一种多电极输出的射频消融设备的制造方法_2

文档序号:9091429阅读:来源:国知局
一个实施例中,当4个温度传感器的温度均超过设定值时,温度较低的I个所述的温度传感器对应的所述开关电路导通,其余3个所述的温度传感器对应的所述开关电路关断。
[0052]通过上述温度控制方法,对温度过高的消融部位采取停止消融的措施,能够有效避免由于消融部位温度过高而造成一定危险。
[0053]实施例3:
[0054]本实施例中的一种多电级输出的射频消融设备包括实施例2中的内容,其区别仅在于,
[0055]进一步地,所述控制单元还与所述射频发生单元连接,具体用于对接收的每个所述温度传感器输出的所述温度值进行计算,得到均衡温度指标,再对所述均衡温度指标进行计算得到射频功率调节指标,通过所述射频功率调节指标对所述射频发生单元的功率大小进行调节从而调节所述射频电流的大小。
[0056]具体的,在一个实施例中,
[0057]采用比例积分调节算法,以温度差和温度变化率决定射频输出功率调节量。计算公式是:
[0058]射频输出功率调节量=比例系数X (目标温度-当前温度)+积分系数X(当前温度-上一时刻温度)(I)。
[0059]由于多电极消融导管往往具有多个温度传感器,分别检测不同电极的温度。这些温度传感器获得的温度往往是不一致的,需要根据这多个温度传感器的温度得到一个当前温度(即所述均衡温度指标)按照公式(I)计算射频输出功率调节量。
[0060]但是直接把这多个温度传感器检测的温度值计算平均值得到当前温度的方法,容易出现温度较高的电极温度进一步偏高的趋势,存在一定的风险,不宜采用。
[0061]因此,具体的,本实用新型采用的方法是计算这4个温度传感器温度的加权平均值,按照温度高低采用不同的权重,温度越高的权重越大,
[0062]计算公式是:
[0063]当前温度=最大权重X最高温度+次大权重X次高温度+次小权重X次低温度+最小权重X最低温度 (2)。
[0064]本实用新型的一种多电极输出的射频消融设备,提供一种控制射频电路的输出电流大小的方案,该方案能够更好的控制消融电极的温度。
[0065]实施例4:
[0066]本实施例中的一种多电级输出的射频消融设备包括实施例3中的内容,其区别仅在于,
[0067]进一步地,将所述N个开关单元依次每K个分为一组,得到至少两组开关单元组,所述控制单元控制所述至少两组开关单元组一次循环通断,其中N为K的整数倍,
[0068]若在循环通断中,由于所述消融电极温度过高而导致该电极对应的开关单元断开,该开关单元不进行循环通断。
[0069]这样有利于使消融电极温度和射频输出功率的波动变化较小。
[0070]进一步地,所述K值为出厂预定值。
[0071]依次循环通断的目的是控制同时消融的电极数量,使射频功率电路工作在效率较高的负载条件下。
[0072]进一步地,所述控制单元控制所述N个开关单元依次循环通断时,每个所述开关单元导通的时间为0.5ms-100mso
[0073]分时输出切换时间不宜过长,否则容易使消融电极温度过高。
[0074]进一步地,所述多电极消融导管工作时,某一时刻正在输出射频能量的所有的消融电极与中性电极之间的阻抗保持为预定的阻抗值。
[0075]优选的,对于不同的应用,所述预定的阻抗值是不同的,由于述K值个数的不同决定了所述多级输出消融导管工作时,某一时刻正在输出射频能量的所有的消融电极与中性电极之间的阻抗值的大小,因此在不同的应用中K值的大小也是不同的。比如:应用于心脏消融的设备,优选阻抗值约100 Ω ;应用于神经消融的设备,优选阻抗值约250 Ω。
[0076]在实际应用中,如果所有电极同时输出射频能量,消融电极总面积(所有消融电极面积之和)较大,消融电极与中性电极之间的组织阻抗较小(往往低于30Ω ),这样会降低射频功率电路的工作效率,实施效果较差,因此,控制单元控制射频输出开关电路使射频能量循环分时输出到各个电极上,这样任意瞬间只有一部分电极输出射频能量,不会使射频功率电路的负载阻抗过低,达到更好的效果。
[0077]具体的,在本实施例中,为实现4个温度传感器的检测温度都达到设定温度,射频能量应循环分时输出到各个电极上。具体的算法是被标记为使能状态的4个顺时针电极消融500us,切换到被标记为使能状态的4个逆时针电极消融500us,再切换到被标记为使能状态的下4个顺时针电极消融500us,再切换到被标记为使能状态的下4个逆时针电极消融500us…如此在36个电极组成的环中循环切换。被标记为非使能状态的电极被直接跳过(控制为关断),不参与消融。这样的算法保证了在消融的任意时刻,均有且只有4个电极消融。保持任意时刻消融电极数不变是保证消融阻抗基本稳定和温度易于控制的关键。这与每个温度传感器周围有8个电极(4个顺时针电极和4个逆时针电极)有关。
