用于治疗急性骨髓性白血病的方法

文档序号:1199686阅读:250来源:国知局
专利名称:用于治疗急性骨髓性白血病的方法
技术领域
本发明属于分子医学领域,并提供了用于治疗急性骨髓性白血病的方法。这些方法是基于microRNA-9和/或microRNA_9* (microRNA_9/9*)参与疾病的发病机理这一观察,因为microRNA-9/9*的过表达在体外阻断髓系分化。更具体来说,发现在急性骨髓性白血病中,microRNA-9/9*在白血病转化中发挥作用。
背景技术
急性骨髓性白血病(AML)是显著非均质的恶性肿瘤疾病,其特征为被阻断在不同发育阶段的造血祖细胞不受控制的克隆增生。变化的临床生物学和预后主要由体细胞遗传学畸变例如t (15 ;17), t (8 ;21)、inv(16)、llq23、3q26畸变和单染色体核型(1-3)以及各种基因突变所决定。突出的实例是核仁磷酸蛋白-1 (NPMl)、fms样酪氨酸激酶受体(FLT3 内部串联复制(ITD))和CCAAT结合性转录因子CEBPA中的突变。这些获得性遗传畸变可能共存,并被认为在白血病的发生中协同合作。AML的发病机理是影响细胞分化、增殖和凋亡的多步骤过程,其最终导致造血祖细胞的恶性转化。发病机理的概念认为,白血病转化需要至少两个、在大多数情况下可能需要多个事件存在。一类遗传畸变(1类)导致增殖性信号传导的组成性活化,并包括信号传导分子例如RAS、FLT3和c-KIT。第二种类型的病变O类),例如作为染色体病变t (8 ;21)或 inv(16)的结果而形成涉及转录因子的融合基因,导致阻断了髓系分化。在小鼠模型中进行的各项研究确定了两种类型的遗传去调控在AML发生中的协同作用。关于AML中异常表达的基因存在大量信息。通常,AML及其临床亚类的诊断是基于被合称为分类物的基因表达情况分布图。最近已经证实,AML中的microRNA表达情况分析也揭示出非常独特的microRNA表达情况分布图(8)。MicroRNA是一类小的非编码RNA,其在转录后水平上调控基因表达(9)。它们通过与mRNA的3’非翻译区(3’ UTR)中的序列形成碱基对,从而抑制翻译或诱导它们的靶mRNA 转录本的降解,来调控基因表达。到目前为止,在人类中已描述了超过400种microRNA ;然而,这些调控性非编码RNA的确切功能仍有许多不明之处。差异表达的microRNA似乎确定了特定AML基因型的特征。几种已确定的致瘤和肿瘤抑制性microRNA例如microRNA_155、microRNA-21和let-7,似乎与AML的特定遗传亚型相关⑶。Lu等(10)显示了 microRNA基因活性模式可以辨别几种类型的人类癌症。他们在一种新的、基于珠子的流式细胞术microRNA表达情况分析方法中,测量了 217个编码 microRNA的基因的活性。因此,microRNA特征能够对癌症进行分类。该发现可以允许确定产生癌症的原始组织类型,并根据原始组织类型靶向治疗过程。Lu等观察到在肿瘤中与正常组织相比,microRNA普遍下调。此外,他们能够使用microRNA表达情况分布图成功分类分化不良的肿瘤,而信使 RNA表达情况分布图在应用于相同样品时极不准确。这些发现突出了 microRNA表达情况分析在癌症诊断中的潜力。最近的研究显示出microRNA表达特征与AML的(细胞)遗传学子集之间的关联 (8,11,12)。此外,已证实,包含 microRNA-233、-128a, -128b 和 let7b 的 microRNA 表达特征能够准确地将AML与急性成淋巴细胞白血病ALL区分开(13)。在一项AML研究中,microRNA-191和-199a的表达增加与不良的存活率相关 (12)。鉴定到了对不利预后具有预测性的细胞遗传学正常的AML的microRNA特征(14)。另一项研究显示,在实体和血液肿瘤两者中,let-7/miR_98簇通常被下调,而 microRNA-21、microRNA-155、microRNA_181b、microRNA-221 和 microRNA-222 经常被上调。Chen及其同事(16)首先从正常小鼠的骨髓中克隆了 microRNA,并发现 microRNA-223、-142和-181优选表达在造血组织中。发现microRNA-233以低水平表达在 CD34+造血祖细胞(HPC)中,并且在朝向粒细胞的髓系分化过程中,该表达增加。尽管这些以及其他研究为AML的诊断提供了重要信息,但是它们没有为AML的新疗法提供见解,因为尚未确定特定基因或microRNA的过表达或低表达是疾病发病机理的附带现象,还是其原因。最近,关于microRNA在癌症治疗中的现实意义仅出现了少量出版物。一项将小鼠改变成产生过量c-myc——与几种癌症有关联的一种蛋白——的研究显示,miRNA 17-92多顺反子对癌症的发生有影响。被工程化改造成生产过量的在淋巴瘤细胞中发现的microRNA 类型的小鼠,在50天内发生疾病并在两周后死亡。相反,没有过量microRNA的小鼠活到超过100天(17)。这些研究表明非编码RNA、特别是microRNA能够调节肿瘤形成,并暗示 microRNA-17-92簇是潜在的人类致癌基因。与W2 ;11)直接相关的micr0RNA-12^的过表达,在体外似乎废止了髓细胞分化, 暗示该microRNA在白血病生成中起作用(18)。MicroRNA-155在小鼠骨髓中的过表达扩增了具有髓系肿瘤特征性的病理特点的粒细胞/单核细胞群(19)。在AML中,microRNA-155的上调与激酶受体Fms样酪氨酸激酶_3 (Flt3)、所谓的 FLT3-ITD基因中的突变有关。