置成质量-体积浓度为35g/L的纤维素溶液;四、制备纤维素糖化液在50°C、pH 2的条件下,将步骤二分离得到的粗酶液加入步骤三制备的纤维素溶液中,在搅拌速度为150rpm/min放置3天,即得到纤维素糖化液;五、产氢13000r/ min的条件下将步骤四制备的纤维素糖化液离心20min,分离得到的上清液II,然后加入营养盐溶液,将营养盐溶液和分离得到的上清液II充分混勻后即为产氢菌液体发酵培养基, 向产氢菌液体发酵培养基中通入纯度为99. 99%的氮气,使产氢菌液体发酵培养基处于厌氧状态,然后加入产氢菌的种子液,在60°C下进行厌氧发酵产氢Mh。本实施方式步骤一中真菌Trichoderma viride的孢子接种量为1 X IO12个/L IXlO16个/L ;本实施方式步骤一中所述液体产酶培养基由KH2P04、(NH4)2SO4^MgSO4 · 7H20、 CaCl2、有机碳源、有机氮源和微量金属元素贮液I组成,其中KH2PO4的质量-体积浓度为
2.Og/L, (NH4)2SO4的质量-体积浓度为1. 4g/L,MgSO4 · 7H20的质量-体积浓度为0. 3g/ L,CaCl2的质量-体积浓度为0. 3g/L,有机碳源的质量-体积浓度为30g/L,有机氮源的质量-体积浓度为5g/L,微量金属元素贮液I占液体产酶培养基总体积的千分之一;其中所述的有机碳源是麸皮与玉米秸秆按质量比为2 1混合的混合物;其中所述的有机氮源为豆饼粉;其中所述的微量金属元素贮液I是由FeSO4 · 7H20、MgSO4, ZnSO4 · 7H20和CoCl2 组成,其中FeSO4 · 7H20的质量-体积浓度为3 7g/L,MgSO4的质量-体积浓度为0. 5
3.Og/L, ZnSO4 ·7Η20的质量-体积浓度为1. 0 2. 0g/L, CoCl2的质量-体积浓度为1. 0 3. Og/L。本实施方式步骤三中所述的热碱方法是在100°C条件下采用质量分数为2%的氢氧化钠溶液处理粒度为10 30mm的玉米秸秆,其中所述的粒度为10 30mm的玉米秸秆与质量分数为2%的氢氧化钠溶液的固液比(所述的固液比是粒度为10 30mm的玉米秸秆的质量与质量分数为2%的氢氧化钠溶液的体积之比)为1 10。本实施方式步骤四中所述加入步骤二分离得到的粗酶液与步骤三制备的纤维素溶液的体积比为3 7。本实施方式步骤五中所述的产氢菌为热解糖厌氧芽孢杆菌 W16 (Thermoanaerobacterium thermosaccharolyticum W16),Thermoanaerobacterium thermosaccharolyticum W16在2008年第33期第6124-6132页的《International Journal of Hydrogen Energy》中干丨J登的名禾尔为“Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16,,的文章中公幵。本实施方式步骤五中所述营养盐溶液由氯化铵、氯化钠、磷酸氢二钾、半胱氨酸、 MgCl2 · 6H20、氯化钾、酵母粉、蛋白胨、微量金属元素贮液II、维生素贮液和0. 1%0 (w/v)的刃天青制备而成;其中所述的微量金属元素贮液II由氯化亚铁、氯化锌、硼酸、MnCl2 ·4Η20、 CuCl2 ·2Η20,CoCl2 ·6Η20、NiCl2 ·6Η20、Na2MO4 ·Η20、钨酸钠和 Νει2%04 ·5Η20 制备而成,微量金属元素贮液II中氯化亚铁的质量-体积浓度为1. 