用于健身设备的控制系统和方法

文档序号:1591557阅读:232来源:国知局
专利名称:用于健身设备的控制系统和方法
技术领域
本发明通常涉及用于控制健身设备的操作的系统和方法。尤其本发明的实施例可与用于控制组合式踏车和步进健身设备的操作的系统一起使用。
背景技术
经常锻炼对于健康的益处是公知的。过去一段时间已经开发了很多不同类型的健身设备,具有不同的成功之处,便于锻炼身体。成功的健身设备类的例子包括踏车和爬梯机构。常规的踏车通常包括一个提供移动表面的环带,使用者可在上面步行、慢跑或者跑步。常规的爬梯机构通常包括一对适于上下转动的连杆,提供一对表面,使用者可站立在上面并上下用力以模拟攀爬一段楼梯。
本发明的不同实施例和方面包括一个健身机构,其提供并排的移动表面(踏板),其可转动的支撑在一端并适于在相对的一端上下转动。这样的装置以这样一种方式提供两个转动的移动表面,即提供使用踏车的一些或者全部的健身益处、使用爬梯机构的一些和全部的健身益处以及没有意识到的单独通过踏车或者爬梯机构所带来的附加的健康益处。
随着健身装置中的踏车和楼梯步进机功能的组合的出现,本发明的发明者已经认识到对这种装置的先进控制的需要。与背景技术相比,已经开发出本发明的不同实施例。
发明概述根据上述内容以及根据本发明的一个实施例的主要方面,此处公开的是用于控制健身设备的操作的系统和方法,该设备配置为有助于基本水平和基本垂直的锻炼动作的组合动作。这种先进的控制功能提供了不同的锻炼水平和/和程序,可能利用不同的机构、传感器和其它的控制设备来控制用于不同的锻炼程序的锻炼设备的操作。
根据本发明的一个实施例的另一个主要方面,此处公开的是一个健身装置,具有一个或多个能够上下运动的踏板。在一个实施例中,该健身装置可包括一个踏板控制装置,用于控制踏板运动(如向下的运动)的阻力;一个踏板位置传感器,用于检测踏板的上下运动并提供一个代表该运动的信号;和一个中央处理装置,用于接收该信号并为踏板控制装置提供一个踏板控制信号,以调节踏板的阻力。
在一个实施例中,踏板的阻力受流过阀的流体的控制,踏板控制装置调节流经该阀的流体。在一个实施例中,随着流经该阀的流体的增加,踏板的阻力减小(即,对于使用者而言更容易向下移动踏板),随着流经该阀的流体的减少,踏板的阻力增加(即,对于使用者而言更难以向下移动踏板)。
在一个例子中,踏板控制信号是一个脉宽可调信号。踏板位置传感器可包括一个编码器,例如一个光学编码器,用于检测踏板的上下运动。该编码器具有一个底部和一根轴,底部连接到健身装置的一个固定部分上,与摆动臂连接的轴可转动的固定在踏板之间。
根据本发明的另一个实施例的另一个主要方面,此处公开的是一个健身装置,包括一个框架结构;第一踏板组件,其包括第一移动表面,第一踏板组件可转动的支撑在该框架结构上;第二踏板组件,其包括第二移动表面,第二踏板组件可转动支撑在该框架结构上;一个踏板位置传感器,用于检测第一和第二踏板的上下运动并提供一个代表该运动的信号;和一个中央处理装置,用于接收该信号并提供一个踏板控制信号以调节踏板的阻力。
在一个实施例中,该健身装置还可包括第一活塞-缸组件,其可操作的连接在框架结构和第一踏板组件之间,和第二活塞-缸组件,其可操作的连接在框架结构和第二踏板组件之间。一个可调节阀组件可液压连接在第一活塞-缸和第二活塞-缸组件之间。
根据本发明的另一个实施例的另一个主要方面,此处公开的是一种用于控制一个具有至少一个能上下运动的踏板的健身装置的方法。在一个实施例中,该方法包括生成一个指示该至少一个的踏板的位置的踏板位置信号的操作,以及部分的基于该踏板位置信号来调节该至少一个的踏板的向下运动的阻力。该方法还可包括接收至少一个使用者输入的信号,并部分的基于该使用者输入的信号来调节该至少一个的踏板的向下运动的阻力。
本发明的不同的其它方面将在下文中参照附图作详细讨论和说明。
附图简述详细说明将参照下面的附图,其中相同的数字代表相同的元件,其中

图1是根据本发明的多个方面的一种健身装置的一个实施例的后部等角视图;图2是图1所示的健身装置的前部等角视图;图3是图1所示的健身装置的底部等角视图;图4是图2所示的健身装置的左侧视图;图5是图2所示的健身装置的右侧视图;图6是图2所示的健身装置的顶视图;图7是图2所示的健身装置的正视图;图8是图2所示的健身装置的后视图;图9是图2所示的健身装置的底视图;图10是图1所示的健身装置的等角视图,其将立柱、装饰面板、踩踏带和其它构件移走以更好的示出下面的结构;图11是与图10相似的等角视图,其将踏板和其它构件移走以进一步示出下面的结构;图12是沿图7中的12-12线的剖视图;图13是沿图4中的13-13线的剖视图;图14是左侧踏板的前部和左前侧辊的近距离等角视图;图15是右侧踏板的前部的近距离等角视图,特别显示了带调节组件;图16是沿图10中的16-16线的剖视图;图17是沿图10中的17-17线的剖视图;图18是带调节组件的分解视图;图19A是角度调节板的顶视图;图19B是图19A中的角度调节板的正视图19C是图19A中的角度调节板的侧视图;图20是沿图4中的20-20线的剖视图;图21是沿图4中的21-21线的剖视图;图22是沿图4中的22-22线的剖视图;图23是图21的近距离剖视图;图24是根据本发明的多个方面的后辊组件的分解视图;图25是沿图11中的25-25线的剖视图;图26是沿图11中的26-26线的剖视图;图27是沿图11中的27-27线的剖视图;图28是沿图11中的28-28线的侧剖视图;图29是根据本发明的多个方面的阀组件的示意图;图30是图1的健身装置的近距离的后部等角视图,其将很多构件移走以显示一个互连的结构和一个液体阻力结构;图31是与图30相似的后部等角视图,将附加的构件移走以便显示该互连结构和液体阻力结构;图32是与图31相似的等角视图,将更多的构件移走以便进一步显示该互连结构和液体阻力结构;图33是沿图4中的33-33线的剖视图;图34是连同其它构件一起的互连结构的等角视图;图35A-35E显示了图1中的健身装置移动完成的半个循环,其中右侧踏板从图35A所示的上部位置移动到图35E所示的下部位置,同时左侧踏板从图35A所示的下部位置移动到图35E所示的上部位置。
图36是图1中的健身装置的等角视图,将不同的特征移走以进一步显示处于上部转动方位的右侧踏板和处于下部转动方位的左侧踏板;图37是如图38所示的结构的健身装置的前等角视图;图38是如图36示出的健身装置的左侧视图;图39是如图36示出的健身装置的右侧视图;图40是沿图36的41-41线的剖视图,但是右侧踏板处于下部位置而不是上部位置;图41是沿图36的41-41线的剖视图;图42是与图40示出的方位相关的沿图36的43-43线的代表性剖视图;图43是沿图36的43-43线的剖视图;图44是活塞-缸阀阻力结构配置的等距剖视图;图45是图44的活塞-缸阀配置的侧剖视图;图46是一个健身装置的正视图,其具有图44中的与互连组件的轴连接的活塞-缸阀配置。
图47是图46中的健身装置的等角视图;图48是图44中的活塞-缸阀配置的近距离等角视图,其与图47中的互连组件的轴连接。
图49是另一个活塞-缸配置的等距剖视图;图50是图49种的活塞-缸配置的前视图;图51是一个健身装置的底视图,其采用了另一个互连组件和活塞-缸阀阻力结构配置;图52是图51中的健身装置的底部等角视图;图53是图51中的健身装置的左侧等角视图;图54是与图53相似的左侧视图,并进一步示出了阀组件的内部阀元件的示意性代表元件;图55是右侧踏板的前部的局部等角视图,其突出了前部辊调节组件;图56是右侧踏板的前部的局部等角视图,其突出了板和保护支撑组件;图57是不同装置、调节器、传感器和信号的示意性表示,其可用在本发明的一个实施例中。