在最近的研究中,已建议由MLL融合蛋白引起的microRNA-196b表达增力Π,在体外通过增加细胞增殖能力和存活率以及部分阻断分化,造成了 AML的发生00)。另一项研究发现,两种类型的microRNA (miRNA-17-5p和miRNA_20a)抑制调控细胞增殖的E2F1蛋白。Johrmidis等Ql)在小鼠中使用功能失活的等位基因,证实了 microRNA-223通过靶向一种促进髓系祖细胞增殖的转录因子Mef2c,对祖细胞增殖和粒细胞分化进行负调控。使用急性早幼粒细胞白血病细胞系模型,已经提出了一种microRNA-223、CEBPA 和NFlA的自调控模型(22)。此外,发现PU. 1在小鼠中活化microRNA-223转录(23)。鉴定了在细胞系HL60的单核细胞/巨噬细胞分化过程中明显差异表达的 microRNA04)。除了从细胞系模型获得的结果(25,26)之外,关于使用人类原初细胞在正常髓系分化过程中microRNA的表达情况分布图,只有非常有限的数据可用07)。
功能研究已证实let-7/miR-98负调控RAS (28)和v-myc髓细胞瘤病毒致癌基因同系物(MYC) ( ),而microRNA-21负调控程序化细胞死亡4 (PDCD4) (30)和磷酸酶与张力蛋白同系物(PTEN) (31)。尽管存在这些发现,但对于用于治疗癌症、特别是用于治疗急性骨髓性白血病 (AML)的其他和更特异性的靶点,仍存在着需求。发明_既述我们鉴定到与正常造血祖细胞相比在AML中具有异常表达的候选microRNA。 MicroRNA-9/9*在大量AML样品中显示出强烈过表达,并积极参与转化过程。此外,我们发现microRNA-9/9*为急性骨髓性白血病的治疗提供了有吸引力的靶点。我们的实验显示,在体外,在鼠类生长因子依赖性髓细胞系32D中,microRNA-9/9*诱导了粒细胞分化中的阻断。这导致我们得出结论,可以通过干扰microRNA-9/9*与其靶之间的结合来有效地治疗急性骨髓性白血病。因此,本发明涉及用于治疗AML的方法,其中向需要的患者给药包含能够与 microRNA-9/9*与其靶之间的结合发生相互作用的化合物作为活性成分的治疗组合物。发明详述我们发现在急性骨髓性白血病AML中,microRNA-9/9*在白血病转化中发挥作用。当在本文中使用时,术语miRNA 9/9*打算是指microRNA 9和/或microRNA 9*。MicroRNA是18-25个核苷酸的单链RNA,并从前体分子产生。microRNA在基因组中编码,并由RNA聚合酶II转录成被称为pri-microRNA的原始转录本,其在核中被核RNase 111 Drosha和双链RNA结合蛋白Pasha/DGCR8加工成一种或多种前体 microRNA (pre-microRNA) (32,33)。在细胞质中,另一种被称为 Dicer 的 RNaseIII 将 pre-microRNA进一步加工成双链的、23个核苷酸的成熟microRNA。该microRNA双联体(34)包含掺入到RNA诱导的沉默复合物(RISC)中的链(microRNA链)以及互补链 (microRNA*链),后者通常被降解。存在几种成熟microRNA*链也共表达的例外情况。对于microRNA_9来说情况正是如此,因为microRNA-9*通常也表达,并且不被降解。带有成熟microRNA-9和/或microRNA_9*的有功能的RISC能够与它们的靶基因 mRNA的3' UTR结合,引起mRNA降解或蛋白质翻译的抑制(35,36)。编码microRNA-9 和 microRNA-9* 的基因位于人类 1 号(miR-9-l)、5 号(miR-9-2) 和15号(miR-9-;3)染色体上。在这些不同的microRNA-9前体加工后,产生了很大程度上互补的成熟 microRNA-9 (UCUUUG⑶UAUCUAGCUGUAUGA,SEQ ID NO 1)和 microRNA-9* (AUAAA GCUAGAUAACCGAAAGU, SEQ ID NO :2)。MicroRNA-9富集在脑中,并在脑部发育和谱系提交中显得重要(37,38)。在斑马鱼中,microRNA-9对于中脑-后脑边界确定来说是重要的(39)。在小鼠皮层发育中, microRNA-9似乎是Cajal-Retzius细胞的适当分化所必需的00)。MicroRNA-9调控REST 和CoREST,并且在亨廷顿舞蹈症中被下调Gl)。microRNA-9在人类神经母细胞瘤细胞系中被视黄酸上调,并且在神经母细胞瘤原发肿瘤中被下调G2)。在患有NPMc+亚型(Ramiro 等,Proc. Natl. Acad. Sci. USA, (2008) 105,3945-3950)和 llq23 亚型(Jongen-Lavrencic 等,Blood(2008) 111 ;5078-5088)的AML患者中,已经描述了 microRNA 9表达的增加。
在β细胞中表达的microRNA-9的增加的表达损害了葡萄糖刺激的胰岛素释放 (43)。随后分泌功能的扰乱与granUphilin(SYTL4)的水平增加有关,它是一种对胰岛素胞吐现象发挥负调节作用的Rab3/Rab27效应蛋白。 也已显示,在支气管癌发生过程中的连续阶段中,MicroRNA-9差异表达(44)。 Roccaro等(45)鉴定到Waldenstrom巨球蛋白血症特异性的microRNA特征,其具有降低的 microRNA-9表达。最近已经报道,在急性成淋巴细胞白血病(ALL)中,microRNA-9的超甲基化和表达降低与这些患者的临床结果有关联(46)。我们发现microRNA-9和microRNA9*在原发人类AML中都显著过表达。我们使用微阵列显著性分析(SAM)执行了监督分析。将所有AML样品的MicroRNA表达与正常骨髓⑶34+细胞的microRNA表达模式进行比较。最具鉴别性的microRNA之一是microRNA-9和microRNA-9*,两者在AML中显示出上调超过100倍。这显示在描述microRNA-9的

