本发明涉及生物医用材料技术领域,具体地说是一种光动力治疗皮肤创伤的ag/ag-agcl/zno复合水凝胶敷料的制备方法。
背景技术:
生物医用材料是研究人工器官和医疗器械的基础,用于对生物体进行诊断、治疗疾患、外科修复或替换其病损组织、器官或增进其功能,而对生物体不会产生不良影响的材料。作为生物医用材料,应该是对人体无毒性、无致敏性、无刺激性、无遗传毒性和无致癌性等不良反应。
外科手术、高温、辐射和化学试剂等造成的皮肤损伤会导致由微生物尤其是大肠杆菌和金黄色葡萄球菌造成的细菌感染。近年来,快速治疗这种类型的伤口已经引起了广泛的关注,这种伤口的愈合需要一个湿润的环境。水凝胶是一种环保的具有三维网络结构的一类良好生物相容性的亲水性聚合物,吸水后体积可以膨胀数十倍。他们可以被用作为抗菌药物的载体和组织再生材料,能够吸收从伤口中的脓水并且杀死细菌。许多研究人员将抗菌药物与水凝胶复合,如无机抗菌药物,包括纳米银、氧化锌和氧化石墨烯以及一些有机抗菌药物如环丙沙星和万古霉素等。然而,无机抗菌药物总是表现出严重的细胞毒性,有机抗菌剂有时不稳定,而且因为抗生素的滥用造成耐药细菌和超级细菌的出现。
半导体材料,如氧化锌,被广泛应用于太阳能转换、抗菌药物、光催化降解污染物。活性氧(ros),包括单线态氧、羟基自由基、超氧化物自由基,是与半导体材料光催化密切相关的,同时他们也具有十分优异的抗菌性。此外,锌离子的释放可以促进对皮肤创伤愈合尤为重要的成纤维细胞的增殖和分化。然而,纯氧化锌纳米材料的光催化性不佳,需要对其进行改性。
技术实现要素:
为了解决上述技术缺陷,本发明研究一种工艺简单、设备投入少、资源消耗少、无有害气体产物,且抗菌性高的一种光动力治疗皮肤创伤的ag/ag-agcl/zno复合水凝胶敷料的制备方法。
本发明第一方面保护一种光动力治疗皮肤创伤的ag/ag-agcl/zno复合水凝胶敷料的制备方法,包括如下步骤:
s1、将4~6g的羧甲基纤维素钠溶解于100ml质量体积比为2~4%的naoh溶液中,搅拌20~40min,然后将4~6ml的交联剂环氧氯丙烷滴入前述混合溶液中搅拌2~4h,获得混合液a备用;
s2、将步骤s1制备的混合液a注入玻璃模具中并放置于烘箱内,在70~90℃条件下预聚合1~2h制成预聚体、清洗,再在40~60℃条件下聚合18~30h制得羧甲基纤维素水凝胶;
s3、将步骤s2制备的羧甲基纤维素水凝胶作为载体浸泡于100ml的0.75-2.5mm的硝酸银溶液中,用以负载银离子和氯化银于载体上,紫外光照射1~2h,获得ag/ag-agcl复合水凝胶;
s4、将步骤s3获得的ag/ag-agcl复合水凝胶浸泡于100ml的3~6mm的硝酸锌溶液中6~12h,负载锌离子、沉淀,即制得ag/ag-agcl/zno复合水凝胶。
本发明第二方面保护第一方面所述方法制备的复合水凝胶敷料。
一种光动力治疗皮肤创伤的ag/ag-agcl/zno复合水凝胶敷料的制备方法,其优点是:
①、使用紫外还原法制备银纳米粒子、银/氯化银复合纳米粒子,以及用碱沉淀氧化纳米棒,无需加热的同时,无有害气体产生,经济环保;
②、制备方法简单、设备投入少,消耗资源少,且实施难度小;
③、复合水凝胶敷料中银纳米粒子、银/氯化银复合纳米粒子两者的掺杂增强了光照产生活性氧的效率,从而很大程度上提高了抗菌活性;
④、制备的复合水凝胶敷料在用于皮肤创伤治疗时,银离子和锌离子的缓释刺激了免疫系统协同抗菌;