图58是根据本发明的一个实施例的用户界面的画面示意;图59是根据本发明的一个实施例,显示了一个给定重量的使用者在给定的锻炼设置级别和有效踩踏速度条件下,用于确定踏板的下落速度的操作的例子;图60是根据本发明的一个实施例,显示了用于确定踏板的下降速度的操作的另一个实施例;以及图61是根据本发明的一个实施例,显示了用于健身装置的踏板位置传感器的例子。
详细说明本发明的不同实施例提供了用于控制健身装置或健身设备的操作、特征和功能的系统和方法。在本发明的一个实施例中,不同的调节器、传感器和其它特征和功能为健身设备提供控制和操作,健身设备将步进功能与踏车或走路/跑步功能组合起来。其它实施例中,可单独或以不同组合的方式使用不同的调节器、传感器和其它特征和功能,以恰当的控制其它健身设备,例如步进机、踏车、椭圆教练机和其它健身装置。
参照图1,遵照本发明的多个方面,健身装置10可构造成为使用者提供走路型健身、步进型健身或组合了走路和步进的类似攀爬型的健身锻炼。该健身装置通常包括两个类似踏车的组件(12,14)(此处称为“踏板”或“踏板组件”),其可转动的与一个框架连接,以便踏板可绕一个共有轴16或在共有轴的区域内上下转动。每个踏板包括一个移动表面,例如在一个类似踏车结构中的带18。通常,每个踏板的后部可转动的支撑在框架上,每个踏板的前部以上下往复的方式支撑。在使用中,使用者可在踏板上走路、慢跑或跑步,踏板将绕该共有轴往复转动。
踏板(12,14)以这样一种方式设置,使得一个踏板的向上的运动伴随着另一个踏板的向下的运动。在一些实施例中,踏板相互连接,以便一个踏板的向上或向下的转动分别与另一个踏板的向下或向上的运动相关联。然而,可能该往复运动是一个使用者输入的功能,而不是一个踏板之间的联动配置。在一个实施例中,踏板(12,14)通过一个互连元件或组件相互连接,以便一个踏板的向上/向下的运动伴随着另一个踏板的向下/向上的运动。此外,本发明的一个实际应用包括一个阻力结构(或多个结构),例如伴随着每个踏板的液压振动,以便提供踏板的向下运动的阻力或阻尼。还可能的是通过将一个返回构件(例如弹簧)与阻力元件结合,实现一个踏板向上运动以及另一个踏板向下运动(或者配合或者独立)的往复运动。由踩踏带18提供的移动表面以及踏板的往复(配合或不配合)运动的结合提供了一种健身方式,其与在松散的表面上攀爬相似,例如在沙丘上走路、慢跑或者跑步,其中每次向上和向前的脚运动都伴随着脚向后和向下的滑动。通过这样的类似攀爬的锻炼方式,将获得非常显著的有益于心脏血管的效果以及其它健康益处。而且,通过下文说明可认识到,以低冲击方式可获得非常显著的健康益处。本发明的实施例可装配有锁定配置,其基本上禁止了转动,以便健身装置10提供一对用于走路、慢跑和跑步的非转动移动表面。
图1示出的健身装置10的实施例并没有显示不同的保护和装饰面板,其可用在用于销售的装置中。图2是图1所示的健身装置的前等角视图。图3是图1和图2中的健身装置的底部等角视图。图1-9分别显示的是图1-3示出的健身装置的左侧、右侧、顶、前、后和底视图。
参照图1-9以及其它视图,健身装置包括第一踏板组件12和第二踏板组件14,每个都具有一个前部(12A、14A)和一个后部(12B、14B)。踏板组件的后部可转动的支撑在健身装置的后部。踏板组件的前部支撑在框架上,并配置成在使用中以基本上向上和向下的方式往复运动。还可能的是,在健身装置的前部可转动的支撑踏板,并且在框架上支撑踏板组件的后部。每个踏板组件还支撑一个环带或“踩踏带”,其越过板20转动并绕前辊22和后辊24转动,以提供一个或者向前或者向后的移动表面。踩踏带可以是常规的踏车带结构和材料。可选择的是,所述带可以是带有PVC涂层的聚酯纤维。该带还可以进一步浸染硅以便于润滑。这样的带由SieglingTM制造。除了踩踏带以外的其它移动表面可以由遵照本发明的实施例提供。这类移动表面包括多个位于前后辊之间的辊,以及可参考使用的在各种用途中使用的其它辊。
使用者可以面朝踏板组件的前部(12A,12B)在该装置上进行锻炼(此处称为“向前使用”)或者可以面朝踏板组件的后部(12B,14B)在该装置上进行锻炼(此处称为“向后使用”)。此处使用的术语“前”、“后”和“右”指使用者以面向前的典型使用方式站立在装置上时的视角。在任意类型的使用中,使用者可以在健身装置上以使用者的每个脚接触一个踏板组件的方式走路、慢跑和/或步进,虽然当使用者精力充沛锻炼时有时两只脚都抬离踏板组件。在面向前的使用中,使用者的左脚通常只接触左侧踏板组件12,使用者的右脚通常仅接触右侧踏板组件14。可选择的是,在面向后的使用中,使用者的左脚通常仅接触右侧踏板组件,使用者的右脚仅接触左侧踏板组件。
与本发明的多个方面相一致的健身装置可构造为仅提供踏步运动,仅提供步进运动或者提供踏步和步进运动的组合。对于踏步运动,踏板组件(12,14)构造为不往复运动,环带18构造为转动。术语“踏步运动”意味着指代任意典型的人的踏步动作,例如走路、慢跑和跑步。对于步进运动,踏板组件构造为往复运动,环带构造为不绕辊转动。术语“步进运动”意味着指代任意典型的步进运动,例如当人爬楼梯,使用常规的步进健身装置,爬山等等。
如上所述,每个踏板组件的后部(12B、14B)可转动的支撑在健身装置10的后部。每个踏板组件的前部(12A、14A)支撑在健身装置的前部,以便踏板组件可向上和向下转动。当使用者在踏板上步进时,它(包括带)将向下转动。如下文进一步详细描述的那样,踏板组件可相互连接以便一个踏板组件的向下或者向上的运动将导致另一个踏板组件的分别向上或向下的运动。因此,当使用者在一个踏板上步进时,它将向下转动,同时另一个踏板将向上转动。踏板组件构造为上下移动,踩踏带构造为提供一个移动踏步表面,使用者可获得一种包含踏步和步进的组合的健身运动。
参照图1-3、9和其他附图,健身装置包括一个带有下方主框架28的框架26。框架为健身装置的移动构件和其它构件提供一般的结构支撑。下方的主框架构件包括一个整体左侧面板30、右侧面板32、前面板34、后面板36和底面板38。框架可直接设置在地板上或者支撑在可调节的腿、垫子、减震器或者它们的组合上。在图1-9的应用中,可调腿40设置在底框架面板的底部前左和前右拐角处。
左侧立柱42在左侧面板30的后端区域处与框架连接。右侧立柱44在右侧面板的前端区域与框架连接。立柱通常从框架处以一个向前的角度向上延伸。手柄46延伸至每个立柱的顶部。在图1-3等的应用中,手柄是直的管状结构。手柄通常布置在与各个下方的侧面板(30,32)相同的平面内并沿踏板的整个长度延伸。在使用健身装置10的过程中,手柄适于使用者的抓握。控制台48支撑在手柄的前段之间。控制台可包括一个或多个杯架、一个健身显示器和一个或多个适于夹持钥匙、手机或者其它私人物品的凹部。一个附加的横向手柄50在每个侧板的前部之间延伸。该横向手柄包括心率提取装置,用于为控制台中的心率监视器和显示器提供心跳信号。
图10是图1-9所示的健身装置10的等角视图,为了更好的显示那些部分和全部隐藏的构件,去除立柱(42、44)和踩踏带18。在去除踩踏带的情况下,可看见设置在下面并支撑每个踩踏带的板20。图11是图10示出的健身装置的等角视图,其将踏板20进一步移走以显示踏板框架组件52。每个踏板组件包括一个具有外侧元件54的踏板框架和多个从外侧元件向内延伸以支撑板的板支撑元件56。外侧元件和板支撑元件是钢制品,但是可由其它材料制造,例如铝。防护板58或“挡板”连接到板支撑元件的内端。防护板也是钢制品,但是可由其它材料制造,例如铝或塑料。
每个踏板框架组件52的外侧元件54可转动的支撑在健身装置的后部区域处。外侧元件从后部转动支撑结构60处沿下方框架长度的大部分向前延伸。那里没有设置基本与外侧元件平行的内侧框架元件。在常规踏车中,通常具有一个外侧框架元件和一个内侧框架元件,并且板支撑元件设置并支撑在内侧和外侧框架结构之间。此处所示的本发明的一些应用中,踏板框架组件具有一个外侧框架元件,但是没有内侧框架元件。而且,板支撑元件56与外侧框架元件54连接并通过它支撑,但是不通过内侧框架元件支撑。同样的,板支撑元件支撑在一点上或者仅沿着一个不连续的长度支撑,例如板支撑元件的一端部区域。
