用于治疗视网膜外层疾病的具有5-ht的制作方法

文档序号:1149884阅读:301来源:国知局
专利名称:用于治疗视网膜外层疾病的具有5-ht的制作方法
技术领域
本发明涉及用于治疗因急性或慢性眼部变性情况或疾病导致的视网膜外层疾病的具有5-HT1A兴奋剂活性的化合物。
背景技术
与年龄相关的黄斑变性(AMD)是中年以上失明的主要原因,其中发生率从65岁成年人中的约20%增加到75岁或75岁以上个体的37%。非渗出性AMD的特征在于视网膜外层、视网膜色素上皮(RPE)、布鲁赫膜和脉络膜血管层中脉络膜小疣累积和视杆和视锥光感受器萎缩;而渗出性AMD导致脉络膜新血管形成(Green和Enger,《眼科学》(Ophthalmol),1001519-35,1993;Green等,《眼科学》(Ophthalmol),92615-27,1985;Green和Key,《美国眼科学协会学报》(Trans Am Ophthal Soc),75180-254,1977;Bressler等,《视网膜》(Retina),14130-42,1994;Schneider等,《视网膜》(Retina),18242-50,1998;Green和Kuchle(1997)Yannuzzi,L.A.,Flower,R.W.,Slakter,J.S.(编辑)《靛青绿血管成形术》(Indocyanine green angiography.)St.LouisMosby,151-6页)。色素性视网膜炎(RP)代表一组遗传性营养不良,其特征在于视杆变性导致继发性视锥光感受器萎缩和位于色素上皮的下面(Pruett,《美国眼科学协会学报》(Trans Am Ophthalmol Soc),81693-735,1983;Heckenlively,《美国眼科学协会学报》(Trans Am Ophthalmol Soc),85438-470,1987;Pagon,《眼科手术》(Sur Ophthal),33137-177,1988;Berson,《眼科视觉科学研究》(Invest Ophthalmol Vis Sci),341659-1676,1993;Nickells和Zack,《眼科遗传学》(OphthalmicGenet),17145-65,1996)。诸如AMD和RP这样的视网膜变性疾病的发病机制是多方面的且可以由正常个体或那些有遗传倾向的个体中的环境因素所引起。迄今为止已经对100种以上可能与各种视网膜外层变性有关的基因进行了作图或克隆。
接触光是鉴定为诸如AMD这样的视网膜变性疾病发展的构成因素的环境因素(Young,《眼科手术》(Sur Ophthal),32252-269,1988;Taylor等,《眼科构造》(Arch Ophthal),11099-104,1992;Cruickshank等,《眼科构造》(Arch Ophthal),111514-518,1993)。已经证实导致对视网膜细胞光损害的光氧化性应激反应是用于研究因下列原因导致的视网膜变性疾病的有用的模型主要对视网膜外层的光感受器和视网膜色素上皮(RPE)导致损害,这与遗传性变性疾病所影响的细胞相同(Noell等,《眼科视觉科学研究》(Invest OphthalVisSci),5,450-472,1966;Bressler等,《眼科手术》(SurOphthal),32,375-413,1988;Curcio等,《眼科视觉科学研究》(InvestOphthal Vis Sci),37,1236-1249,1996);编程性细胞死亡是细胞死亡机制,通过该机制以及在光氧化性诱发的细胞损伤之后光感受器和RPE细胞在AMD和RP中损耗(Ge-Zhi等,《美国眼科学协会学报》(TransAm Ophthal