一种1-MT-羧甲基壳聚糖药物的制备方法与流程

文档序号:17469367发布日期:2019-04-20 05:43阅读:765来源:国知局
一种1-MT-羧甲基壳聚糖药物的制备方法与流程

本发明涉及药物载体技术领域,特别涉及一种1-mt-羧甲基壳聚糖药物的制备方法。



背景技术:

高分子载体既可以实现抗肿瘤药物的靶向性输送,又可以实现抗肿瘤药物在肿瘤部位的控制释放,明显降低药物的毒副作用。壳聚糖是一种广泛应用的药物载体材料,但由于其水溶性很差,限制了其作为药物载体的应用。羧甲基壳聚糖是壳聚糖经羧甲基化反应制得的一类甲壳素次级衍生物,水溶性大大增加,由于其良好的生物相容性和易被生物降解等优点,而且羧甲基壳聚糖上存在羧基和氨基这样较活泼的基团,使其可与多种药物进行进行接枝,从而使其在药物传递系统领域应用十分广泛。

免疫治疗近年来发展迅猛,并广泛应用于多种恶性肿瘤的治疗,但是效果还有待提高,免疫逃逸是治疗效果不理想的主要原因,吲哚胺2,3-双加氧酶(ido)是亚铁血红素的单体酶,是肝脏以外唯一可催化色氨酸代谢,并使其沿犬尿氨酸途径分解生成包括喹啉酸在内的一系列代谢产物的限速酶,其是一种重要的免疫负调节因子,ido在肿瘤免疫逃逸中发挥主要作用。

因此,开发一种可抑制ido活性的抗肿瘤药物载体,以避免因ido免疫逃逸而降低抗肿瘤药物的免疫治疗效果,具有十分重要的意义。



技术实现要素:

有鉴于此,本发明旨在提出一种1-mt-羧甲基壳聚糖药物的制备方法,以解决现有抗肿瘤药物免疫治疗效果较差的问题。

为达到上述目的,本发明的技术方案是这样实现的:

一种1-mt-羧甲基壳聚糖药物的制备方法,其特征在于,包括以下步骤:

1)将1-甲基-dl-色氨酸溶于四氢呋喃和水,然后,加入二碳酸二叔丁酯和nahco3,进行boc氨基保护反应,待所述boc氨基保护反应结束后,除杂、真空干燥,得到以酰胺键链接的中间体boc-1-mt;

2)将所述中间体boc-1-mt溶于二甲基亚砜,然后,加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和n-羟基琥珀酰亚胺,进行催化活化反应,待所述催化活化反应结束后,加入羧甲基壳聚糖溶液,进行酰胺反应,待所述酰胺反应结束后,除杂、冷冻干燥,得到以酰胺键链接的中间体cmcs-boc-1-mt;

3)向所述中间体cmcs-boc-1-mt中加入盐酸,进行boc基团脱除反应,待所述boc基团脱除反应结束后,除杂、冷冻干燥,得到1-mt-羧甲基壳聚糖药物。

可选地,所述步骤1)中所述1-甲基-dl-色氨酸、所述二碳酸二叔丁酯、所述nahco3的摩尔比为1∶(1-2)∶(2-3)。

可选地,所述步骤1)中所述四氢呋喃和所述水的体积比为1∶(1-2)。

可选地,所述步骤2)中所述中间体boc-1-mt、所述1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐、所述n-羟基琥珀酰亚胺、所述羧甲基壳聚糖的摩尔比为1∶2∶1∶0.5。

相对于现有技术,本发明所述的1-mt-羧甲基壳聚糖药物的制备方法具有以下优势:

1、本发明的1-mt-羧甲基壳聚糖药物的制备方法以1-甲基-dl-色氨酸为原料,先采用二碳酸二叔丁酯对其进行boc氨基保护,然后,使其与羧甲基壳聚糖进行酰胺反应,再通过boc基团的水解脱去boc基团,使得所制1-mt-羧甲基壳聚糖药物可对具有肿瘤免疫逃逸作用的吲哚胺2,3-双加氧酶的活性进行抑制,从而避免吲哚胺2,3-双加氧酶发生免疫逃逸,进而提高抗肿瘤药物的免疫治疗效果。

2、本发明制得的1-mt-羧甲基壳聚糖药物具有活性氨基和羧基基团,使其具有较高的靶向性,从而使其具有较强的病变细胞选择性,进而大大提高其免疫治疗疗效,且在制备过程中采用蒸除和萃取的方式进行除杂,使得本发明的1-mt-羧甲基壳聚糖药物具有较低的毒副作用,从而有利于降低机体的不良反应。

3、本发明的1-mt-羧甲基壳聚糖药物的制备方法简单、成本低廉,易于工业化应用。

附图说明

构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

图1为本发明实施例1所述的羧甲基壳聚糖(cmcs)的红外光谱图;

图2为采用本发明实施例1所述的中间体cmcs-boc-1-mt的红外光谱图;

图3为采用本发明实施例1所述的1-mt-羧甲基壳聚糖药物(cmcs-1-mt)的红外光谱图;