在图11所示的配置中,板支撑元件通过外侧踏板框架元件支撑在一个端部区域上,并沿着它们的长度承载板的载荷。也可以在端部以外处支撑板支撑元件。在任意情况下,在一个应用中,板支撑元件56可限定一个悬臂,板支撑元件支撑在一端或者一个支点处并沿它们的长度或者超出悬臂一侧承受载荷(也就是板)。
通过不在板支撑元件56的内端处设置框架元件,踏板组件(12、14)可在相应的踩踏带18的内缘之间以很小的间隙或距离设置。在踏步运动过程中,很多使用者的脚和腿之间具有很小的横向间隔。以非常近的距离布置踏板有助于确保这样的使用者能够保持自然的踏步和在使用中使它们的脚恰当的与踩踏带18接合。而且,通过消除穿过悬臂板支撑元件56的两个向前延伸的内框架轨(一个对应一个踏步组件),不大幅度减小踩踏带的宽度就有可能减小健身装置10的整体宽度,这对于地板空间不足的家庭和健身俱乐部而言都是有利的。
图12是沿图7中的12-12线的剖视图。如图11、12和其它附图所示,每个踏步组件包括一个防护板58或者“挡板”。在一个应用中,可由钢铁、铝、聚合体或者其它合适的材料制造的防护板限定了一个相当薄的大致为三角形或者梯形的板。防护板连接到板支撑元件56远离其与外侧框架元件54连接端的内端上。防护板可以焊接或者螺栓连接到板支撑元件,或者连接到与板支撑元件连接的互连元件(图中未示)上。通常,防护板从板支撑元件的内端稍稍向上和向下延伸。防护板的顶端通常与各个板20的顶部对齐。防护板的前端向下延伸,并且通常与踏板组件(12,14)的前部垂直。防护板不为踏板组件提供纵向支撑或者为板支撑元件提供纵向支撑,而是防止使用者的脚或者小腿从踩踏带上滑落以及防止在另一个踏板组件下方或者在踏板组件之间受挤。防护板确实为板支撑元件提供了非常小的前后支撑。然而,防护板并不与后辊或者位于防护板后端的任意其它结构连接。图36-39(将在下文做更详细的描述)显示了处于下部位置的左侧踏板以及处于上部位置的右侧踏板,进一步显示了操作过程中的挡板和附近的踏板之间的关系。当一个踏板组件位于最高位置以及相对侧的踏板组件位于最低位置时,防护板的下端设置在相对侧踏板组件的顶端下方。由于踏板组件相互之间的紧凑布置,挡板以非常紧密的方式布置并且可能被时不时的接触。
再次参照图11,前辊22转动支撑在每个踏板框架52的前部(12A,14A),后辊24转动支撑在每个踏板框架52的后部(12B,14B)。正如板支撑元件56一样,前辊22支撑在悬臂结构中。特别的,右前辊通过外侧元件54可转动的支撑在右踏板组件14的外侧,左前辊通过左外侧元件54可转动的支撑在左踏板组件12的外侧。每个前辊22的内端彼此贴近的布置。挡板58(左和右)支撑在各个前辊的内端处。挡板为辊提供并不重要的纵向(垂直或者水平)支撑。每个辊的内端均未被支撑。
图13是沿图10中的13-13线的剖视图。参照右侧辊22R(左侧辊22L等是右侧辊的镜像),辊包括一个在踏板框架的外侧元件54的前端处可转动的支撑在带调节组件64内的辊轴62。注意,在一些例子中,为有助于理解,标号“R”或者“L”与元件数字一起使用来指明右侧(R)或左侧(L)构件。在很多例子中,每个构件和/或组件有两个相似的或者几个元件,但是只对这些元件中的一个做详细描述。例如,有两个右侧和左侧的踏板组件54,但是每个都非常相似,把它们当作一个进行描述或者只对其中一个做详细描述。辊进一步包括一个伸长的通常为圆柱形的外表面,其可转动的支撑在轴上。踩踏带与辊的外表面啮合。
为了调节踩踏带的张力和轨迹,前辊22和后辊24与踏板框架可调接的连接。在一个特别的应用中,每个前辊22与每个外侧踏板框架元件54的前部可调节的连接。图14-18显示了在本发明的一个特别应用中使用的带调节组件。特别的,图14是布置在左侧踏板组件的外侧框架元件的前端区域的带调节组件的局部等角视图。图14还显示了左侧踏板组件的前辊以及设置在最前方的板支撑元件。图15是布置在右侧踏板组件的外侧框架元件的前端区域的带调节组件的等角视图。正如很多该健身装置的其它特征,左侧和右侧带调节组件通常是彼此的镜像,由此不时的参照其中一个带调节组件所作讨论可完全等同的适用于另一个带调节组件。图16和17是分别沿图10中的线16-16和17-17的带调节组件的剖视图。图18是图15的带调节组件的分解视图。
参照图14-18以及其它视图,每个前辊具有一个从辊外端向外延伸的轴62。轴向前延伸的端部限定了一个横切轴的纵向轴线的螺纹孔66。带调节组件包括一个可滑动支撑在下部板70和上部板72之间的带张紧板68。下部和上部板在外侧框架元件的前端处螺栓连接到面板74上。上部和下部板从外侧元件处向前延伸,并布置在基本平行的平面内。沿下部板70和上部板72的长度方向限定槽76。张紧板68限定了一个从上端向外延伸的凸舌78和从下端向外延伸的第二凸舌。凸舌可滑动的支撑在下部板和上部板的对应槽内。进而,张紧板限定了一个轴孔80,优选为圆形并具有一个比前辊22的轴62稍大的直径。孔的轴线通常布置为垂直于外侧元件并适于容纳并支撑前辊的轴。张紧板还限定了一个与轴孔连通的螺纹孔82,并且当轴设置在轴孔80内时适于与前轴内的螺纹孔66对齐。
轴螺栓支撑板84固定到调节组件64的前端,优选通过一对旋入到下部和上部板前方对应孔内的螺栓。轴螺栓支撑板84限定了一个适于容纳轴螺栓88的螺纹孔86。如上所述,螺纹孔66限定在前辊轴内。当轴62设置在轴孔80内时,轴螺栓旋入螺栓张紧板和辊轴的孔内,以便前后移动螺栓张紧板并将轴固定在孔内。通过这种方式,可前后调节前辊以有助于绕前后辊设置带18,一旦绕辊设置了带并且在其后的任意时刻,均可调节带的张力。
前辊还可以相对于外侧元件做角度调节。图19A、19B和19C分别显示了带张紧板68的顶视图、前视图和侧视图。如图所示,从带张紧板的上部和下部伸出的凸舌78不是矩形的。取而代之,上部和下部的凸舌的后内表面(面向辊的表面)和前外表面(远离辊的表面)稍稍倾斜或歪曲。在图19A所示的一个例子中,拱形为大约2°。然而其它的拱形也是可能的。参照图16和18,角度调节板90螺栓固定在下部和上部板(70,72)之间。角度调节板限定了一个适于容纳角度调节螺栓92的螺纹孔。角度调节螺栓与带张紧板68的外侧表面接合,以便将张紧板角度定位在槽76内。通过这种方式,可以调节前辊的角度朝向。当带18放置在前后辊(22,29)四周时,几百磅的力可能将施加在辊上,促使前辊向后。增大角度调节螺栓相对于张紧板的接合能够使辊的另一端克服来自皮带的向后的力而向确前转动。相反,当前侧辊克服因皮带张紧所施加的向后的力时,减小角度调节螺栓相对于张紧板的接合能够允许皮带使辊向后摆动。通过这种方式,可调节角度来定位辊以确保它与带行进的方向一致,从而有助于确保在使用过程中皮带恰好位于辊的中心。
通过带施加在踏板框架52上的张力也可能使外侧元件54产生一个稍向后的偏斜。为了抵消这个偏斜,该外侧框架元件可以以向外的拱度形成。因此,当踏板由于带而处于张紧状态时,外侧元件将相对于后轴16偏转到大致垂直或者成直角的方向上。该偏斜将由于材料和外侧元件的制造公差以及带张紧程度的变化而稍有不同。前辊的角度调节使得可将辊的方向微调到与后辊和带行进的方向成直角的方向上。在一个特定应用中,每个悬臂外侧元件的拱形相对于后轴线在0.25°和0.5°之间。在将带绕辊固定之前,拱形将踏板(12,14)向稍稍离开彼此的方向上转动一个角度。
再次参照图10,带板20位于每个踏板框架的顶部。在一个特定应用中,板支撑在悬臂结构中,悬臂结构位于从外侧踏板框架元件54横向延伸的板支撑元件56上。板可以直接螺栓连接到板支撑元件上,可以固定到与板缓冲或者板悬挂系统结合的框架上。每个带板20位于每个踏板组件(12,14)的各个前辊22和后辊24之间。带板尺寸设计成为位于辊之间的踩踏带18上部的大部分或者全部的运行提供登陆平台。在一个实施例中,板大约为厚,并在板的上下运行段具有一个MDF芯和一个酚醛薄层。板的端部可包括一个有助于防止在运输和装配过程中受损的拱形。