Soc),94,411-430,1996;Abler等,《分子病理药理学研究通讯》(Res Commun Mol Pathol Pharmacol),92,177-189,1996;Nickells和Zack,《眼科遗传学》(OphthalmicGenet),17145-65,1996);已经将光推断为AMD和RP发展的环境危害因素(Taylor等,《眼科构造》(ArchOphthalmol),110,99-104,1992;Naash等,《眼科视觉科学研究》(Invest Ophthalmol Vis Sci),37,775-782,1996);且还证实抑制光氧化性损伤的治疗干预在遗传性变性视网膜疾病动物模型中是有效的(LaVail等,《美国国家科学院学报》(Proc Nat Acad Sci),89,11249-11253,1992;Fakforovich等,《自然》(Nature),347,83-86,1990;Frasson等,《天然药物》(Nat.Med.)5,1183-1187,1990)。
已经在各种动物模型中鉴定了将视网膜的光氧化性损伤减小到最低限度的许多不同化合物类型。它们包括抗氧化剂,诸如抗坏血酸盐(Organisciak等,《眼科视觉科学研究》(Invest Ophthal Vis Sci),261589-1598,1985)、二甲基硫脲(Organisciak等,《眼科视觉科学研究》(Invest Ophthalmol Vis Sci),331599-1609,1992;Lam等,《眼科构造》(Arch Ophthalmol),1081751-1752,1990)、α-生育酚(Kozaki等,Nippon Ganka Gakkai Zasshi,98948-954,1994)和β-胡萝卜素(Rapp等,《最新眼科研究》(Cur Eye Res),15219-232,1995);钙拮抗剂,诸如氟桂嗪(Li等,《眼科实验研究》《Exp Eye Res》,5671-78,1993;Edward等,《眼科构造》(Arch Opht halmol),109,554-622,1992;Collier等,《眼科视觉科学研究》(Invest OphthalmolVisSci),36S516);生长因子,诸如碱性成纤维细胞生长因子、脑衍生神经因子、睫状神经营养因子和白细胞介素-1-β(LaVail等,《国家科学院学报》(Proc Nat Acad Sci),89,11249-11253,1992);糖皮质激素,诸如甲泼尼龙(Lam等,Graefes Arch Clin ExpOphthal,231,729-736,1993)和地塞米松(Fu等,《眼科实验研究》《ExpEye Res》,54,583-594,1992);铁螯合剂,诸如去铁胺(Li等,《最新眼科研究》(CurEyeRes),2,133-144,1991);NMDA-拮抗剂,诸如依利罗地和MK-801(Collier等,《眼科视觉科学研究》(InvestOphthalmol Vis Sci),40S159,1999)。
已经注册了5-羟色胺能5-HT1A兴奋剂(即丁螺环酮、齐培瑞西酮(ziprasidone)、乌拉地尔)或开始将其用于治疗焦虑、高血压、精神分裂症、精神病或两极抑郁症。此外,已经证实5-HT1A兴奋剂在各种动物模型中具有神经保护作用且在临床上正在评估将它用于治疗大脑局部缺血、头部创伤、阿尔茨海默病、多发性硬化和肌萎缩性侧索硬化。