⑤、制备的复合水凝胶敷料中锌离子有利于成纤维细胞的生长,促进皮肤创伤的愈合。
附图说明
图1为实施例一中ag-agcl的sem图;
图2为实施例一中制得的产品在光照5min后、以及不光照条件下和细菌共培养1h后的细菌存活率柱状图;
图3为实施例二中制得的产品在光照5min后、以及不光照条件下和细菌共培养1h后的细菌存活率柱状图;
图4实施例三中制得的产品在光照5min后、以及不光照条件下和细菌共培养1h后的细菌存活率柱状图;
图5实施例四中制得的产品在光照5min后、以及不光照条件下和细菌共培养1h后的细菌存活率柱状图;
图6实施例五中制得的产品在光照5min后、以及不光照条件下和细菌共培养1h后的细菌存活率柱状图。
具体实施方式
一种光动力治疗皮肤创伤的ag/ag-agcl/zno复合水凝胶敷料的制备方法,包括如下步骤:
s1、将4~6g的羧甲基纤维素钠溶解于100ml质量体积比为2~4%的naoh溶液中,搅拌20~40min,然后将4~6ml的交联剂环氧氯丙烷滴入前述混合溶液中搅拌2~4h,获得混合液a备用;
优选地,步骤s1中,用恒压滴液漏斗将交联剂环氧氯丙烷缓慢滴入前述混合溶液中;
s2、将步骤s1制备的混合液a注入玻璃模具后,放置于烘箱内,在70~90℃条件下预聚合1~2h制成预聚体、清洗,再在40~60℃条件下聚合18~30h制得羧甲基纤维素水凝胶;
优选地,步骤s2中,将预聚体用去离子水清洗3-5次后放置于烘箱中、聚合;
s3、将步骤s2制备的羧甲基纤维素水凝胶作为载体浸泡于100ml的0.75-2.5mm的硝酸银溶液中,用以负载银离子和氯化银于载体上,紫外光照射1~2h,获得ag/ag-agcl复合水凝胶;
优选地,步骤s3中,将水凝胶用模具剪切成直径为18mm的小圆片再浸泡;
优选地,步骤s3中,将载体置于去离子水中6~18h后,再浸泡;
优选地,步骤s3中,用波长为365nm的紫外光照射;
优选地,步骤s3中,紫外管照射,使得银离子和氯化银分别原位还原为银纳米粒子和块状的ag-agcl,获得ag/ag-agcl复合水凝胶;
s4、将步骤s3获得的ag/ag-agcl复合水凝胶浸泡于100ml的3~6mm的硝酸锌溶液中6~12h,负载锌离子、沉淀,即制得ag/ag-agcl/zno复合水凝胶;
优选地,步骤s4中,用100ml的0.01~0.02m的氢氧化钠溶液沉淀,使得负载的银纳米粒子催化生成氧化锌纳米棒;
进一步,步骤s4中,在氢氧化钠溶液中沉淀4h。
为更好理解本发明,下面结合附图和实施例对本发明做进一步地详细说明:
实施例一
s1、将5g的羧甲基纤维素钠溶解于100ml质量体积比为3%的naoh溶液中,搅拌30min,然后将6ml的交联剂环氧氯丙烷用恒压滴液漏斗滴入前述混合溶液中搅拌2h,获得混合液a备用;
s2、将步骤s1制备的混合液a注入玻璃模具后,放置于烘箱内,在80℃条件下预聚合2h制成预聚体,将预聚体用去离子水清洗3次后放置于烘箱中,再在50℃条件下聚合24h制得羧甲基纤维素水凝胶;
s3、将步骤s2制备的羧甲基纤维素水凝胶作为载体用模具剪切成直径为18mm的小圆片,置于去离子水中12h,再浸泡于100ml的1.25mm的硝酸银溶液中12h,用以负载银离子和氯化银于载体上,用波长为365nm的紫外光照射1h,使得银离子和氯化银分别原位还原为银纳米粒子和块状的ag-agcl,获得ag/ag-agcl复合水凝胶;