5g/L,氯化锌的质量-体积浓度为70mg/ L,硼酸的质量-体积浓度为6mg/L,MnCl2 · 4H20的质量-体积浓度为0. lg/L,CuCl2 · 2H20 的质量-体积浓度为ang/L,CoCl2 · 6H20的质量-体积浓度为0. 19g/L,NiCl2 · 6H20的质量-体积浓度为2%ig/L,Na2MO4 -H2O的质量-体积浓度为36mg/L,钨酸钠的质量-体积浓度为15mg/L,Na2k04 ·5Η20的质量-体积浓度为15mg/L ;其中所述的维生素贮液由硫辛酸、生物素、烟酸、盐酸硫胺素、对氨基苯甲酸、叶酸、泛酸钙、维生素B12和盐酸吡哆醇制备而成, 维生素贮液中硫辛酸的质量-体积浓度为50. Omg/L,生物素的质量-体积浓度为20. Omg/ L,0. 35g/L的烟酸,盐酸硫胺素的质量-体积浓度5. Omg/L为,对氨基苯甲酸的质量-体积浓度为50. Omg/L,叶酸的质量-体积浓度为20. Omg/L,泛酸钙的质量-体积浓度为50. Omg/ L,维生素B12的质量-体积浓度为1. 0mg/L,盐酸吡哆醇的质量-体积浓度为100. 0mg/L。本实施方式步骤五中所述加入的营养盐溶液与上清液II的体积比为3 7。本实施方式步骤五中制备的产氢菌液体发酵培养基中氯化铵的质量-体积浓度为1. 0g/L、氯化钠的质量-体积浓度为1. 0g/L、磷酸氢二钾的质量-体积浓度为3g/L、磷酸二氢钾的质量-体积浓度为1. 5g/L、半胱氨酸的质量-体积浓度为0. 5g/L、MgCl2 · 6H20的质量-体积浓度为0. 5g/L、氯化钾的质量-体积浓度为0. 2g/L、酵母粉的质量-体积浓度为2g/L、蛋白胨的质量-体积浓度为2g/L、微量金属元素贮液II占产氢菌液体发酵培养基总体积的千分之一、维生素贮液占产氢菌液体发酵培养基总体积的千分之一、0. 1%0 (w/v) 的刃天青占产氢菌液体发酵培养基总体积的千分之一。本实施方式骤五中所述的产氢菌的种子液是产氢菌培养至对数期的液体悬浊液。本实施方式步骤五中所述加入产氢菌的种子液与产氢菌液体发酵培养基体积比为1 邪。检测本实施方式步骤四制备的纤维素糖化液,可知步骤四制备的纤维素糖化液中还原糖总量达到15. 08g/L,与使用商品酶的糖化量相差不多,通过成分经测定可知还原糖主要成分为戊糖和己糖。 本实施方式步骤五中在60°C下进行厌氧发酵产氢他后开始有气体产出,对产出的气体通过SC II型气相色谱仪(上海分析仪器)检测,采用热导池检测器,选用柱长为^Ii 不锈钢色谱柱、60 80目的担体TDS-01、载气为氮气,在载气流速为70mL/min、色谱柱温度为150°C、检测室温度为150°C,室温下检测,如图1所示,通过图1可知产出的气体保留时间为0. 54min,因此该气体为氢气;在60°C下进行厌氧发酵产氢24h后气体停止产出,通过计算可知最后的产氢量为107. 3ml/go
权利要求
1.一种利用纤维素生产氢气的方法,其特征在于利用纤维素生产氢气的方法是按以下步骤完成的一、培养将绿色木霉的孢子接种于液体产酶培养基中,在25 35°C、120 180r/min 的有氧条件下悬浮培养3 6天;二、分离将步骤一培养3 6天液体产酶培养基在3 10°C, 5000 lOOOOr/min离心8 15min,分离得到上清液I即为粗酶液;三、配置纤维素溶液将纤维素原料粉碎至粒度为10 30mm,并采用热碱方法处理两个小时,然后加入到物质的量浓度为0. 05mol/L的柠檬酸-柠檬酸钠缓冲溶液中,配置成质量-体积浓度为 20 50g/L的纤维素溶液;四、制备纤维素糖化液在30 70°C、pH 3 7的条件下,将步骤二分离得到的粗酶液加入步骤三制备的纤维素溶液中,在搅拌速度为120 180r/min 放置2 6天,即得到纤维素糖化液;五、产氢10000 15000r/min的条件下将步骤四制备的纤维素糖化液离心10 30min,分离得到的上清液II,然后加入营养盐溶液,将营养盐溶液和分离得到的上清液II充分混勻后即为产氢菌液体发酵培养基,向产氢菌液体发酵培养基中通入纯度为99. 