经证实5-HT1A兴奋剂8-OH-DPAT(8-羟基-2-(二正丙氨基)四氢化萘)和依沙匹隆可预防大鼠颅底前庭细胞外侧核中NMDA诱发的兴奋性毒性神经元损害(Oosterink等,《欧洲药理学杂志》(Eur JPharmacol),358147-52,1998),使用Bay-x3702给药显著减少了大鼠急性真皮下血肿模型中的局部缺血损害(Alessandri等,《大脑研究》(Brain Res),845232-5,1999),而8-OH-DPAT、Bay-x3702乌拉地尔、吉哌隆和CM57493显著减小了大脑中动脉闭合后大鼠(Bielenberg和Burkhardt,《中风》(Stroke),21(Suppl)IV161-3;Semkova等,《欧洲药理学杂志》(Eur J Pharmacol),359251-60,1998;Peruche等,J Neural Transm-Park Dis DementSect,873-83,1994)和小鼠(Prehn等,《欧洲药理学杂志》(Eur JPharmacol),203213-22,1991;Prehn等,《大脑研究》(BrainRes),63010-20,1993)皮层梗塞的体积。此外,已经证实使用有效的5-HT1A兴奋剂SR57746A治疗大鼠对4-血管短暂普遍局部缺血、硫酸长春新碱诱发的隔海马损害、丙烯酰胺诱发的外周神经病变和坐骨神经粉碎后具有神经保护作用(Fournier等,《神经科学》(Neurosci),55629-41,1993)且已经证实该方法可延缓pmn小鼠体内运动神经元变性的发展(Fournier等,《英国药理学杂志》(Br JPharmacol),124811-7,1998)。
已经公开了这种类型的化合物可用于治疗青光眼(减轻和控制眼内压(IOP)),例如,参见WO98/18458(DeSantis等)和EP0771563A2(Mano等)。Osborne等(《眼科学》(Ophthalmologica),第210卷308-314,1996)教导了8-羟基二丙氨基四氢化萘(8-OH-DPAT)(一种5-HT1A兴奋剂)可降低家兔的IOP。Wang等(《最新眼科研究》(Current Eye Research),第16卷(8)769-775,1997年8月和IVOS,第39卷(4),S488,1998年3月)公开了一种α1A拮抗剂和5-HT1A兴奋剂5-甲基乌拉地尔可降低猴子的IOP,不过,这是由于其α1A受体活性所导致的。此外,将5-HT1A拮抗剂公开为用于治疗青光眼(升高的IOP)(例如WO92/0338,McLees)。此外,DeSai等(WO97/35579)和Macor等(US5,578,612)公开了5-HT1和5-HT1样兴奋剂在治疗青光眼(升高的IOP)中的用途。这些抗偏头痛的化合物是例如舒马普坦和那拉曲坦这样的5-HT1B、D、E、、F兴奋剂和相关化合物。
附图简述附

图1A和1B表示对使用8-OH-DPAT全身给药并接触严重光氧化性损害的大鼠ERGa-和b-波功能的保护作用。
附图2表示对使用8-OH-DPAT全身给药并接触严重光氧化性损害的大鼠的视网膜形态(光感受器和RPE)的保护作用。
附图3表示对使用丁螺环酮全身给药并接触严重光氧化性损害的大鼠的视网膜DNA、视网膜细胞数测定值(A)的保护作用和对视网膜形态(光感受器)的完全保护作用。
附图4A和4B表示对使用SR-57746A全身给药并接触严重光氧化性损害的大鼠ERGa-和b-波功能的保护作用。
发明概括本发明涉及已经发现用于治疗视网膜外层疾病的5-HT1A兴奋剂,所述的视网膜外层病特别是AMD、RP和其它形式的遗传性变性视网膜疾病;视网膜脱离和撕裂;黄斑起皱(macular pucker);影响视网膜外层的局部缺血;糖尿病性视网膜病;与包括光动疗法(PDT)在内的激光疗法(滤线栅(grid)、焦点(focal)和全视网膜)相关的损害;创伤;手术(视网膜易位、视网膜下手术或玻璃体切割术)或光诱发的医源性视网膜病;和视网膜移植物的保护。