图1和描述microRNA 9和9*的图2禾口 3 中。对microRNA-9*获得的结果与对microRNA 9获得的结果,如果不是完全一致,也是相当的。此外,我们发现在正常的髓细胞生成过程中,microRNA-9和microRNA9*不表达或仅以非常低的水平表达。我们研究了 microRNA-9和microRNA9*在造血细胞分化中的作用, 其中我们在来自正常骨髓的高度纯化的细胞群的整个髓系分化过程中以及正常人类CD34+ 细胞的体外髓系分化测定过程中,评估了它的表达。使用两种方法,在髓系祖细胞中mi croRNA-9和mi croRNA_9*的表达处于定量 RT-PCR测定法的检测水平上,并且在粒细胞通过早幼粒细胞、晚幼粒细胞直至成熟中性粒细胞的分化进程中也是如此。这显示在图4中。这些数据显示出microRNA-9和microRNA-9*在正常髓系分化中没有功能。我们得出结论,如上详述的microRNA-9/9*在AML中的异常表达与白血病生成有关,而不是反映了 AML的分化阶段。此外,我们发现在体外,miRNA-9/9*在32D细胞(鼠髓性白血病细胞系)和鼠原初骨髓细胞的髓系分化中诱导阻断。为此,将microRNA-9/9*通过反转录病毒转导到32D细胞系中。已知在向培养基添加白介素-3(IL-3)时该细胞系增殖,但是当用粒细胞集落刺激因子(G-CSF)代替IL3时能够朝向中性粒细胞分化。使用32D细胞的血液细胞学(cytospins)细胞染色,我们在IL-3条件下观察到分化的阻断,在G-CSF条件下观察到持续的细胞增殖(图5)。此外,也将microRNA-9和microRNA-9*导入鼠原初骨髓细胞。 在体外,microRNA-9/9*的过表达导致成熟中性粒细胞(⑶llb+Grl+细胞)数量减少,正如通过流式细胞术所确定的。这进一步证实了我们在32D细胞系中的发现。在使用G-CSF的分化测定过程中的各个时间点(第0、3、7、10、15日)执行了 Cytospin染色。用对照载体转导的32D细胞从第O日的母细胞分化到第7日的完全成熟的粒细胞。有趣的是,在用microRNA-9/9*转导的32D细胞中,我们观察到分化的阻断,因为在第7日以及所有后面的时间点没有观察到成熟粒细胞。此夕卜,将microRNA-9/9*导入鼠原初骨髓细胞。使用反转录病毒进行的microRNA-9/9*过表达,在体外导致通过免疫表型分型检测的成熟中性粒细胞 (⑶llb+Grl+细胞)百分率的降低。通过将原初人类AML细胞与miRNA 9*抑制剂相接触,我们能够抑制该细胞的增殖。这显示在图6至11中。将基于LNA(锁核酸)的抗miR-9*反义抑制剂或对照抑制剂, 使用150mM的浓度通过转染导入新鲜分离的AML母细胞。在各种细胞因子刺激条件下,使用[3H]胸苷掺入测定法,一式三份测量了 AML野生型母细胞或用对照和miR-9*抑制剂转染的细胞的增殖。从不同患者获得的两个独立的AML样品,与对照抑制剂和野生型对照细胞相比,在用抗miR-9*抑制剂处理后显示出细胞增殖的降低。概 括来说,我们发现microRNA-9/9*过表达引起有功能表型,即髓系分化的阻断。 基于这些结果,我们得出结论,在AML中,microRNA-9/9*在白血病转化中发挥作用。我们也能显示,microRNA-9/9*抑制剂确实有效阻断了 AML母细胞的增殖。同时,可以证明这些抑制剂是用于在AML中抑制细胞增殖的有效的治疗化合物,换句话说,干扰microRNA-9或 microRNA-9*与其靶的结合的化合物可用于AML的治疗中。上面详述的发现使得干预microRNA-9/9*与其细胞靶的相互作用成为可能,由此提供了用于治疗AML的方法。因此,本发明提供了治疗AML的方法,其中向需要的患者给药包含能够与microRNA-9或9*与其靶之间的结合发生相互作用的化合物作为活性成分的治疗组合物。在可选方案中,干预可以在microRNA-9/9*的转录和/或加工水平上进行,以便降低细胞中成熟microRNA-9/9*的水平。因此,本发明还涉及用于治疗AML的方法,其中向需要的患者给药包含能够降低microRNA-9/9*、优选为成熟microRNA-9或9*的细胞水平的化合物作为活性成分的治疗组合物。这可以通过提供干扰前体microRNA-9/9*的转录或加工的化合物来实施。因此, 本发明优选涉及上述的方法,其中化合物能够干扰前体microRNA-9/9*的转录或加工。能够干扰microRNA-9和/或microRNA_9*与其靶的相互作用的化合物在本技术领域中是已知的。它们可以分成两类第一类化合物通过阻断结合位点或靶,使其不能被 microRNA-9/9*接近来干扰结合,第二类化合物与microRNA-9/9*结合,阻止它们与其靶结