图20是沿图4的线20-20的剖视图,图21是沿图4的线21-21的剖视图。参照图11、20和21,外部或者外侧踏板框架元件54优选为带有内、外、上和下壁的正方形的管形元件。可选择的是,可以使用圆的管状元件或者其它形状的元件。成套的板支撑孔94限定在每个外侧框架元件的内外壁上。位于内外壁上的板支撑孔对齐,并布置为支撑大致垂直于外侧框架元件的板支撑元件。在一个应用中,板支撑元件受压安装到外侧框架元件上。板支撑元件还可以焊接到外侧元件上。如图20、21和其它图所示,板支撑元件的外端区域设置在外侧元件的内外壁中的孔内。通过这种方式,板支撑元件支撑在两个位置上,但是由于板支撑元件通常支撑在一个区域上(在外元件的内外壁之间),并且板支撑元件的一部分(在这个例子中指支撑元件内侧的大部分)从该支撑区域延伸,这种布置方式依旧被认定为一个悬臂。在图1-20和其它图所示的特定健身装置的应用中,板支撑元件通常为圆柱形元件。其它形状也是可能的,例如正方形管元件。
再次参照图11以及图21和其它视图,临近外侧踏板框架元件54处,每个板支撑元件56包括一个突起96。每个突起限定了一个基本垂直于覆盖在上面的板20的螺纹孔。螺纹孔容纳对应的将板固定到板支撑元件上的螺栓98。螺栓头从板的顶部向上伸出。如图1、2和6所最清晰的示出的,带18的外端设置为稍朝着螺栓头的内侧,以便不与螺栓头发生干涉或者摩擦。可选择的是,螺栓头可以在板的顶部表面上钻孔,这种情况下带可以覆盖螺栓。
仍然参照图11、21和其它视图,橡胶、氯丁橡胶、聚亚安酯或者其它柔软的弹性板悬挂元件100设置在每个板支撑元件的内端处。板悬挂元件通常为圆柱形,但是也可以采用其它形状和尺寸。板悬挂元件设置在板和各个板悬挂元件之间。在使用过程中,通过带和板传递使用者的登陆力以压缩悬挂元件。通过这种方式,在使用过程中,悬挂元件有助于减轻冲击压力并提供稍轻柔的脚登陆方式。另外,一旦受冲击,板支承元件56可稍向下偏转以便能够在一定程度上辅助减小冲击应力。每个板悬挂元件的上表面通常为平的,并与对应的突起96的上端对齐,以便平稳的支撑板。虽然没有示出,销钉从板悬挂元件的下表面处延伸。为了将悬挂元件固定在板支撑元件上,将销钉挤压到板支撑元件的对应孔(图中也未示)内。销钉可以是以螺纹方式、挤压安装、卡和安装或者其它方式固定在孔内。
板悬挂元件还可以包括一个柔软的弹性悬挂套筒或者带。在一个例子中,套筒具有比板支撑元件稍小的直径。为了将套筒固定到板支撑元件上,将套筒伸展覆盖在板支撑元件上并通过套筒的限制力保持在合适的位置。套筒可以是任意宽度,使得它可仅沿板支撑元件的一部分或者沿板支撑元件的整个长度展开。板支撑元件还可限定一个环向凹槽或者切口,以便横向保持悬挂套筒。可选择的是,板支撑元件可包括一个位于板支撑元件上的替换悬挂元件的坚硬(不可压缩)元件。
每个踏板组件(12,14)的后部可转动的支撑在框架的后部,以便每个踏板组件可上下转动。每个踏板组件的前部通过一个或多个阻尼或者“阻力”元件、互连元件或者它们的组合物支撑在框架上。取决于配置,踏板组件可单独转动,或者相对于另一个转动(例如,一个向上,另一个向下)。
图22是沿图4中的线22-22的剖视图。图23是图22的放大局部剖视图。参照图7、11、22、23和其它视图,每个踏板组件(12,14)转动支撑在框架后部附近。在一个特定应用中,左侧和右侧后轴支撑组件60设置在每个踏板组件及健身装置的左后和右后处或附近。后轴支撑组件转动支撑后轴102(在一个应用中是踏板的共用转动轴)。后轴在左右支撑组件之间延伸并转动支撑左右踏板组件。后轴可以是一个连续元件或者是一个由不同零件组成的组件。
特别参照图11,在健身装置的后部,套筒104从装置后部的每个侧板(30,32)的顶部表面处向内延伸。后轴支撑组件固定到每个对应的支架上。每个后轴支撑元件60包括一对横向偏置的下部轴承支撑106和一对相应的横向偏置的上部轴承支撑108。下部和上部轴承支撑分别限定了半圆形特征,其相互配合以限定一个用于支撑径向球轴承组件110的圆形孔。后轴的端部可转动支撑在各个后轴支撑组件内。每个后轴支撑组件包括两个相互隔开的径向球轴承110。如图22和23所最清晰的示出的,后轴的每个端部区域由一对横向偏置的径向球轴承可转动的支撑。
参照图22、23和图24(后辊组件的分解视图),后辊组件112包括左右后辊24。所示的后辊组件带有两个不同的带接合表面(左辊和右辊);然而辊组件呈单个的连续外表面。也可能具有带有单个轴的单独后辊,一对在单个轴或者一对轴上的不同的辊。此外,可能具有位于辊和踏板之间的公共轴线,或者具有辊和踏板之间的不同的轴线。例如,踏板可绕一条位于辊轴前方、前方和下方等的线转动。
每个后辊部分包括一个外部圆柱形元件114,其通过一个内侧和外侧轴承(116,118)可转动的支撑在后轴102上。每个踏板组件的踩踏带与对应的外部圆柱形元件接合。在一个应用中,每个圆柱形元件限定了一个凸出的外部轮廓,凸出部分的顶点轴向布置在圆柱形元件的中点附近。凸出的形状有助于将踩踏带保持集中在后辊上。在一个特定应用中,外部圆柱形元件具有一个从外端朝着外部圆柱形元件的纵向中心的增大的径向尺寸。该增大的径向尺寸可以是相同的或者可以是递进的,以便以外部圆柱形元件的中点为中心具有一个增大的径向尺寸和一个基本相同的径向尺寸。可选择的是,外部圆柱形元件114可沿圆柱形的长度方向限定一个相同的径向尺寸。
除了后辊的隆起或者凸出的形状(还可能提供隆起的前辊),在本发明的一个应用中,包括一个带导引装置118(参见图10,25,27和其它视图),其固定到恰好位于后辊组件112前方的板上,以帮助保持带18的对准。带导引装置限定一个逐渐减细或者倾斜的表面,构造为与踩踏带的外端接合。在踏步过程中,人体的踏步主要具有一个纵向力分力,其产生向前的推力。然而,大多数人在它们的踏步中还具有一个轻微向外或者横向的分力。这个横向分力作用在带上,其使带产生错位。特别是,在后辊上促使带的后部向外运动。由此,将带导引装置放置在踏板上以与踩踏带的外侧后表面接合。带上的带导引装置的相互作用有助于保持带在辊之间准确对齐,以抵消大多数使用者的横向的踩踏力。
再次参照图22、23和24,在一个特定实施例中,后轴102支撑用于每个踏板组件的后辊组件。由此,左右后辊绕一公共轴线可转动的支撑,该轴线也是踏板的公共后转动轴线。在一个特定应用中,后轴102具有第一(左)部分120和第二(右)部分122。每个后轴部分包括一个轴杆,轴的外端从相关的辊伸出并由相应的轴支承组件60支承。每个轴部分的内端通过一个套筒120(此处也称为“套环”)连接在一起。每个辊的外侧圆柱穿过套筒,以有效的相互连接其外部圆柱(并相互连接辊),使得它们同步转动。套筒由成对的设置在后轴的每段的内端处的径向球轴承118可转动支撑。每个辊的外端还由与各个轴支撑组件相邻的径向球轴承116支撑。由此,每个辊通过朝着辊每一侧的径向球轴承可转动的支撑在后轴上。另外,通过套筒,辊绕后轴线一起转动。
通过套筒124使之一体化,可转动的支撑在轴段(120,124)上的辊组件沿两个踏板组件(12,14)的背部提供结构上的刚性支撑。特别是辊和套筒通过四个径向球轴承(116,118)可转动的支撑在后轴杆上。由此,辊与后轴可转动的连接。此外,后侧轴的每一部分的每个外端部分均通过一对轴承110支承在各个支承组件60内。辊组件避免设有某种类型的轴支撑支架或者类似的沿端部之间的轴的长度方向与框架连接的装置。
在使用过程中,当每个踏板转动时,各个轴段(120,122)也转动。然而,轴段以相反方向转动;由此,当一个顺时针方向转动时另一个逆时针方向转动,反过来也是如此。由于辊组件和轴段的构造,当辊一起转动时,轴可以沿相反的方向转动。套筒提供了辊之间的连接,同时支撑后轴段以便提供实际上一体的后轴。