优选实施方案的描述已经证实5-羟色胺能5-HT1A兴奋剂是对中枢神经系统的不同损害后的有效神经保护剂。我们已经令人意外地证实8-OH-DPAT(8-羟基-2-(二正丙氨基)四氢化萘)、丁螺环酮和SR-57746A在视网膜中表现出有效的神经保护活性并预防对光感受器和RPE细胞的光诱发的编程性细胞死亡。我们已经发现用丁螺环酮治疗可以完全预防光氧化性诱发的视网膜病并显著减少了视网膜DNA的损耗和ONL变薄。这些化合物中某些的安全优点使得它们特别适合于急性和慢性疗法。这类活性剂具有治疗各种视网膜外层变性疾病的用途。
在我们的光损害的实例中,抗氧化剂是无效的(α-生育酚)或在高剂量下在-定程度上有效(抗坏血酸盐、维生素E类似物)。类似地,某些钙拮抗剂(氟桂利嗪、尼卡地平)基因适当程度的疗效,而其它钙拮抗剂(硝苯地平、尼莫地平、维拉帕米)在预防光诱发的功能或形态改变方面无效。然而,已经发现5-HT1A兴奋剂在这些光损害实例中的功效在100倍以上且由此用于治疗视网膜外层疾病。
本发明关注任意药物上可接受的5-HT1A兴奋剂、包括药物上可接受的盐在治疗视网膜外层疾病中的用途(化合物)。药物上可接受的指的是可以安全地用于治疗视网膜外层疾病的化合物。本文所用的视网膜外层包括RPE、光感受器、苗勒细胞(在其隆起部分延伸入视网膜外层的范围内)和外丛状层。配制这些化合物以用于全身或局部眼部给药。视网膜外层疾病包括急性和慢性环境诱发的(创伤、局部缺血、光氧化性应激反应)正常或遗传倾向个体中光感受器和RPE细胞变性情况。这种情况包括、但不限于AMD、RP和其它形式的遗传性变性视网膜疾病;视网膜脱离和撕裂;黄斑起皱(macular pucker);影响视网膜外层的局部缺血;糖尿病性视网膜病;与包括光动疗法(PDT)在内的激光疗法(滤线栅(grid)、焦点(focal)和全视网膜)相关的损害;热或冷冻疗法,创伤;手术(视网膜易位、视网膜下手术或玻璃体切割术)或光诱发的医源性视网膜病;和视网膜移植物的保护。
本发明的化合物对具有范围约达500nM(优选低于100nM)的IC50值的5-HT1A受体具有有效的亲合性。这些化合物也是具有范围约达1μM(优选低于500nM)的IC50值的完全或部分兴奋剂。用于本发明的有代表性的5-HT1A兴奋剂包括、但不限于坦度螺酮、乌拉地尔、齐培瑞西酮、盐酸瑞吡诺坦(repinotan hydrochloride)、盐酸扎利普罗登(xaliproden hydrochloride)(SR-57746A)、丁螺环酮、氟辛克生、EMD-68843、DU127090、吉哌隆、阿奈螺酮、PNU-9566、AP-521、氟利苯噻仑(flibanserin)、MKC-242、来索吡琼、盐酸沙立唑坦(sarizotan hydrochloride)、Org-13011、Org-12966、E-5842、SUN-N4057和8-OH-DPAT。
可以使用下列方法测定本发明的受体结合和兴奋剂活性。
方法15-HT1A受体结合试验使用在中国仓鼠卵巢(CHO)细胞中表达的人克隆受体、将(3H)8-OHDPAT用作配体来进行5-HT1A结合研究。在约40个体积的50mMTris pH7.4中将来自表达克隆的5-HT1A受体(由Biosignal,Inc.,Montreal,Canada为NEN生产的)的中国仓鼠卵巢细胞(CHO)的膜匀化5秒。使用Beckman Biomek 2000自动机(BeckmanInstruments,Fullerton,CA)制备药物稀释液。在27℃下将膜制备物、测试化合物和[3H]8-OH-DPAT(NEN,Boston,MA)在相同缓冲液中温育1小时。通过在预浸入0.3%聚乙烯亚胺的Whatman GF/B玻璃纤维滤膜上的快速真空过滤来终止试验。使用液体闪烁光谱法测定结合的放射性。使用非线性曲线固定程序分析数据(Sharif等,《药物药理学杂志》(J Pharmac Pharmacol),51685-694,1999)。