s4、将步骤s3获得的ag/ag-agcl复合水凝胶浸泡于100ml的4mm的硝酸锌溶液中12h,负载锌离子,用100ml的0.01m的氢氧化钠溶液沉淀,使得负载的银纳米粒子催化生成氧化锌纳米棒,即制得ag/ag-agcl/zno复合水凝胶。
对上述制得的产品进行检测,检测结果如下:
如图1所示,ag-agcl呈现出块状,且纳米银负载于agcl上;
如图2所示,为实施例一制备的产品在光照5min后、以及不光照条件下和细菌共培养1h后的细菌存活率柱状图:对大肠杆菌,不光照情况下,细菌有51.48%存活,光照5min后,只有4.05%的存活;对金黄色葡萄球菌,不光照情况下,细菌有80.34%存活,光照5min后,只有1.59%的存活。
实施例二
s1、将4g的羧甲基纤维素钠溶解于100ml质量体积比为4%的naoh溶液中,搅拌40min,然后将5ml的交联剂环氧氯丙烷用恒压滴液漏斗滴入前述混合溶液中搅拌3h,获得混合液a备用;
s2、将步骤s1制备的混合液a注入玻璃模具后,放置于烘箱内,在70℃条件下预聚合1h制成预聚体,将预聚体用去离子水清洗3次后放置于烘箱中,再在60℃条件下聚合30h制得羧甲基纤维素水凝胶;
s3、将步骤s2制备的羧甲基纤维素水凝胶作为载体用模具剪切成直径为18mm的小圆片,置于去离子水中12h,再浸泡于100ml的0.75mm的硝酸银溶液中6h,用以负载银离子和氯化银于载体上,用波长为365nm的紫外光照射2h,使得银离子和氯化银分别原位还原为银纳米粒子和块状的ag-agcl,获得ag/ag-agcl复合水凝胶;
s4、将步骤s3获得的ag/ag-agcl复合水凝胶浸泡于100ml的3mm的硝酸锌溶液中6h,负载锌离子,用100ml的0.02m的氢氧化钠溶液沉淀,使得负载的银纳米粒子催化生成氧化锌纳米棒,即制得ag/ag-agcl/zno复合水凝胶。
对上述制得的产品进行检测,检测结果如下:
如图3所示,为实施例二制备的产品在光照5min后、以及不光照条件下和细菌共培养1h后的细菌存活率柱状图:对大肠杆菌,不光照情况下,细菌有66.12%存活,光照5min后,只有10.50%的存活;对金黄色葡萄球菌,不光照情况下,细菌有75.34%存活,光照5min后,只有11.18%的存活。
实施例三
s1、将5g的羧甲基纤维素钠溶解于100ml质量体积比为4%的naoh溶液中,搅拌20min,然后将4ml的交联剂环氧氯丙烷用恒压滴液漏斗滴入前述混合溶液中搅拌4h,获得混合液a备用;
s2、将步骤s1制备的混合液a注入玻璃模具后,放置于烘箱内,在90℃条件下预聚合1.5h制成预聚体,将预聚体用去离子水清洗5次后放置于烘箱中,再在55℃条件下聚合18h制得羧甲基纤维素水凝胶;
s3、将步骤s2制备的羧甲基纤维素水凝胶作为载体用模具剪切成直径为18mm的小圆片,置于去离子水中12h,再浸泡于100ml的2.5mm的硝酸银溶液中8h,用以负载银离子和氯化银于载体上,用波长为365nm的紫外光照射1.5h,使得银离子和氯化银分别原位还原为银纳米粒子和块状的ag-agcl,获得ag/ag-agcl复合水凝胶;
s4、将步骤s3获得的ag/ag-agcl复合水凝胶浸泡于100ml的5mm的硝酸锌溶液中8h,负载锌离子,用100ml的0.015m的氢氧化钠溶液沉淀,使得负载的银纳米粒子催化生成氧化锌纳米棒,即制得ag/ag-agcl/zno复合水凝胶。
对上述制得的产品进行检测,检测结果如下:
如图4所示,为实施例三制备的产品在光照5min后、以及不光照条件下和细菌共培养1h后的细菌存活率柱状图:对大肠杆菌,不光照情况下,细菌有50.75%存活,光照5min后,只有10.74%的存活;对金黄色葡萄球菌,不光照情况下,细菌有67.28%存活,光照5min后,只有10.77%的存活。
实施例四
s1、将6g的羧甲基纤维素钠溶解于100ml质量体积比为4%的naoh溶液中,搅拌40min,然后将6ml的交联剂环氧氯丙烷用恒压滴液漏斗滴入前述混合溶液中搅拌3h,获得混合液a备用;
s2、将步骤s1制备的混合液a注入玻璃模具后,放置于烘箱内,在80℃条件下预聚合2h制成预聚体,将预聚体用去离子水清洗5次后放置于烘箱中,再在60℃条件下聚合24h制得羧甲基纤维素水凝胶;
s3、将步骤s2制备的羧甲基纤维素水凝胶作为载体用模具剪切成直径为18mm的小圆片,置于去离子水中12h,再浸泡于100ml的0.75mm的硝酸银溶液中12h,用以负载银离子和氯化银于载体上,用波长为365nm的紫外光照射1h,使得银离子和氯化银分别原位还原为银纳米粒子和块状的ag-agcl,获得ag/ag-agcl复合水凝胶;
s4、将步骤s3获得的ag/ag-agcl复合水凝胶浸泡于100ml的6mm的硝酸锌溶液中12h,负载锌离子,用100ml的0.02m的氢氧化钠溶液沉淀,使得负载的银纳米粒子催化生成氧化锌纳米棒,即制得ag/ag-agcl/zno复合水凝胶。
对上述制得的产品进行检测,检测结果如下:
如图5所示,为实施例四制备的产品在光照5min后、以及不光照条件下和细菌共培养1h后的细菌存活率柱状图:对大肠杆菌,不光照情况下,细菌有74.03%存活,光照5min后,只有21.21%的存活;对金黄色葡萄球菌,不光照情况下,细菌有66.74%存活,光照5min后,只有9.65%的存活。
实施例五
s1、将4g的羧甲基纤维素钠溶解于100ml质量体积比为3%的naoh溶液中,搅拌40min,然后将4ml的交联剂环氧氯丙烷用恒压滴液漏斗滴入前述混合溶液中搅拌2h,获得混合液a备用;
s2、将步骤s1制备的混合液a注入玻璃模具后,放置于烘箱内,在80℃条件下预聚合2h制成预聚体,将预聚体用去离子水清洗4次后放置于烘箱中,再在50℃条件下聚合30h制得羧甲基纤维素水凝胶;
s3、将步骤s2制备的羧甲基纤维素水凝胶作为载体用模具剪切成直径为18mm的小圆片,置于去离子水中12h,再浸泡于100ml的2.5mm的硝酸银溶液中6h,用以负载银离子和氯化银于载体上,用波长为365nm的紫外光照射1.5h,使得银离子和氯化银分别原位还原为银纳米粒子和块状的ag-agcl,获得ag/ag-agcl复合水凝胶;
s4、将步骤s3获得的ag/ag-agcl复合水凝胶浸泡于100ml的4mm的硝酸锌溶液中6h,负载锌离子,用100ml的0.01m的氢氧化钠溶液沉淀,使得负载的银纳米粒子催化生成氧化锌纳米棒,即制得ag/ag-agcl/zno复合水凝胶。
对上述制得的产品进行检测,检测结果如下:
如图6所示,为实施例五制备的产品在光照5min后、以及不光照条件下和细菌共培养1h后的细菌存活率柱状图:对大肠杆菌,不光照情况下,细菌有56.23%存活,光照5min后,只有5.85%的存活;对金黄色葡萄球菌,不光照情况下,细菌有59.39%存活,光照5min后,只有9.85%的存活。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。