如上所述,外侧踏板框架元件如同辊一样绕相同的轴102转动。参照图22,外侧踏板框架元件54连接到位于各个支撑组件60的内外轴承支撑组件(106,108)之间的后轴。轴段(120,122)固定到各个外侧踏板框架元件54上。轴从外侧踏板框架元件向外延伸。向外延伸的轴段支撑在外侧轴承支撑组件中。此外,杆从外侧踏板框架元件向内延伸。向内延伸的轴段支撑在内侧轴承支撑组件中。后部支撑组件的径向球轴承在位于外侧元件任意侧的两个位置上可转动的支撑后轴。各个轴段的向内延伸的部分还支撑各个辊。由此,踏板可绕后轴上下转动10°,并且辊可绕轴转动。
为了保持合适的公差,辊可机械加工为三段,中间套筒段124和两个外侧辊段114。为了组装辊,将内部轴承118挤压进中间段,接着左右外段挤压到中段上。为了完成辊的组装,将外轴承116挤压进轴承支架126内,接着将它们挤压到外段的端部。一些实施例中不包括轴承支架。辊可由一体件制成,但是加工时间和造价很可能将比三件套组件的大。
三件套辊组件提供了一些附加的优点。首先,后辊组件提供了一个假定轴,使得轴段可以与踏板组件一起单独转动,同时支撑在一个方向上转动的辊组件。如下文所详细描述的,驱动马达通过一根带连接到直接连接到辊组件上的驱动滑轮128上,以驱动行走带。其次,后辊组件用作其中一个机构,以抵抗由使用者所带来的带张紧和扭转。这也是在后辊中安装内外轴承的一个原因。轴承的接触点产生一个长的杠杆臂来抵抗上述提到的力。轴承安装到焊接在上述提到的踏板臂上的轴杆上。后辊绕轴杆自由转动。
还设有位于每个踏板元件的内外侧的轴承10。这四个轴承位置起很多作用。首先,它们垂直的支撑踏板组件。其次,在一个例子中它们允许踏板上下转动。再次,它们提供了第二机构,用于抵抗踏板上的带张紧和使用者所施加的扭转。这种设计提供了其中强度方面的一个方面,其允许使用单臂踏板(例如,外侧元件54)并使它们作为一个结构相互作用,但是仍然单独执行它们最初的功能。
为了驱动依次驱动每个踩踏带18的辊24,驱动滑轮128固定到其中一个辊上。图25是沿图11的线25-25的剖视图。图26是沿线26-26的剖视图。如图25,26和其它视图所示,在一个特定应用中,驱动轴滑轮固定到右辊的外侧表面上。更详细些,驱动滑轮固定到与后轴支撑组件60相邻的右辊外端附近的外侧表面上。然而,驱动滑轮可固定到与左侧轴支撑组件相邻的左端区域,或者沿着左右端区域之间的辊长度的某些地方,例如在辊之间,其要求踏板之间稍大的间距。马达130固定到底部框架面板上。在马达正前方,是用于支撑控制马达转速和其它功能的马达控制器、处理器和其它电子元件的马达控制面板。图9的底视图显示了马达安装孔,电子控制面板安装在底部框架面板上。
图27是沿线27-27的剖视图。如图26、27和其它视图所示,马达轴134从马达一侧向外延伸。马达安装为使得马达轴基本平行于轴102(例如,后轮组件的后轴)。此外,不同直径的滑轮可与马达轴连接。驱动带136连接在驱动滑轮和马达轴之间(或者马达轴滑轮应当作为一体使用)。因此,马达设置为推动后辊组件112的转动。接着辊又推动每个踏板的踩踏带的转动。
图28是沿线28-28的侧视图。首先参照图26、27和28,在本发明的一个特定应用中,采用带张紧组件138用于提供驱动带136的恰当的张紧。带张紧组件包括一个张紧臂140,其转动连接到与底部面板38连接的张紧支架142上。张紧臂远离张紧臂140的转动连接,可转动地支承张紧轮144。张紧轮与位于驱动滑轮128和马达轴134之间的驱动带接合。张紧臂的朝向可以调节为在驱动带上设置合适的张力。在使用过程中,在踩踏带上放置变化的载荷,其反过来又在后辊上产生变化的力。通常,调节张紧臂以便驱动带在驱动滑轮或者马达轴(或者马达滑轮)上不因为使用中所施加的力的变化而滑动。此外,皮带张紧组件能够提供一种用以调节驱动带的张紧力的便利的方式,以确保驱动皮带长时间张紧。
可选择的是,采用一种弹性驱动带,其不再需要张紧装置。可以在与本发明一致的实施例中采用的弹性带的一个例子是HutchingonFlexonicTM带。
飞轮146可固定到马达轴的向外延伸的端部区域。在使用过程中,踩踏带18滑过板20,其具有一特定的取决于不同参数的动摩擦力,这些参数包括带和板的材料以及施加在带上的向下的力。在一些例子中,当使用者在带上行走时,带将轻轻的联结在板上,其伴随着带和板之间的增大的动摩擦。除了由马达施加的用于转动带的力外,固定到马达轴上的飞轮具有一个角动量分力,其有助于克服增大的动摩擦并帮助提供均衡的踩踏带运动。
如图22所最清晰的示出的,与辊连接在一起的每个辊端22和套筒124通过径向球轴承(114,116)可转动的支撑在后轴上。在一个应用中,如上所述,后轴包括第一段(第一轴杆)和第二段(第二轴杆),并且辊和相互连接的套环由在每个杆上的两个径向球轴承转动支撑。通过将驱动滑轮连接到辊,驱动滑轮促使辊绕后轴转动。
可以分离马达的转动并通过一公共马达控制器,经独立的马达对每个辊提供动力。在这样的实例中,马达速度由控制器调节,使得踩踏带以相同或者接近相同的速度转动。该马达或者多个马达可以构造或者控制为由使用者控制以沿向前的方向(即,从左侧观察,绕前后辊以逆时针方向)驱动环带或者沿向后的方向(即,从左侧观察,绕前后辊以顺时针方向)驱动环带。
在一个应用中,使用AC马达来驱动辊。使用AC马达,带的速度可以从AC马达控制器直接得到。于2004年2月26日提交的发明名称为“具有单个后辊的双踏车健身装置”的相关美国申请No.60/548811包含在此作为参考,其描述了一种可以在本发明的一种方案中采用的AC马达控制系统。特别的,带速度控制装置(“BSCU”)基于接受自中央处理装置(“CPU”)的带速度控制信号控制踏板上的带的速度。
CPU可用作控制该设备的操作和/或功能的不同方面。更详细些,CPU提供了所需要的控制设备的操作的输出信号,这些操作包括但不限于踩踏带的驱动、施加到任意踏板上的抵抗力。这样的输出信号最好为数字格式,但是如果一个特定应用中要求的话,也可以提供模拟信号。进而,输出信号通常通过有线介质传输,但是也可以使用无线连接方式来传输到达/来自所期望的装置、传感器、激励器或者其它装置的任意信号,这些装置可能设置在控制装置处或者远离控制装置。相同的,CPU接受来自传感器、使用者或者其它物体的不同输入信号,它们帮助CPU控制设备的操作、特征和功能,以及确定利用该设备10、其它特征和功能由锻炼者所执行的操作。这样的输入信号还可以通过有线和/或无线通信连接装置传输到CPU。
在采用了DC马达的健身装置中,带速度传感器(图中未示)可操作的与踩踏带联合来控制踩踏带的速度。在一个特定应用中,带速度传感器与一个包括一个磁体和一个拾取器的弹簧开关一起使用。更详细些,磁体埋入或者连接到驱动滑轮上,拾取器与以这样一个方向与主框架连接,即每次磁体转过拾取器时生成一个输出脉冲。弹簧开关的其它朝向也是可能的。此外,可采用其它传感器或者电子元件来控制、检测或者另外提供带速。
本发明的特定实施例可包括一个与踏板可操作的连接的阻力结构。此处使用的术语“阻力结构”指的是包括阻止踏板转动的任意类型的装置、结构、元件、组件和构造。由阻力结构提供的阻力可以是恒定的、变化的和/或可调的。此外,该阻力可以是载荷、时间、热量和/或其它系数的函数。这样的一个阻力结构可能抑制踏板向下和/或向上的运动。阻力结构可在踏板上施加一个回复力,使得如果踏板处于下部位置时,阻力结构将施加一个力来向上移动踏板。为阻力结构提供一个回复力将替代互连元件或者与互连元件一起工作。术语“减震”有时用在此处作为阻力结构的一种形式,或者是弹簧(回复力)元件,或者是包括或不包括弹簧(回复力)的阻尼元件。