口 O第一类化合物可以开发成使其特异性针对每种靶。这对于本领域技术人员来说是常规程序,因为microRNA-9/9*的RNA靶的序列是已知的,并可以容易地开发出互补核苷酸。为了开发这样的化合物,本领域技术人员应该意识到microRNA-靶识别的原理。 它们详述在 Brennecke 等,PLOS Biology, (2005) 3 (3) e85 ;0404_0418 中。也可以使用几禾中基于网络的计算机算法(www, targetscan. org ;www, pictart. org ;www, ebi. ac. uk/ enright-srv/microcosm/htdocs/targets/v5/predicting),根据 miRNA 禾中子禾口保守性来预测潜在的microRNA靶。在这种情况下,重要的是注意microRNA-9和microRNA-9*调控完全不同组的靶,因为它们不享有相同的种子序列。第二类能够干扰microRNA-9和/或microRNA-9*与其靶的相互作用的化合物,是与microRNA-9或9*结合并阻止它们与任何microRNA-9或9*靶结合的化合物类型。在优选实施方案中,能够干扰microRNA-9和/或microRNA-9*与其靶的相互作用的化合物,是包含与成熟microRNA-9或9*序列、更具体来说为SEQ ID NO :1和SEQ ID N0: 2中显示的序列基本上互补的核苷酸序列的化合物。优选情况下,这样的化合物与至少6个连续核苷酸,例如7、8、9、10、11、12、13、14、15个或更多核苷酸基本上互补。这样的化合物在生理条件下与microRNA-9/9*有效地杂交,以便阻止microRNA_9/9*与其靶结合。优选情况下,化合物与整个microRNA-9或microRNA-9*杂交。这样的化合物在本技术领域中是已知的,甚至是可商购的。这样的化合物的公知实例是所谓的 antagomir (Exiqon)禾口 antimir (Dharmacon)。 mi croRNA-9/9*的种子序列对于靶识别来说是重要的。种子序列由始于成熟 microRNA的5’的第2位的至少6个核苷酸构成。它可以在3’方向上延伸更远,但是通常被认为包含不超过8个核苷酸。因此,成熟microRNA-9的种子区包含核苷酸序列CUUUGG、 CUUUG⑶或CUUUGGUU。成熟mi croRNA-9*的种子区包含核苷酸序列UAAAGC、UAAAGCU或 UAAAGCUA。因此,本发明优选涉及能够与microRNA-9或microRNA-9*的种子序列发生相互作用的化合物。优选情况下,这样的化合物能够在生理条件下与种子序列杂交。优选的是具有与microRNA-9/9*的种子序列基本上互补的核苷酸序列的化合物。这样的化合物和其他化合物可以使用已知技术容易地发现,例如使用海肾萤光素酶测定法,其中允许microRNA-9或9*与候选野生型和突变的靶的3’ UTR结合。其他可用于本发明的化合物也可以通过免疫印迹法(Western测定法)来发现,其中可以检测候选 microRNA9/9*靶的蛋白水平,并在具有或不具有microRNA9/9*的过表达与抑制性化合物的组合的细胞中进行比较。因此,本发明还涉及能够与microRNA-9/9*与其靶之间的结合发生相互作用的化合物,用于AML的治疗。此外,本发明涉及能够降低microRNA-9/9*的细胞内水平的化合物,用于AML的治疗。概括来说,本发明涉及能够与microRNA-9和/或microRNA-9*与其靶之间的结合发生相互作用的化合物,用于AML的治疗。更具体来说,本发明涉及用于治疗AML的化合物,其中化合物能够与microRNA-9/9*结合,更具体来说化合物包含能够与microRNA-9和 /或microRNA-9*结合的核苷酸序列。核苷酸序列可以是包含蛋白质核酸(PNA)或锁核酸 (LNA)或任何其他形式的核酸或核酸结合序列的序列。换句话说,本发明涉及用于治疗AML的方法,其中向需要这种治疗的患者给药能够干扰microRNA-9/9*与其靶的结合的化合物。在优选实施方案中,化合物包含与成熟microRNA-9或microRNA-9*的序列基本上互补的核苷酸序列。这样的化合物可以由一串至少6个、优选7、8、9或10个核苷酸的核苷酸链构成。更长的核苷酸区段也是可行的。优选情况下,化合物与种子序列结合。这可以通过与种子序列杂交的序列来实现, 即它包含与microRNA-9和/或microRNA-9*的从成熟microRNA的5’末端第二个核苷酸开始的至少6个核苷酸的序列基本上互补的序列。这样的化合物表现出与microRNA非常良好的结合性质,因此是优选的,更多的类似化合物包含与microRNA-9和/或microRNA-9* 共同的7、8、9、10个或更多的核苷酸。就此而言,术语“基本上互补的”是指序列表现出超过60%的序列同源性,例如 70、80、85、90或超过90,例如95%或甚至100%的同源性。成熟microRNA-9 具有下列核苷酸序列UCUUUG ⑶ UAUCUAGCUGUAUGA (SEQ ID NO: 1),并且成熟 microRNA-9* 具有核苷酸序列 AUAAAGCUAGAUAACCGAAA⑶(SEQ ID NO 2)。在其他优选实施方案中,化合物包含与microRNA-9和/或microRNA-9*的完整序列基本上互补的序列。