99%的氮气,使产氢菌液体发酵培养基处于厌氧状态,然后加入产氢菌的种子液,在60°C下进行厌氧发酵产氢12 36h ;步骤一中所述绿色木霉的孢子接种量为IX IO12个/L IX IO16个/L ;步骤一中所述液体产酶培养基由KH2P04、(NH4)2SO4, MgSO4 WH2CKCaCl2、有机碳源、有机氮源和微量金属元素贮液I组成,其中KH2PO4的质量-体积浓度为1. 0 3. Og/L, (NH4)2SO4的质量-体积浓度为0. 5 2. 0g/L, MgSO4 · 7H20的质量-体积浓度为0. 1 1. 0g/L, CaCl2的质量-体积浓度为0. 1 1. 0g/L,有机碳源的质量-体积浓度为20 40g/L,有机氮源的质量-体积浓度为3 10g/L,微量金属元素贮液 I占液体产酶培养基总体积的千分之一;步骤四中所述加入步骤二分离得到的粗酶液与步骤三制备的纤维素溶液的体积比为(1 10) 10 ;步骤五中所述加入的营养盐溶液与上清液II的体积比为1 (1 ;3);步骤五中所述加入产氢菌的种子液与产氢菌液体发酵培养基体积比为(0.5 2. 5) 25。
2.根据权利要求1所述的一种利用纤维素生产氢气的方法,其特征在于步骤一中所述的绿色木霉是真菌iTrichoderma viride,编号3.观76,分离号糖研37。
3.根据权利要求2所述的一种利用纤维素生产氢气的方法,其特征在于步骤一中所述液体产酶培养基中的有机碳源为葡萄糖、微晶纤维素、麸皮、稻草、玉米秸秆或小麦秸秆中的一种或者两种及两种以上的混合物;步骤一中所述液体产酶培养基中的有机氮源为豆饼粉、尿素、蛋白胨或酵母浸粉中的一种或者两种及两种以上的混合物;步骤一中所述液体产酶培养基中的微量金属元素贮液I是由FeSO4 · 7H20、MgSO4, ZnSO4 · 7H20和CoCl2组成,其中FeSO4 · 7H20的质量-体积浓度为3 7g/L,MgSO4的质量-体积浓度为0. 5 3. 0g/L, ZnSO4 · 7H20的质量-体积浓度为1. 0 2. 0g/L, CoCl2的质量-体积浓度为1. 0 3. Og/ L0
4.根据权利要求1、2或3所述的一种利用纤维素生产氢气的方法,其特征在于步骤三中所述的纤维素原料是农业废弃物、工业处理的植物废物或能源作物,或者农业废弃物和工业处理的植物废物的混合物、农业废弃物和能源作物的混合物、能源作物和工业处理的植物废物的混合物,或者农业废弃物、工业处理的植物废物和能源作物三种物质的混合物。
5.根据权利要求4所述的一种利用纤维素生产氢气的方法,其特征在于步骤三中所述的热碱方法是在100°c条件下采用质量分数为2%的氢氧化钠溶液处理粒度为10 30mm的纤维素原料,其中所述的粒度为10 30mm的纤维素原料与质量分数为2%的氢氧化钠溶液的固液比为1 10。