图30-32和34是健身装置的局部等角视图,其中将很多构件移走以显示阻力结构的一个应用以及它到踏板的连接。同时如同下文中所详细描述的,图30-34也强调了互连组件以及其它结构的一个应用。参照图28和30-34以及其它视图,在一个特定健身装置的构造中,踏板阻力结构148连接在每个踏板组件(12,14)和框架26之间用以支撑位于框架以上的踏板组件的前部,以抑制每个踏板向下的运动。阻力结构可设置在踏板框架和主框架之间的不同位置上。在此处所示的一个特定配置中,阻力结构设置在踏板下方和踏板后部。这样布置,阻力结构的大部分在面板下方隐藏在视线之外。而且,在装置的操作或者安装或者拆卸过程中,使用者不大可能不经意的碰撞或者接触阻力结构。
可以采用在根据本发明的健身装置中的其它的阻力结构和相同配置在不同的申请中示出,其包含在此作为参考。
阻力结构148包括与各个踏板组件可操作连接的第一和第二活塞-缸组件150。每个活塞-缸均与公共阀组件152可操作的连接。正如健身装置的很多部件一样,位于装置右侧的活塞-缸150以及它与框架和右侧踏板的连接与连接在框架和左侧踏板之间的活塞-缸非常相似。由此,将对右侧活塞-缸组件以及它与右侧踏板、框架之间的相互连接做详细描述。首先参照图28、32和其它视图,阻力支架154与踏板组件的下后部分连接。阻力支架通常为三角形。支架的一个表面通过两个螺栓连接到外侧踏板框架元件54的底部表面上,其恰恰位于转动支撑组件60的前方。支架布置为使得三角形的一个顶点通常设置在后轴下方。位于后轴下方的支架顶点限定了一个用于转动支撑(在前阻力支点)右侧活塞-缸的前部的孔156。右侧活塞-缸的后部可转动的支撑在与框架背面相邻的后阻力支点158。
液压活塞-缸组件150通常限定有带有液压流体的缸160,其带有一连接在每个踏板和框架之间的活塞162。液压缸154是流体相通的,例如通过阀152利用管子164。踏板的转动促使活塞前后运动。通过活塞的前后启动,液压流体通过阀从一个缸推入另一个中。对阀的调节将液压阻力引入到位于缸之间的流体中,其为每个踏板的转动带来阻力。
活塞-缸150的后部在后支点158处转动连接到框架上。将活塞支撑在缸内的活塞杆166延伸到活塞-缸的前部之外。延伸到缸之外的杆的后部可转动的连接在前部的阻力支点156处。在缸内,活塞与活塞杆连接。液压缸是具有1.5″的孔和2″的行程以及#6 SAE O型圈端口的焊接缸。流体可以是任意常规的液压流体。
图29是阀组件152的示意图,其流体连接活塞-缸用以控制阻力结构的液压阻力。阀元件包括一个比例流体控制阀168(其是机械或电子可调的),与第一输入装置170和第二输入装置172流体连通。在一个实施例中,比例阀是一个通常关闭的双向提升阀,例如Hydra ForceSP08-20-O-N-120E。一个缸160与第一输入装置流体连通,例如通过柔性管,另一个缸与第二输入装置流体连通。多个球阀(174A、174B、174C、174D)处在输入装置和比例流体控制阀之间的流体通道中,球阀允许流体在一个方向上流动,并防止流体在另一个方向上流动。特别的,第一174A和第二174B球阀设置在第一流体通道176中,其允许流体从第一输入装置170经过比例阀168流到第二输入装置172中。第三174C和第四174D球阀设置在第二流体通道178中,其允许流体从第二输入装置172经过比例阀168流到第一输入装置170中。两条流体通道直接通过比例阀;由此,比例阀的调节将使流经两条流体通道的流体阻力基本相同。阀组件还包括一个气室180,一个热膨胀补偿器182和一个与流体通道连通的溢出水池184。
每个缸连接到阀组件152的各个输入装置(170,172),并且液压系统是闭合的。当一个踏板向下按压(或者向下拉)在联合的活塞杆上时,活塞促使缸内的流体通过出口136进入关联的阀组件输入装置中。流体经合适的流体通道并流出相对的阀组件输入装置。向外流动的流体流入相对的缸内并作用在其中的活塞上以向上推动踏板(或者向下拉动踏板)。比例阀168可以分别打开或者关闭,以降低或者增大流体通道中的流体阻力,由此降低或者增大用来启动踏板的作用力。将阀完全关闭将锁住踏板使得它们不能转动。利用包括踏板之间的完全或基本密封的流体通道(例如由固定在框架和每个踏板之间的缸以及与缸结合的流体提供(通过阀组件或仅使一个缸的出口与另一缸的出口相结合))的阻力结构,阻力结构还可提供一种互连功能,使得一个踏板的移动操作另一个踏板沿相反的方向移动。由此,有可能消除机械互连组件(下文中将描述),而仍能协调踏板的往复运动。
可选择的是,一个自包容减震器可以设置为在左侧踏板组件的左侧或外侧框架元件和左上框架元件之间延伸,例如2004年2月26日提交的发明名称为“双板健身装置”的美国专利申请No.10/789182中所描述的。第二减震器可设置为在右踏板组件的右侧或外侧框架元件和右上框架元件之间延伸。在叉一可替换实施例中,减震器可以连接到踏板前部和下方的框架上。该减震器可以与内部或外部弹簧联合。在这样一个应用中,减震器消减并抑制脚步向下的力以便为使用者的脚、腿和不同腿关节(如脚踝和膝盖)提供缓冲。弹簧还会提供复原力以便有助于在使用者将踏板下压到较低方位后使踏板返回较高方位。在某些构造中,还可调节减震器阻力结构以便降低或增大踏板向下的行程长度。
图32是沿图4中的线33-33的剖视图。现在主要参照图28、32、33和34,互连组件188能够使一块踏板的转动与另一块踏板的转动相协调。通常说来,互连组件使得一个踏板12的向下的运动伴随着另一个踏板14的向上的运动,反过来也是如此。在一个例子中,互连组件包括一个转动支撑在互连轴192上的摆动装置190的支架或臂。轴一侧的摆动装置的一部分连接到一个踏板上,轴另一侧的摆动装置的另一个部分连接到另一个踏板上。更特别的是,系杆194转动连接在摆动支架18的每个端部。每个系杆都转动连接到各个阻力支架154的前顶点上。
更特别的是,摆动支架190转动支撑在摆动横向元件196上,该元件在框架的左右侧之间延伸。如图35和36所清晰示出的,摆动横向元件限定了一个U型横截面。U的每个直立部分限定了用于支撑互连轴192的转动孔。
摆动臂的左右外侧部分分别包括第一或左下转动销钉198和第二或右下转动销钉200。在摆动支架外端上方的阻力支架向前的部分支撑第一或左上转动销钉202和第二或右上转动销钉204。将摆动装置与踏板互相连接起来的系杆194在摆动装置的每一侧转动连接在上下转动销钉之间。在一个特定应用中,每个系杆限定一个具有可调长度的螺丝扣。螺丝扣利用上下转动销钉连接在球连接构造内。
互连组件将左侧踏板12与右侧踏板14以这样一种方式连接,即当一个踏板(例如左侧踏板)绕后轴102向下再向上转动时,另一个踏板(例如右侧踏板)绕配合后轴分别向上再向下转动。由此,这两个踏板以提供一种步进运动的方式互连,其中一个踏板向下的运动伴随着另一个踏板向上的运动,反过来也是这样。在这样的步进运动过程中,不管单独进行还是与踏步运动联合,摆动支架190绕互连轴192转动或摆动。
本发明的健身装置中可以采用的其它可能的互连组件和配置在此处参照包含进来的不同的共同待审的申请中示出。
可以禁止踏板的往复运动。往复运动的禁止提供了一种常规的踏车型健身,而不是由踏板或步进运动结合所提供的近似爬山的健身。在一个应用中,通过完全关闭位于液压缸160之间流体通道中的阀168,禁止了踏板的往复运动。
可选择的是,根据包含在此作为参照的不同申请的启示,机械(非液压的)锁组件可设在本发明的健身装置上。通常,锁组件包括一对设置在踏板下方用于锁定每个踏板的往复运动的锁。特别的,利用这样的锁组件,可以锁定踏板组件使其不围绕后轴转动。当锁定时,踏板组件的带共同提供了一种有效的专一非转动型与踏车相似的踏步表面。在健身装置装配过程中或者在其后,通过杆的转动调节一个或者两个螺丝扣194的长度,两个踏板的朝向可准确对齐,使得两个踏板带一起提供锁定位置的平行踏步表面。
现在参照图35A-43,将对由健身装置的运动提供的类似爬山的健身做进一步详述。图35A-35E中示出一个面向前方的示范性使用者(下文,称为“使用者”)。使用者正向前行走,装置构造为用于爬山型运动,即踏板往复运动。图示的脚部运仅代表一个使用者。在一些例子中,踏板可能不是最高和最低位置之间移动,而是位于它们其间的一些位置点。在一些例子中,使用者可能具有比图示短或长的步幅。在一些例子中,使用者可能向后行走,或者面向后方,或者面向后方并向后行走。