有时,优选只治疗哪些可能从本发明的治疗或化合物获益最多的患者。在这种情况下,优选情况下治疗患有以microRNA-9或microRNA_9*的表达水平增加为特征的AML 的患者。优选情况下,治疗来自以NPMl突变或llq23畸变为特征的AML亚组的患者,因为那些患者在非均质AML组群中显示出microRNA-9和microRNA-9*的最高上调。具有t (8 ; 21)、-5/-7和CEBPA突变的AML患者亚组,对于这种治疗来说可能是可能性略低的候选者, 因为与其余AML相比,在这些患者中microRNA-9/9*被下调(Jongen-Lavrencic等,Blood 2008)。本领域技术人员将会意识到如何辨别相关AML亚组的方法(细胞遗传学分析和分子诊断)。就此而言,microRNA-9/9*水平升高或增加是指microRNA水平高于正常值,即在没有AML的正常个体的群体中microRNA-9/9*的水平。图例说明图1 :microRNA-9在人类原发AML中显著过表汰使用SDS 2. 3软件(Applied Biosystems)分析通过实时RT-PCR获得的 microRNA-9表达数据。将几种snRNA(小核RNA)表达的几何平均值用于内部归一化。使用比较性相对定量方法2-ddCt,计算在AML中与正常⑶34+细胞相比microRNA-9的相对表达 (倍数变化)。对于组群中的所有215个AML样品(水平轴)来说,将microRNA-9的相对表达(倍数变化)呈现在垂直轴上。图2 :microRNA-9在人类原发AML中显著过表汰使用SDS 2. 3软件(Applied Biosystems)分析通过实时RT-PCR获得的 microRNA-9表达数据。将RNU48的表达用于内部归一化。对于组群中所有215个AML样品 (水平轴)来说,将不同粒细胞成熟阶段中由-dCt值所表示的相对于内部对照的表达呈现在垂直轴上。图3 :microRNA9*在人类原发AML中显著过表达使用SDS 2. 3软件(Applied Biosystems)分析通过实时RT-PCR获得的 microRNA-9*表达数据。将RNU24和RNU66表达的几何平均值用于内部归一化。对于组群中所有215个AML患者(水平轴)来说,将由-dCt值所表示的miR-9*相对于内部对照的
表达呈现在垂直轴上。图4 :ιΗ常人类粒细胞形成中MicroRNA-9/9*的表达使用SDS 2. 3软件(Applied Biosystems)分析通过实时RT-PCR获得的 microRNA-9 (和miR-9*)的表达数据。将RNU48的表达用于内部归一化。将不同粒细胞成熟阶段中由-dCt值所表示的相对于内部对照的表达呈现在垂直轴上。图5 ;microRNA-9/9*在32D细胞系中的过表达引起髓系分化的阻断使用含有GFP (绿色荧光蛋白)报告基因的反转录病毒载体,将MicroRNA-9/9*或对照载体转导到鼠髓性白血病细胞系(32D)中。分拣具有高GFP表达的细胞并将其用于增殖/分化测定中。MicroRNA-9/9*的过表达对于在增补有IL-3的培养基中生长的32D细胞的增殖能力没有影响。然而,当将它们生长在含有G-CSF的培养基中时,microRNA-9/9*转导的细胞继续增殖,而用对照载体转导的细胞生长降低。图6-11 :microRNA-9*抑制剂对人类原发AML细胞增殖的负面影响
将基于LNA (锁核酸)的抗miR-9*反义抑制剂或对照抑制剂,使用150mM的浓度通过转染导入新鲜分离的AML母细胞。在各种细胞因子刺激条件下,使用[3H]胸苷掺入测定法,一式三份测量了 AML野生型母细胞或用对照和miR-9*抑制剂转染的细胞的增殖。从不同AML患者获得的两个独立的样品(样品I和II),与对照抑制剂和野生型对照细胞相比,在用抗miR-9*抑制剂处理后显示出细胞增殖的降低。
实施例 实施例1 使用已知的microRNA-9靶onecut2 (0C2)测试新的潜在microRNA_9抑制件化合物的活件帝光素酶测定以前已鉴定0neCut2 (0C2)转录因子是microRNA-9的靶(43)。为了产生3' -UTR-0C2-luc构建物,从基因组DNA通过PCR扩增了大鼠oc2基因的3' -UTR 区段,并将其插入到psiCHECK-Ι质粒(Promega,Madison, WI)的多克隆位点中。该质粒的多克隆位点位于海肾萤光素酶基因的3' -UTR中终止密码子与人工多腺苷化位点之间。PCR 引物的序列如下正义,5' -GGATGTCTCGAGTGTTTTCTACAAAG-3‘ (SEQ ID NO 3), 反义,5' -GAAGCAGCGGCCGTTGAGGCTCCTC-3 ‘ (SEQ ID NO :4)。通过将 microRNA-9 成熟序列以反义方向克隆在psiCHECK-1 (Promega)的海肾萤光素酶基因的3' -UTR中,可以获得 microRNA-9-sensor 构建物。然后使用Effectene转染试剂盒(Qiagen,Valencia, CA)进行质粒的瞬时转染。涉及mi croRNA-9和对照mi croRNA的瞬时转染的实验,可以使用1 OOnM RNA双链体用Lipofectamine 2000 (Invitrogen)来进行。在转染后2天,使用双萤光素酶报告物测定系统(Promega)来测量萤光素酶活性。对于3 ‘ -UTR-0C2_luc和microRNA-9-sensor 来说,可以分别使用与萤火虫萤光素酶SV40 pGL3启动子(Promega)或与海肾萤光素酶 pRLCMV(pRLrenilla)的共转染进行归一化。实施例2 使用已知的microRNA-9靶REST和CoREST测试新的潜在microRNA-9* 抑制件化合物的活件萤光素酶测定:以前已鉴定靶CoREST是microRNA-9*的靶(Packer等, J. neurosci. 2008(53) 14341-6)。为了产生3' -UTR-CoREST-luc 构建物,从基因组DNA通过 PCR扩增了基因的3' -UTR区段,并将其插入到psiCHECK-Ι质粒(Promega,Madison,WI)的多克隆位点中。该质粒的多克隆位点位于海肾萤光素酶基因的3' -UTR中终止密码子与人工多腺苷化位点之间。