图4为采用本发明实施例1所述的1-mt-羧甲基壳聚糖药物(cmcs-1-mt)纳米粒的透射电镜图;

图5为本发明实施例1所述的1-mt-羧甲基壳聚糖药物(cmcs-1-mt)高分子前药和纳米粒在pbs溶液中的释放曲线图。

具体实施方式

需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。

下面将结合附图和实施例来详细说明本发明。

实施例1

一种1-mt-羧甲基壳聚糖药物的制备方法,包括以下步骤:

1)将200mg1-甲基-dl-色氨酸(1-mt)溶于20ml体积比为1∶1的四氢呋喃(thf)和水中,然后,加入250μl二碳酸二叔丁酯和288.7mgnahco3,在0℃下搅拌10min,随后在室温下搅拌24h,进行boc氨基保护反应,待boc氨基保护反应结束后,用旋转蒸发仪蒸掉thf,将水层酸化,并用乙酸乙酯萃取,再用旋转蒸发仪蒸掉乙酸乙酯,真空干燥,得到以酰胺键链接的中间体boc-1-mt;

2)将中间体boc-1-mt溶于10ml二甲基亚砜(dmso),然后,按照中间体boc-1-mt∶1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(edc)∶n-羟基琥珀酰亚胺(nhs)为1∶2∶1的摩尔比加入edc和nhs,催化活化反应2h,待催化活化反应结束后,按照中间体boc-1-mt∶羧甲基壳聚糖(cmcs)为1∶0.5的摩尔比加入cmcs溶液,室温反应24h,使中间体boc-1-mt上的羧基与cmcs上氨基发生酰胺反应,待酰胺反应结束后,透析除杂、冷冻干燥,得到以酰胺键链接的中间体cmcs-boc-1-mt,其中,cmcs溶液通过将cmcs溶于适量蒸馏水制得,其浓度为5mg/ml;

3)将中间体cmcs-boc-1-mt溶于适量蒸馏水中,加入1m盐酸水解1h,进行boc基团脱除反应,待boc基团脱除反应结束后,透析除杂、冷冻干燥,得到1-mt-羧甲基壳聚糖药物(cmcs-1-mt),即cmcs-1-mt高分子前药。

对本实施例制得的中间体cmcs-boc-1-mt、1-mt-羧甲基壳聚糖药物(cmcs-1-mt)进行红外分析,并将其与羧甲基壳聚糖进行对比,测试结果如图1-图3所示。

由图1可知,波数为3413cm-1和2922cm-1处分别为o-h和c-h的伸缩振动,1603cm-1处为羧基上的c=o伸缩振动和n-h伸缩振动缔合作用所致,1417cm-1是羧基的对称伸缩振动峰。

由图2可知,相较于图1,出现了1641cm-1(酰胺ⅰ带)振动吸收峰,和1590cm-1(酰胺ⅱ带),说明已经合成中间体cmcs-boc-1-mt。

由图3可知,波数为1639cm-1和1590cm-1处的酰胺带峰的强度降低,说明中间体cmcs-boc-1-mt已脱去boc基团,转变为cmcs-1-mt。

对本实施例的cmcs-1-mt纳米粒的形貌进行分析,测试结果如图4所示。其中,cmcs-1-mt纳米粒的具体制备方法如下:

称取30mgcmcs-1-mt高分子前药分散于的30mlph为7.4的磷酸缓冲盐溶液(pbs)中,配制成浓度为1.0mg/ml的前药溶液,利用超声波细胞粉碎仪(200w)处理10min,再利用超声波清洗器(100w)处理30min,然后过0.45μm滤膜,冷冻干燥,得cmcs-1-mt纳米粒冻干粉末。

由图4可知,cmcs-1-mt纳米粒直径在200-230nm左右,具有球状的形态,形态较为规整,分布均匀。

准确称取10mg纳米粒冻干粉末,将其溶于10ml的去离子水中,超声处理,过0.45μm滤膜,采用动态光散射仪对该纳米粒的平均粒径进行表征,经测试可知,其平均粒径为259.5±4.8nm左右。

对本实施例的cmcs-1-mt高分子前药和cmcs-1-mt纳米粒的释放量进行测试,测试结果如图5所示。其中,因肿瘤细胞内酸性环境更为显著,早期内含体ph值约为6.0,晚期则下降到5.0左右,溶酶体ph值仅约为4.0-5.0,因此,本实施例采用ph为5的pbs溶液,模拟肿瘤溶酶体环境,做药物释放实验。

由图5可知,随着时间推移,cmcs-1-mt高分子前药和cmcs-1-mt纳米粒的累计释放量逐渐增加,且cmcs-1-mt纳米粒的释放量略高于cmcs-1-mt高分子前药,到了48h,cmcs-1-mt高分子前药和cmcs-1-mt纳米粒累积释放量分别为58.4%和64.3%,说明相较于cmcs-1-mt高分子前药,cmcs-1-mt纳米粒可以加速药物释放。

以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1