图36是健身装置10的后部等角视图,左侧踏板12处于较低位置而右侧踏板14处于较高位置。图37是图36中的健身装置的前方等角视图。图38是图36所示的装置的左侧视图,图39是右侧视图。图41是沿图36的线41-41的局部剖视图,图40是示意性剖视图。参照图36-39、41、42和35A,摆动臂的左侧向下转动,摆动臂的右侧向上转动。在图35A中,图示的使用者的右脚向前并放在右侧踩踏带18R的前面部分上。在图35A所示的使用者的方位中,在面向前方的爬山型运动中,使用者的左腿将向下向后延伸,使用者重量的大部分落在左侧踏板上。使用者的右腿在膝盖处弯曲并向后延伸,使得使用者的右脚开始向下压在右侧踏板14上。从图35A所示的方位开始,使用者将他的体重转换为左右腿之间的平衡,并开始利用他的右腿向下压使得右侧踏板向下。由于带的运动,两个脚都将从图35A所示的位置向后移动。
图35B显示的是在图35A所示的位置之后装置和使用者的方位。右侧踏板14向下受压,通过互连结构188和/或阻力结构148,使得左侧踏板12开始上升。使用者的右脚从图35A所示的位置开始向后和向下移动。使用者的左脚从图35A所示的位置向后(从带)和向上(从踏板)移动。
图35C显示的是处于向上行程的中途的右侧踏板14和处于向下行程的中途的左侧踏板12。同样,踏板组件处于框架上方基本相同高度处,环带18也处于相同高度。如图35C所示,使用者的右脚和腿从图35B所示的位置向后向下移动。使用者的左脚从图35B所示的位置向后向上移动。在这点上,使用者向前踏步时开始从左侧踩踏带上抬起左脚;由此提升左侧脚后跟并且使用者转动到左脚的拇趾球上。此时,现在左侧踏板12上将比右侧踏板14承受更多的重量。
在图35C所示的方位之后,右侧踏板继续它向下的运动,左侧踏板继续它向上的运动一直到图35D所示装置的方位。在图35D中,左侧踏板12比右侧踏板14高,互连臂190绕互连转轴线192转动使得它的右侧低于它的左侧。在这个位置处,使用者的右腿继续向后和向下移动。使用者将左腿提升离开左侧踏板并向前移动。在左侧踏板的上部位置,使用者将他的左脚向下踩踏在踩踏带的前部。使用者所有的重量施加在右侧踏板上直到使用者将他的左脚放在左侧踏板上。使用者继续在右侧踏板上提供一个向下的力,促使左侧踏板上升。
图40、43和35F显示了大约处于最低位置的右侧踏板14,并显示了大约处于最高位置的左侧踏板12。在这点上,使用者向下踩踏在左侧踏板的前部,并开始利用左腿下压。同时使用者开始提升右腿。左侧踏板上向下的力通过......被传递到......。
图35A-35E代表了踏板往复运动的半个循环,即左侧踏板12从一个较低位置到一个较高位置的运动以及右侧踏板14从一个较高位置到一个较低位置的运动。一个完整的爬山型健身循环由踏板从某个位置开始到返回相同位置结束的运动所代表,其以这样一种方式,即包括一个完整的右侧踏板的互连结构,使得右侧踏板开始踏板向上的行程(从较低位置到较高位置)以及踏板完整的向下行程(从较高位置到较低位置)。例如,以左侧踏板的较低位置(右侧踏板的较高位置)为参考点的踏步循环将包括左侧踏板从较低位置到较高位置的向上以及向下返回到其较低位置的运动。在另一个例子中,以左侧踏板的中间点位置(参见图35B)为参考点的踏步循环将包括踏板到较高位置的向上的运动,从较高位置经过中间点位置到较低位置的向下的运动,以及返回到中间点位置的向上的运动。与踏板向上和向下运动的次序无关。由此,向上的运动随后为向下的运动,或者向下的运动随后为向上的运动。
参照图30-32以及其它视图,在本发明的一个应用中,一个踏步传感设备可操作的与踏板或者互连结构联合,以提供与步速(即往复的频率)、每步的深度和其它功能相关的信号。该踏步传感设备包括一个踏板位置传感器(“TPS”),其适于检测任意给定时间的踏板的相关位置并将指示踏板运动和/或位置的信号传递给的CPU。更特别的是,一个编码器(如Grayhill Series 63K光学编码器)与临近互连轴的互连横向元件支架连接。该编码器包括一个带有小齿轮的销钉。齿轮可操作的与互联轴连接,以便轴的转动促使小齿轮转动编码器轴,其依次产生一个互连轴的速度和径向位置函数的信号。为了提供较细的踏板分级,一个大齿轮可以与互连轴连接,并布置为与编码器上的小齿轮啮合。在一个特定例子中,大齿轮和小齿轮之间的齿轮比为6∶1。
可选择的是,在一个特定结构,该健身装置包括一个踏板传感器,其提供与每个踏板每次向下的行程相应的输出脉冲。该踏板传感器通过一个包括一个磁体和一个拾取器的弹簧开关来执行操作。磁体的方位应确保其能前后摆动通过与摇杆横向部件相连的拾取器。每次磁体经过拾取器时弹簧开关触发一个输出脉冲。由此,当右侧踏板向下移动时(对应于磁体向下经过拾取器的运动),弹簧开关传递一个输出脉冲,当左侧踏板向上移动时(对应于磁体向上经过拾取器的运动),弹簧开关传递一个输出脉冲。该输出脉冲用于监视使用过程中随着踏板上下移动而产生的踏板的摆动和行程数。该输出脉冲单独或于带速度信号一起用于提供健身频率显示,并可用在各种与健身相关的计算中,例如确定使用者的卡路里消耗速度。
如图33所最清晰的显示的,在一个特定应用中,底部外侧的缓冲器206连接到摆动装置端部的底部表面上。该缓冲器可固定到摆动装置上以便当踏板降至行程底部的最低点时缓冲踏板。块体可由橡胶、聚亚安酯或者柔软的弹性聚合体材料制造。
如上所述,该健身装置可以通过关闭阀而配置在“锁定”位置。在锁定位置,踏板组件不上下转动。在一特定锁定方位上,踏板组件锁定其转动,使得踩踏带是水平的,相对于健身装置的后部大约为10%的坡度。因此,在向前使用中,使用者可以模拟踏步登高,在向后使用中使用者可以模拟踏步下坡。
为了登上该装置,使用者可以简单的迈上踏车开始健身。可选择的是,使用者可以迈上支撑在架子之间并从后辊向后延伸的平台(图中未示)。就如同此处所包含的在各个共同待审的申请中所启示的那样,还可能提供从每个踏板组件的外侧向外延伸的踩踏平台。踩踏表面可以带有滚花或者具有其它相似类型特征,用以增强使用者的鞋或脚与安装表面之间的牵引力。平台包括单个的脚平台,其从踏板后部向后延伸并处在大约相同的高度上。
一对轮子208支撑在该装置后部立柱底部处。位于装置前方的底部面板(参见图9)在装置任意外端限定了一对手柄切口210。该手柄是长孔,但是可以使用其它手柄结构。通过提升装置前部,轮子向下转动与该装置所搁置的表面接合。以这种方式,使用者可以使健身装置滚动到不同的地点。可选择的是,可在装置的前方设置一个或多个轮子,并且位于背部面板(参见图11)的手柄用于提升和移动该装置。虽然图中示出了两个轮子,一个或者更多个轮子、滑动板、辊或者其它装置也可用于方便装置的移动。
图44-48显示了一个根据本发明的可选择的液压阻力结构210。图44是该液压阻力结构的等角视图。图46-48显示了与互连设备188连接的液压阻尼结构。首先参照图44和45,该液压阻力结构包括一个在钢块中形成的缸212。支撑在活塞杆216上的活塞214设置在缸内。杆向外延伸穿过在缸的每一端的孔。在使用过程中O型圈或者其它密封装置218防止缸内的流体从任意缸口泄漏出去。流体槽220提供了缸的不同区域之间到活塞每一侧的流体通道。阀组件222沿槽设置在末端。
在使用健身装置的过程中,活塞214在缸212内前后移动。活塞的前后移动驱动流体穿过缸的不同区域之间的槽220到达活塞的任意一侧。例如,当活塞从左移动到右时,流体被强制从缸的区域进入活塞的右侧,穿过槽进入到缸的区域进而进入活塞的左侧。活塞从右向左的运动使得流体沿相反的方向流动。阀调节组件包括一个可调节的设置在槽220内的销钉224。该销钉可以从完全阻塞槽的位置移动到一个不阻挡槽内流体流动的位置。取决于销钉的布置,流过槽的流体受阻,在缸内为活塞的移动引入一个变化的阻力。