PCR引物的序列如下正义,CoREST 3'UTR 5,-GCATCTCGAGGTGACCCC AGGGTGGTTGCCAC-3,(SEQ ID NO 5),和 5,-CGATGCGGCCGCGAAT GGATCACTGTTGCAGA-3,(SEQ ID NO :6)。通过将microRNA-9*成熟序列以反义方向克隆在psiCHECK-1 (Promega)的海肾萤光素酶基因的3' -UTR中,可以获得microRNA-9*-sensor构建物。然后使用Effectene转染试剂盒(Qiagen,Valencia, CA)进行质粒的瞬时转染。 涉及mi croRNA-9*和对照mi croRNA的瞬时转染的实验,可以使用1 OOnM RNA双链体用 Lipofectamine 2000 (Invitrogen)来进行。在转染后2天,使用双萤光素酶报告物测定系统(Promega)来测量萤光素酶活性。对于 3' -UTR-coREST-luc 和 microRNA-9*-sensor 来说,可以分别使用与萤火虫萤光素酶SV40pGL3启动子(Promega)或与海肾萤光素酶 pRLCMV(pRLrenilla)的共转染进行归一化。
实施例3 免疫印迹分析对于Western印迹分析来说, 细胞必须在冰冷的磷酸盐缓冲盐水中洗涤一次,按照以前的描述(43)制备细胞提取物,将15μ g蛋白进行SDS-PAGE并转移到聚偏二氟乙烯膜上。将膜在含有0.1% Tween 20和5%奶粉的缓冲液中阻断60分钟,然后在4°C下与针对大鼠0C2 (36-311位氨基酸)产生的第一抗体(32)温育过夜。在将膜与辣根过氧化物酶偶联的第二抗体温育60分钟后,必须使用化学发光底物(Amersham Biosciences)将免疫反应性条带可视化。参考文献1.Slovak ML,Kopecky KJ,Cassileth PA,Harrington DH,Theil KS,Mohamed A, Paietta Ε, Willman CL, Head DR, Rowe JM 等,(2000)Blood96,4075-4083.2. Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, Harrison CJ, Wheatley K, Burnett AK,& Goldstone AH(2001)Blood98,1312—1320.3. Breems DA, Van Putten WL, De Greef GE,Van Zelderen-Bhola SL, Gerssen-Schoorl KB, Mellink CH, Nieuwint A, Jotterand M, Hagemeijer A, Beverloo HB 等,(2008) J Clin 0ncol26,4791-4797.4. Dohner K, Schlenk RF, Habdank M, Scholl C, Rucker FG, Corbacioglu A, Bullinger L, Frohling S,& Dohner H(2005)Bloodl06,3740-3746.5. Frohling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K, Dohner H, & Dohner K (2002)BloodlOO,4372-4380.6. Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, Meijer J, van Oosterhoud S,van Putten WL,Valk PJ,Berna Beverloo H,Tenen DG,Lowenberg B, & Delwel R(2003)Hematol J4,31-40.7. Falini B, Nicoletti LMartelli MF,& Mecucci C(2007)Bloodl09,874-885.8. Jongen-Lavrencic M, Sun SM, Dijkstra MK, Valk PJ, &Lowenberg B (2008) Bloodlll,5078-5085.9. Bartel DP (2004) Cellll6,281-297.10. Lu J,Getz G,Miska EA,Alvarez-Saavedra E,Lamb J,Peck D,Sweet-Cordero A, Ebert BL,Mak RH, Ferrando AA 等,(2005) Nature435,834-838.11. Li Z,Lu J, Sun M,Mi S, Zhang H,Luo RT, Chen P, Wang Y, Yan M,Qian Z 等, (2008)Proc Natl Acad Sci USA105,15535-15540.12. Garzon R,Volinia S,Liu CG,Fernandez-Cymering C,Palumbo T,Pichiorri F, Fabbri M, Coombes K, Alder H, Nakamura T 等,(2008)Bloodlll,3183-3189.13. Mi S, Lu J, Sun M, Li Z, Zhang H, Neilly MB, Wang Y, Qian Z, Jin J, Zhang Y 等,(2007)Proc Natl Acad Sci USA104,19971-19976.14. Marcucci G, Radmacher MD, Maharry K, Mrozek K, Ruppert AS, Paschka P, Vukosavljevic T, Whitman SP,Baldus CD, Langer C 等,(2008)N Engl JMed358, 1919-1928.15. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M,Roldo C, Ferracin M 等,(2006) Proc Natl Acad Sci US A103,2257-2261.