还使用来自牛和大鼠脑(局部来源)和人皮层膜的膜制备物进行了配体结合研究。切割出特定的大脑区域、在10个体积的0.32M蔗糖中匀化并以700xg离心10分钟。以43,500xg将所得上清液离心10分钟并使用10秒polytron处理将沉淀重新悬浮于50mMTris-HCl(pH7.7,25℃)中。将等分部分保存在-140℃下。为了除去内源性5-羟色胺,在37℃下将所述制备物温育10分钟,此后进行该实验。通过在WhatmanGF/C滤膜上快速过滤、使用Brandel细胞收集器来终止试验保温过程。使用Cheng-Prusoff等式计算Ki值(DeVry等,《药物实验疗法杂志》(J Pharm Exper Ther),2841082-1094,1998。)方法25-HT1A功能试验可以使用各种方法测定本发明化合物的功能以便评价5-HT1A兴奋剂的功能活性。一种这类的试验使用来自雄性Sprague-Dawley大鼠的海马切片来进行,从而测定了对毛喉素刺激的(-stimated)腺苷酸环化酶的抑制作用(《药化杂志》(J Med Chem),4236,1999;《神经化学杂志》(J Neurochem),561114,1991;《药物实验疗法杂志》(J PharmExper Ther),2841082,1998)。在25℃下将大鼠海马膜在25个体积的含有1mM EGTA、5mM EDTA、5mM二硫苏糖醇和20mM Tris-HCI、pH7.4的0.3M蔗糖中匀化。以1,000xg将该匀化物离心10分钟。随后以39,000xg将上清液离心10分钟。以约1mg/ml的蛋白质浓度将所得沉淀重新悬浮于匀化缓冲液中并将等分部分保存在-140℃下。在应用前,将该膜在Potter-Elvehjem匀化器上再次匀化。将50μl的膜混悬液(50μg蛋白质)加入到含有100mM NaCl、2mM乙酸镁、0.2mM ATP、1mMcAMP、0.01mM GTP、0.01mM毛喉素、80mM Tris-HCl、5mM磷酸肌酸、0.8U/μl肌酸磷酸激酶、0.1mM IBMX、1-2μCiα-[32P]ATP的保温缓冲液中。通过向该保温混合物(30℃下预温热5分钟)中添加膜溶液来启动与测试化合物的保温过程(30℃下10分钟)。按照Salomon的方法测定[32P]cAMP(《环核苷酸研究进展》(Adv Cyclic Nucleotide Res),1035-55,1979)。使用Bradford(《生化分析》(Anal Biochem),72248-254,1976)试验测定蛋白质。
另外可以按照Schoeffter等的方法测定重组人受体中的功能活性(《神经药物学》(Neuropharm),36429-437,1997)。使用重组人5-HT1A受体转染的海拉细胞在24孔平板上生长至融合。将该细胞用1mlHepes-缓冲盐水(按mM计)(NaCl 130,KCl 5.4,CaCl21.8,MgSO40.8,NaH2PO40.9,葡萄糖25,Hepes 20,pH7.4)和酚红5mg/l冲洗。在37℃下将细胞在0.5ml盐水中用6μCi/ml的[3H]腺嘌呤(23Ci/mmol,Amersham,Rahn AG,Zurich,Switzerland)标记2小时。随后用1ml含有1mM异丁基甲基黄嘌呤的缓冲盐水将平板冲洗2次。在有或没有10μM毛喉素和测试化合物存在的情况下将细胞在1ml的该溶液中保温15分钟(37℃)。然后除去缓冲液并加入含有0.1mM cAMP和0.1mM ATP的1ml 5%三氟乙酸(TCA)以便提取样品。在4℃下30分钟后,使TCA提取物在Dowex AG50W-X4和氧化铝柱上进行层析分离(Salomon,《酶学方法》(Meth Enzymol),19522-28,1991)。将产生的环AMP计算为[3H]cAMP/([3H]cAMP+[3H]ATP)之比。将方法1和2中所述的上述步骤用于生成下列数据。