6.根据权利要求5所述的一种利用纤维素生产氢气的方法,其特征在于步骤五中所述的产S菌为热角军糖厌氧芽抱杆菌 W16 (Thermoanaerobacterium thermosaccharoIyticum W16), Thermoanaerobacterium thermosaccharoIyticum W16 在 2008 年第 33 期第 6124-6132 页的〈〈International Journal of Hydrogen Energy〉〉中干Ij登的名称为"Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16”的文章中公开;步骤五中所述营养盐溶液由氯化铵、氯化钠、 磷酸氢二钾、半胱氨酸、MgCl2 · 6H20、氯化钾、酵母粉、蛋白胨、微量金属元素贮液II、维生素贮液和0. 1%0 (w/v)的刃天青制备而成;其中所述的微量金属元素贮液II由氯化亚铁、 氯化锌、硼酸、MnCl2 · 4H20、CuCl2 · 2H20、CoCl2 · 6H20、NiCl2 · 6H20、Na2MO4 · H20、钨酸钠和 NajeO4 ·5Η20制备而成,微量金属元素贮液II中氯化亚铁的质量-体积浓度为1.5g/L,氯化锌的质量-体积浓度为70mg/L,硼酸的质量-体积浓度为6mg/L,MnCl2 ·4Η20的质量-体积浓度为0. lg/L,CuCl2 · 2H20的质量-体积浓度为ang/L,CoCl2 · 6H20的质量-体积浓度为0. 19g/L,NiCl2 · 6H20的质量-体积浓度为2%ig/L,Na2MO4 · H2O的质量-体积浓度为 36mg/L,钨酸钠的质量-体积浓度为15mg/L,Na2SeO4 · 5H20的质量-体积浓度为15mg/L ; 其中所述的维生素贮液由硫辛酸、生物素、烟酸、盐酸硫胺素、对氨基苯甲酸、叶酸、泛酸钙、 维生素B12和盐酸吡哆醇制备而成,维生素贮液中硫辛酸的质量-体积浓度为50. Omg/L,生物素的质量-体积浓度为20. Omg/L, 0. 35g/L的烟酸,盐酸硫胺素的质量-体积浓度5. Omg/ L为,对氨基苯甲酸的质量-体积浓度为50. 0mg/L,叶酸的质量-体积浓度为20. 0mg/L, 泛酸钙的质量-体积浓度为50. 0mg/L,维生素B12的质量-体积浓度为1. 0mg/L,盐酸吡哆醇的质量-体积浓度为100. 0mg/L ;步骤五中制备的产氢菌液体发酵培养基中氯化铵的质量-体积浓度为1. 0g/L、氯化钠的质量-体积浓度为1. 0g/L、磷酸氢二钾的质量-体积浓度为3g/L、磷酸二氢钾的质量-体积浓度为1. 5g/L、半胱氨酸的质量-体积浓度为0. 5g/ L、MgCl2 · 6H20的质量-体积浓度为0. 5g/L、氯化钾的质量-体积浓度为0. 2g/L、酵母粉的质量-体积浓度为2g/L、蛋白胨的质量-体积浓度为2g/L、微量金属元素贮液II占产氢菌液体发酵培养基总体积的千分之一、维生素贮液占产氢菌液体发酵培养基总体积的千分之一、0. 1%0 (w/v)的刃天青占产氢菌液体发酵培养基总体积的千分之一;步骤五中所述的产氢菌的种子液是产氢菌培养至对数期的液体悬浊液。
全文摘要
一种利用纤维素生产氢气的方法,它涉及一种生产氢气的方法。本发明要解决现有纤维素产氢方法成本高的问题。本发明的操作步骤如下1.培养,2.分离,3.配置纤维素溶液,4.制备纤维素糖化液,5.产氢。本发明优点1.本发明没有采用商品酶,使产氢的成本降低了60%;2.本发明使用的绿色木霉所产生的纤维素酶对自然界中的不同种类的纤维素都有降解能力,扩大了纤维素原料的利用范围;3.本发明采用纤维素糖化液的产氢量比直接采用纤维素溶液的产氢量提高45倍,提高了产氢效能。本发明主要用于生产氢气。
文档编号C12R1/885GK102286538SQ20111025353
公开日2011年12月21日 申请日期2011年8月30日 优先权日2011年8月30日
发明者任南琪, 任宏宇, 曹广丽, 王爱杰, 赵磊 申请人:哈尔滨工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1