16. Chen CZ, Li L, Lodish HF,& Bartel DP (2004)Science303,83-86.17. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW,Hannon GJ 等,(2005)Nature435,828-833.18. Bousquet M, Quelen C, Rosati R, Mansat-De Mas V, La Starza R, Bastard C, Lippert E, Talmant P, Lafage-Pochitaloff M, Leroux D φ, (2008)J Exp Med205, 2499-2506.19. O' Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J, Paquette RL,& Baltimore D(2008)J Exp Med205,585-594.20.Popovic R,Riesbeck LE,Velu CS,Chaubey A,Zhang J,Achille NJ,Erfurth FE,Eaton K, Lu J, Grimes HL 等,(2009) Blood.21. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak 0, Brummelkamp TR, Fleming MD,& Camargo FD(2008)Nature451,1125—1129.22.Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C,& Bozzoni I (2005)Celll23,819-831.23. Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y, Kawamura A, Nakamura K, Takeucchi T,& Tanabe M(2007)Celll29,617-631.24. Fontana L,Pelosi E,Greco P,Racanicchi S,Testa U,Liuzzi F,Croce CM, Brunetti E, Grignani F,& Peschle C(2007)Nat Cell Biol9,775-787.25.Shi B, Prisco M,Calin G,Liu CG, Russo G, Giordano A, &Baserga R(2006) J Cell Physiol207,706-710.26. Garzon R,Pichiorri F,Palumbo T,Visentini M,Aqeilan R,Cimmino A,Wang H, Sun H, Volinia S, Alder H 等,(2007)0ncogene26,4148-4157.27.Georgantas Rff,3rd, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S, Calin GA, Croce CM,& Civin CI(2007)Proc Natl Acad Sci USA104,2750-2755.28. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D,& Slack FJ(2005)Cell120,635-647.29. Sampson VB,Rong NH,Han J,Yang Q,Aris V,Soteropoulos P,Petrelli NJ, Dunn SP,& Krueger LJ(2007)Cancer Res67,9762-9770.30. Lu Z,Liu M,Stribinskis V,Klinge CM,Ramos KS,Colburn NH,& Li Y(2008) 0ncogene27,4373-4379.31. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, &Patel T (2007) Gastroenterologyl33,647-658.32.Saini HK, Griffiths-Jones S, & Enright AJ(2007)Proc Natl Acad Sci USA104,17719-17724.33. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, & Shiekhattar R(2004)Nature432,235-240.34. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, &Plasterk RH(2001)Genes Devl5,2654-2659.35. Okamura K,Ishizuka A,Siomi H,& Siomi MC(2004)Genes Devl8,1655-1666.