表1.5-HT1受体结合和功能试验数据
一般对变性疾病而言,通过口服方式给予本发明的5-HT1A兴奋剂,其中这些化合物的每日剂量范围约为0.001-约500毫克。优选的总每日剂量范围约为1-约100毫克。诸如玻璃体内、外用眼部、经皮贴剂、真皮下、非肠道、眼内、结膜下或眼球后或腱下(subtenon’s)注射、经巩膜(包括离子电渗透法)或缓释可生物降解聚合物或脂质体这样的非口服给药可能还要求调节提供治疗有效量的所述化合物所必不可少的总每日剂量。还可以以眼部灌洗溶液的形式给予5-HT1A兴奋剂。浓度应在约0.001μM-约100μM、优选约0.01μM-约5μM的范围。
可以将5-HT1A兴奋剂混入各种类型的用于输送至眼部的眼用制剂(例如通过局部、隔室内(intracamerally)或通过植入物的方式)。可以将它们与眼科可接受的防腐剂、表面活性剂、粘度增强剂、胶凝剂、渗透促进剂、缓冲剂、氯化钠和水混合而制成无菌的眼用含水混悬剂或溶液或特性凝胶或在原位形成凝胶。可以通过将所述化合物溶于生理上可接受的等渗含水缓冲液来制备眼用溶液制剂。此外,所述的眼用溶液可以包括眼科可接受的表面活性剂以便有助于溶解所述的化合物。该眼用溶液可以含有诸如羟甲基纤维素、羟乙基纤维素、羟丙基甲基纤维素、甲基纤维素、聚乙烯吡咯烷酮等这样的粘度增强剂以便改善所述制剂在结膜囊中的保留程度。为了制备无菌眼用软膏制剂,将活性组分与诸如矿物油、液体羊毛脂或白凡士林这样的适宜载体中的防腐剂混合。可以按照用于类似眼用制剂的公开配制方法通过将所述的活性组分悬浮于由例如卡波姆-940等这样组合制备的亲水性基质来制备无菌眼用凝胶制剂;可以混入防腐剂和张度剂。
如果经局部给药,那么优选将5-HT1A兴奋剂配制成pH约为4-8的局部用眼用混悬剂或溶液。5-HT1A兴奋剂在这些制剂中的含有量通常在.001%-5%(重量)、而优选.01%-2%(重量)的范围。因此,就局部给药而言,根据有技能的临床医师的考虑,可以给眼部表面滴1-2滴这些制剂,每天1-4次。
根据有技能的临床医师的考虑,按照本发明每天给予1-4次下列局部用眼用制剂是有用的。
实施例1
实施例2
实施例3
实施例4
实施例5
实施例6
方法3大鼠光氧化性诱发的视网膜病模型中的神经保护作用在我们的光氧化性诱发视网膜病实例中评价这些5-HT1A兴奋剂的保护作用。
光化学损害的诱导.通过对在黑暗中适应的大鼠(24小时)暴露于(220fc)蓝光(半振幅带通=435-475nm)6小时而诱发光化学损害。使动物在黑暗中恢复5天,此后以电诊断方式评价视网膜功能。在这种光暴露过程中使大鼠单独寄居在洁净的聚碳酸酯笼中。
电诊断评价.在24小时黑暗适应期后记录来自麻醉大鼠的视网膜电图(ERG)。通过腹膜内注射盐酸氯胺酮(75mg/Kg)和赛拉嗪(6mg/Kg)使大鼠麻醉。通过观测ganzfeld而导出从位于角膜上的铂-铱电线圈电极中记录的闪烁ERGs。将对一系列强度增加的光闪烁的电反应数字化以便分析暂时波形特征和反应电压-log强度(VlogI)的关系。ERGa-波的改变与光感受器和视网膜色素上皮损害有关,而对视网膜内层的损害反映在ERG b-波的改变中。