[0078]本实用新型的一种多电极输出的射频消融设备,提供一种能够使多个消融电极分时输出电流的方案,该方案能够提高设备的工作效率,同时也能进一步有效控制消融电极的温度。
[0079]上面结合附图对本实用新型的【具体实施方式】进行了详细说明,但本实用新型并不限制于上述实施方式,在不脱离本申请的权利要求的精神和范围情况下,本领域的技术人员可以作出各种修改或改型。
【主权项】
1.一种多电级输出的射频消融设备,包括: 多电极消融导管,其包括N个消融电极、M个温度传感器,每个温度传感器对应所述多电极消融导管内的一个或多个消融电极;N为大于2的整数,M为大于I的整数; 射频发生单元,与所述多电极消融导管连接,用于产生射频电流输出到所述多电极消融导管; 其特征在于,还包括开关单元, 所述开关单元连接控制单元;所述开关单元个数为N个且与所述消融电极一一对应,每个所述开关单元与每个消融电极均连接,同时每个所述开关单元均与所述射频发生单元连接; 其中,所述控制单元用于控制每个所述开关单元导通从而使所述射频发生单元产生的所述射频电流输出到所述多电极消融导管。2.根据权利要求1所述的一种多电级输出的射频消融设备,其特征在于,每个所述温度传感器用于检测其对应的所述一个或多个所述消融电极在消融时消融部位范围内的温度; 该设备还包括: 检测单元,所述检测单元连接于所述多电极消融导管与所述控制单元之间,用于接收每个所述温度传感器输出的温度值,将所述温度值输出到所述控制单元; 所述控制单元用于接收所述检测单元输出的每个所述温度传感器输出的温度值,若其中一个温度传感器输出的所述温度值高于预定值,则将该温度传感器对应的消融电极所对应的开关单元断开;当其中一个温度传感器输出的所述温度值低于所述预定值时,则将该温度传感器对应的消融电极所对应的开关单元闭合。3.根据权利要求2所述的一种多电级输出的射频消融设备,其特征在于,当每个所述温度传感器检测输出的所述温度值均超过所述预定值时,所述控制单元对所有所述温度值从高到低排序,将输出温度值最低的I个所述温度传感器对应的所述开关单元导通。4.根据权利要求3所述的一种多电级输出的射频消融设备,其特征在于,所述控制单元还与所述射频发生单元连接,具体用于对接收的每个所述温度传感器输出的所述温度值进行计算,得到均衡温度指标,再对所述均衡温度指标进行计算得到射频功率调节指标,通过所述射频功率调节指标对所述射频发生单元的功率大小进行调节从而调节所述射频电流的大小。5.根据权利要求4所述的一种多电级输出的射频消融设备,其特征在于, 所述N个开关单元依次每K个分为一组,得到至少两组开关单元组,所述控制单元还用于控制所述至少两组开关单元组依次循环通断,其中N为K的整数倍; 若在上述循环通断过程中,由于所述消融电极温度过高而导致该消融电极对应的开关单元断开,则该消融电极对应的开关单元不进行循环通断。6.根据权利要求5所述的一种多电级输出的射频消融设备,其特征在于,所述K的取值为出厂预定值。7.根据权利要求5所述的一种多电级输出的射频消融设备,其特征在于,所述控制单元控制所述N个开关单元依次循环通断时,每个所述开关单元导通的时间为0.5ms-100mso8.根据权利要求5所述的一种多电级输出的射频消融设备,其特征在于,所述多电极消融导管工作时,某一时刻正在输出射频能量的所有消融电极与中性电极之间的阻抗保持为预定的阻抗值。9.根据权利要求1-8之一所述的一种多电级输出的射频消融设备,其特征在于,还包括与所述控制单元连接的外部接口模块,用于设备与外部之间的信息交互。
【专利摘要】本实用新型公开了一种多电级输出的射频消融设备,包括开关单元、射频发生单元,所述开关单元连接控制单元,所述开关单元与多电极消融导管上的消融电极连接;同时每个所述开关单元均与所述射频发生单元连接;其中,所述控制单元用于控制每个所述开关单元导通从而使所述射频发生单元产生的所述射频电流输出到所述多电极消融导管。本实用新型实现了射频功率调节控制和多极输出分配控制,达到仅用一台射频消融设备就实现多个电极输出射频电流的有益效果。
【IPC分类】A61B18/14, A61B18/12
【公开号】CN204744407
【申请号】CN201520406725
【发明人】李勤波
【申请人】四川锦江电子科技有限公司
【公开日】2015年11月11日
【申请日】2015年6月12日
当前第2页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1