36. Liu J,Carmell MA,Rivas FV,Marsden CG,Thomson Jl, Song JJ,Hammond SM, Joshua-Tor L,& Hannon GJ(2004)Science305,1437-144137.Krichevsky AM, Sonntag KC, Isacson 0, & Kosik KS(2006)Stem Cells24, 857-864.38.Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, & Ambros V(2004)Genome Biol5, R13.39.Leucht C, Stigloher C, Wizenmann A, Klafke R, Folchert A, &BaIly-Cuif L (2008)Nat Neurosci 11,641-648.40. Shibata M,Kurokawa D,Nakao H,Ohmura T,& Aizawa S (2008)J Neurosci28, 10415-10421.41. Packer AN,Xing Y,Harper SQ,Jones L,& Davidson BL (2008)J Neurosci28, 14341-14346.42. Laneve P, Di Marcotullio L, Gioia U, Fiori ME, Ferretti E, Gulino A, Bozzoni I,& Caffarelli E(2007)Proc Natl Acad Sci USA104,7957-7962.43.Plaisance V,Abderrahmani A,Perret-Menoud V,Jacquemin P,Lemaigre F, & Regazzi R(2006)J Biol Chem281,26932-26942.44. Mascaux C, Laes JF, Anthoine G, Haller A, Ninane V, Burny A, & Sculier JP (2009)Eur Respir 了33,352-359.45. Roccaro AM, Sacco A, Chen C, Runnels J, Leleu X, Azab F, Azab AK, Jia X, Ngo HT, Melhem MR 等,(2008) Blood.46. Roman-Gomeζ J, Agirre X, Jimenez-Velasco A, Arqueros V, Vilas-Zornoza A, Rodriguez-Otero P, Martin-Subero I, Garate L, Cordeu L, San Jose-Eneriz E 等, (2009)J Clin 0ncol27,1316-1322.
权利要求
1.一种化合物,其能够与microRNA-9和/或microRNA-9*与其靶之间的结合发生相互作用用于治疗AML。
2.权利要求1中的化合物,其中化合物包含能够与microRNA-9和/或microRNA-9*结合的核苷酸序列。
3.权利要求1或2中的化合物,其中化合物包含与成熟microRNA-9和/或microRNA-9 的序列的至少6个连续核苷酸基本上互补的核苷酸序列。
4.权利要求1-3中的化合物,其中化合物包含与microRNA-9和/或microRNA-9的种子序列基本上互补的核苷酸序列。
5.权利要求1-4中的化合物,其中化合物包含能够在生理条件下与成熟 microRNA-9/9*杂交的核苷酸序列。
6.一种化合物,其能够降低成熟microRNA-9和/或microRNA-9*的细胞内水平用于治疗 AML。
7.权利要求1-7中的化合物,其中AML的特征为microRNA-9或microRNA-9*的表达水平增加。
8.权利要求7中的化合物,其中AML选自以NPMl突变或llq23染色体畸变为特征的亚组。
9.一种用于治疗AML的方法,其中向需要的患者给药包含能够与microRNA-9和/或 microRNA-9*与其靶之间的结合发生相互作用的化合物作为活性成分的治疗组合物。
10.一种用于治疗AML的方法,其中向需要的患者给药包含能够降低成熟microRNA-9 和/或microRNA-9*的细胞水平的化合物作为活性成分的治疗组合物。
全文摘要
本发明属于分子医学领域,并提供了用于治疗急性骨髓性白血病的方法。这些方法是基于microRNA-9和microRNA-9*参与疾病的发病机理这一观察,因为microRNA-9/9*的过表达在体外阻断髓系分化。更具体来说,发现在急性骨髓性白血病中,microRNA-9/9*在白血病转化中发挥作用。
文档编号A61P35/02GK102421899SQ201080017701
公开日2012年4月18日 申请日期2010年4月22日 优先权日2009年4月22日
发明者孙旭明, 彼得·雅各布斯·马里亚·瓦尔克, 莫耶卡·拉夫伦契奇, 鲍伯·洛温伯格 申请人:鹿特丹伊拉斯姆斯大学医疗中心
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1