视网膜形态的评价.眼组织获自对照和药物或载体给药的大鼠且通过将它们浸入2%低聚甲醛和2%戊二醛的混合物而固定。使固定的眼球在浓度递增的乙醇系列中脱水、将它们包埋在JB-4塑料树脂内并使用与显微镜连接的定量计算机影象分析系统分析1-1.5-微米厚的切片。测定视网膜层厚度(视网膜色素上皮,RPE;外核层厚度,ONL;内核层厚度,INL;和光感受器内层和外层片段的长度,IS+OS)。
DNA改变的评价.通过CO2吸入对白化体大鼠实施安乐死并将各视网膜冷冻在单独的管中。已经将各视网膜在0.8ml(2.0M NaCl,50mMNaPO4,pH7.4,2mM EDTA)中进行了超声处理而产生了均匀的匀化物并将其冷冻保存。用含有1.1μg/ml二苯并咪唑(Hoechst33258)的2.0MNaCl、50mM NaPO4、pH7.4、2mM EDTA将各样品的等分部分(0.1ml)稀释10倍。使用溶于相同缓冲液的0-25μg/ml牛胸腺DNA构建标准曲线。将一式三份的0.2ml各视网膜样品的等分部分和标准品吸移入96孔平板以用于在Cytofluor II中进行荧光测定。激发波长为360nm,而发射波长为460nm。
受试者和给药.将雄性Sprague Dawley大鼠随机分成药物和载体实验组。使对照大鼠在正常循环的光接触条件下寄居在其笼中。在6小时蓝光接触前48、24和0小时对全部大鼠给药。给药方案如下1.)8-OH-DPAT(8-羟基-2-(二正丙氨基)四氢化萘)在光接触前给大鼠皮下(SC)注射三次载体(N=10)或8-OH-DPAT(0.5mg/kg[N=5]或1.0mg/kg[N=10])。将5只大鼠用作对照。通过分析ERG反应并测量视网膜形态的改变来评价视网膜的保护作用。
2.)丁螺环酮为了进行DNA定量,在光接触前给6只大鼠/治疗组腹膜内给予载体或丁螺环酮(0.5和1mg/kg)。将来自7只正常大鼠的视网膜用作对照。为了评价视网膜形态的改变,对大鼠腹膜内给予载体(N=8)或丁螺环酮(1.0mg/kg[N=9])。将6只大鼠用作对照。通过对视网膜DNA改变进行定量并测量视网膜形态的改变来评价视网膜的保护作用。
3.)SR-57746A对大鼠腹膜内给予载体(N=15)或SR-57746A(0.5mg/kg[N=5]或1mg/kg[N=15])。将11只大鼠用作对照。在5天恢复期后分析ERG以便评价视网膜的保护作用。
8-OH-DPAT评价结果.5天恢复期后测定的蓝光接触6小时使得ERG反应振幅比在正常时显著减小(ANOVA,p<0.001;Bonferroni t-检验,p<0.05)(附图1A和B)。蓝光接触使得载体给药的大鼠比对照组在最大a-和b-波振幅上减小了75%。此外,阈值反应较低且在较亮的闪烁强度下产生。
给予8-OH-DPAT的大鼠表现出对这种光氧化性诱发的视网膜病的视网膜内外层功能的剂量依赖性保护作用(附图1A和B)。给予8-OH-DPAT(0.5mg/kg)的大鼠在最大a-和b-波反应振幅方面与载体给药的大鼠没有差异且约为对照振幅的27%。然而,来自8-OH-DPAT(1.0mg/kg)给药大鼠的最大a-和b-波反应振幅分别约为正常值的53%和61%且显著高于在载体给药大鼠中测定的反应(附图1A和1B)。
与这些ERG改变一致,3周恢复期后对这些视网膜的形态分析证实光感受器细胞显著(ANOVA,p<0.01)消耗,从而缩短了光感受器内层+外层片段长度并使载体给药的动物RPE平整。没有检测到INL厚度的显著改变。与对照组相比,ONL厚度减少了73%,内层+外层片段长度减少了82%,且RPE厚度减少了59%(附图2)。在给予了8-OH-DPAT(0.5mg/kg)的大鼠中观察到的光损害与载体给药的大鼠中测定的损害没有显著差别。尽管ERGs约减少了63%,但是ONL厚度减少到53%,光感受器片段长度减少了60%,且RPE厚度减少了34%。然而,在给予了8-OH-DPAT(1.0mg/kg)的大鼠中观察到的光损害显著不同于在载体给药大鼠中的观察结果。尽管ERG反应振幅大于正常值的50%,但是与载体给药的大鼠相比,ONL厚度为2.4倍厚度、光感受器片段长度为2.9倍且RPE厚度为1.9倍。
丁螺环酮评价结果.正如在附图3A中所观察到的,载体给药的视网膜DNA水平显著低于对照水平约30%(ANOVA,p=0.017)。在给予载体或0.1mg/kg丁螺环酮的组之间没有测定出显著差异。在给予丁螺环酮(1mg/kg)的大鼠中测定了视网膜的保护作用。视网膜DNA水平显著高于载体给药大鼠中测定的视网膜DNA水平,但与对照组相比没有显著性差异。
蓝光接触6小时使得光感受器数量显著减少(ANOVA,p<0.05)。在4周恢复期后对这些视网膜的形态分析证实载体给药的大鼠中外核层比对照组薄54%(附图3B)。然而,在正常与丁螺环酮治疗的大鼠之间测定的ONL厚度方面没有显著性差异。在给予丁螺环酮(1mg/kg)的大鼠中,与正常大鼠的30.4μ相比,ONL厚度为28.3μ。
SR-57746A评价结果.在光接触的给予了SR-57746A(0.5和1.0mg/kg)的大鼠中测定了对视网膜功能的显著保护作用。载体给药大鼠与对照组相比,最大a-和b-波反应振幅减少到50%(附图4A和B)。在给予了SR-57746A(0.5mg/kg)的大鼠中的最大反应为对照组的82%而在给予了1mg/kg的大鼠中为正常值的70%。
结论.这些5-HT1A兴奋剂(8-OH-DPAT、丁螺环酮和SR-57746A)在这种视网膜变性疾病的氧化性模型中表现出良好的功效和效能。在连续3天给予低至1mg/kg剂量的大鼠中获得了功能和结构保护作用。
权利要求
1.一种用于治疗视网膜外层疾病的方法,该方法包括给予药物有效量的具有5-HT1A兴奋剂活性的化合物的步骤。
2.权利要求1所述的方法,其中所述的化合物选自坦度螺酮、乌拉地尔、齐培瑞西酮、盐酸瑞吡诺坦、盐酸扎利普罗登(SR-57746A)、丁螺环酮、氟辛克生、EMD-68843、DU127090、吉哌隆、阿奈螺酮、PNU-95666、AP-521、氟利苯噻仑、MKC-242、来索吡琼、盐酸沙立唑坦、E-5842、SUN-N4057、Org-13011、Org-12966和8-OH-DPAT组成的组。
3.权利要求1所述的方法,其中所述的疾病选自下列疾病组成的组AMD、RP和其它形式的遗传性变性视网膜疾病;视网膜脱离和撕裂;黄斑起皱;影响视网膜外层的局部缺血;糖尿病性视网膜病;与包括光动疗法(PDT)在内的激光疗法(滤线栅、焦点和全视网膜)相关的损害;创伤;手术(视网膜易位、视网膜下手术或玻璃体切割术)或光诱发的医原性视网膜病;和视网膜移植物的保护。
4.权利要求3所述的方法,其中所述的疾病是AMD。
5.权利要求3所述的方法,其中所述的化合物选自坦度螺酮、乌拉地尔、齐培瑞西酮、盐酸瑞吡诺坦、盐酸扎利普罗登(SR-57746A)、丁螺环酮、氟辛克生、EMD-68843、DU127090、吉哌隆、阿奈螺酮、PNU-95666、AP-521、氟利苯噻仑、MKC-242、来索吡琼、盐酸沙立唑坦、E-5842、SUN-N4057、Org-13011、Org-12966和8-OH-DPAT组成的组。
6.权利要求5所述的方法,其中所述的疾病选自AMD、RP和糖尿病性视网膜病组成的组。
全文摘要
本发明公开了用具有5-HT
文档编号A61P25/02GK1418121SQ01806764
公开日2003年5月14日 申请日期2001年2月23日 优先权日2000年3月17日
发明者R·J·小考里尔, M·A·卡宾, M·R·海尔伯格, T·R·迪安 申请人:爱尔康公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1