参照图46-48,示出的阻力结构210连接在尖叉226之间,尖叉从摆动元件190的下部延伸。图48中示出的摆动元件踏板组件和其它部分意在用于非单臂健身装置实施例中,正如包含在此作为参照的各个申请中所公开的那样。尖叉以相同的方式连接到图32中所示的摆动装置和其它装置上。活塞的一端可转动的连接在尖叉之间。此外,缸体可转动的连接到支撑尖叉支架的框架轨道196上。当踏板上下转动时,随着尖叉绕其轴的转动,尖叉在一个弧形路径上移动,拉推活塞杆。由于可转动的与摆动框架轨道连接,缸体能够轻微的上下,以形成尖叉226弧形路径的垂直分量。活塞-缸的布置210为摆动装置的摆动引入阻力,其抑制了踏板的转动。阀222的调节增大或减小了由缸-活塞布置引入的阻力。
图49-50显示了第二可选择的液压阻力结构228,其可以与互连组件188连接。图49是液压阻力组件的等角视图,图50是液压阻力组件的前部等角视图。液压阻力组件包括一个基本为圆形的流体缸230。活塞叶片232设置为在圆形缸内转动。此外,活塞叶片与摆动轴192连接;由此,摆动轴的转动在活塞叶片上施加一个转动或旋转力矩。在圆形缸的顶部处流体通道234设置在位于叶片任意侧的各个缸之间。缸230并没有形成完整的循环。在叶片一侧的槽的一端连接有一个通向流体槽234的输入端236,在叶片另一侧的缸的另一侧连接有第二输入端238及流体槽的另一端。同样的,活塞叶片的转动推动流体穿过一个或另一输入端,并通过另一输入端流回到缸内。例如,当活塞叶片沿顺时针方向转动时,流体沿顺时针通道流过流体槽,流出输入端236进入到左侧叶片。流体流经槽234通过输入端238进入缸230内。相反,当叶片沿逆时针方向转动时,流体穿过位于右侧叶片的缸段、输出口238,穿过槽234,穿过输入端236进入位于左侧叶片的缸端,以逆时针方向流经槽。图49-50所示的活塞-缸布置是与图44-48所示的活塞-缸布置类似的闭合系统。
一个可调阀元件236设置在位于缸230的每一段之间的流体通道234中。阀包括一个销钉238,其设置在流体槽内以改变度数,该度数处于完全关闭位置和完全打开位置之间。在完全闭合的位置处,流体通道完全阻塞,在完全打开位置处,流体通道完全敞开。在图49-50所示的实施例中,完全关闭阀222或者236实现了锁定功能,其将踏板(12,14)固定在与阀闭合时相对应的方位上。再次参照图50,阀为位于缸室之间的流体引入一个变化的阻力。同样的,通过调节阀,将为摆动装置190施加一个变化的阻力,其依次又为踏板的转动引入一个变化的阻力。
图51-54显示了根据本发明的健身装置的一个应用。图51-54所示的健身装置包括一个可选择的互连组件配置,一个与互连组件连接的可选择的阻力结构。该互连组件240包括绕垂直互连轴空间242在水平面内转动的摆动臂。摆动臂转动连接到设置在摆动臂下方的框架轨道上。为了避免不必要地遮挡互连构件240,在图51-54中没有显示框架轨道。为了避免不必要地遮挡互连组件和阀的可采用的阻力构件的各个特征,在图51-54中示出未显示健身装置的其它部件。
摆动臂的一端部区域与各个阻力支架154连接。摆动臂的另一端部区域也与各个阻力支架154连接。在一个例子中,系杆244可转动的连接到摆动臂的一端。系杆的相对端与各个阻力支架连接。在一个应用中,一个相似的系杆配置将摆动臂的另一端连接到各个阻力支架上。踏板12的转动使相关的阻力支架154L前后转动。阻力支架的前后运动推拉摆动臂的相应端,随着摆动臂绕垂直互连轴的空隙242转动,使摆动臂的另一端产生相反的运动。同样的,一个踏板12向下的转动伴随着相对踏板14向上的转动,反过来也是如此。如上所述,摆动臂设置为在基本水平的平面内转动。在此处讨论的先前的实施例中,摆动臂设置为在基本垂直的平面内转动。有可能将互连轴调整在不同平面内用于设置摆动臂使之在水平和垂直的平面内(即,倾斜平面)转动。
一个可选择的阻力结构246沿摆动臂的长度方向连接到互连轴的任意一侧。在图51-54所示的例子中,可选择的阻力结构与摆动臂的左端区域连接;然而,该阻力结构可沿摆动臂的任意部分连接到互连轴242的任意一侧。该可选择的阻力结构246包括一个缸体248,容纳有连接到适于在缸内往复运动的活塞杆250上的活塞。活塞杆的一端可转动的与互连摆动臂241的端部区域连接。缸包括一个进出与缸248流体连通的阀组件箱252的流体通道。图示并且在下文中详细讨论的阀组件箱252包括相同的关于图29所示出并描述的阀组件结构。该可选择的阻力结构的前后部都是转动连接的。前转动轴254设置在活塞杆250的向外延伸端。在阻力结构246的前端设有后转动轴256。支架臂258连接到横向元件(图中未示),支架向前向上延伸的尖叉可转动的支撑阻力结构246的后部。为了不在活塞杆250上施加过度的横向压力,可转动的前转动装置254和后部枢轴256的结合允许阻力构件在摆动臂前后运动期间,能够适当地与摆动臂一起转动。
图55显示了一个可选择的带调节组件64。带调节组件基本上与上述的组件相似。然而,张紧板68包括上部和下部转动销钉79(仅示出上部)而不是凸舌78。角度调节板90支撑一个角度调节螺栓92,其适于与张紧板相接并绕转动螺栓79转动。螺栓不是支撑在槽(如凸舌)内,而是可转动的支撑在限定在下部70和上部72板(图中未示)上的转动孔内。同样的,张紧板绕转动销钉转动。紧靠在辊上的向后的带用于将张紧板逆着螺栓92向外转动。向内紧固螺栓以便向前转动辊,或者向外松开螺栓以允许辊向后转动。
图56显示了一个用于将踏板与踏板支撑元件56连接的可选择的结构。在这个应用中,限定为L形状的长支架262焊接到每个板支撑元件的外侧。L支架焊接到每个板支撑元件上,而并不是支撑在端部或者其它地方。防护板58螺栓或者以其它方式固定到L支架向下延伸的表面上。橡胶带264连接到L支架的顶部。带将板与框架分开,并提供了一定程度的板悬挂。
虽然已经采用一定的特殊性对本发明的优选实施例做了说明,但是在不背离本发明的精神和范围的条件下,本领域技术人员仍能够对所公开的实施例做很多变化。所有的方向参照(例如上部、下部、向上、向下、左、右、向左、向右、顶部、底部、以上、以下、垂直、水平、顺时针和逆时针)仅仅是用于辨识目的,是助于读者理解本发明,并不产生限制,特别对于位置、方位或者本发明的用途。连接参照(例如固定、接合、连接或者类似)是用于广泛意义的构造,它可能包括位于连接元件之间的互连元件以及在元件之间的相对运动。同样的,这样的连接参照不能必然推断出两个元件直接连接以及彼此固定的关系。可想而知包含在上述说明中的或者附图中所示出的内容都应当解释为示意性的,而不是限定性的。
在此处图示的本发明的应用中,径向球轴承用在不同位置上,例如用于支撑后辊。可以利用其它的配置(套环、套筒、润滑剂以及类似装置)来转动支撑各个元件。在一些例子中,采用了方形管,例如踏板组件;然而,还可以使用固体框架元件、圆柱形管和类似装置。
控制系统概述用于健身设备或装置10的控制系统300的一个实施例包括一个中央处理装置(“CPU”)302。CPU 302可用于控制设备10的操作和/或功能的不同方面。更详细的,CPU 302提供了各种控制设备10的操作(包括但不限于踩踏带18的驱动以及施加在任意踏板12、14上的阻力)所需的输出信号。这些输出信号最好为数字格式,但是也可以提供模拟信号。进而,输出信号通常通过有线介质传送,但是也可以使用无线连接的方式传输到达/来自所期望的装置、传感器、激励器、设备或者其它装置的任意信号,这些装置可能设置在控制装置处或者远离控制装置300。相同的,CPU 302接受来自传感器、使用者或者其它物体的不同输入信号,它们帮助CPU 302控制设备10的操作、特征和功能,以及确定利用该设备10、其它特征和功能由锻炼者所执行的操作。这样的输入信号还可以通过有线和/或无线通信连接装置传输到CPU 302。
如图57所示,控制系统300可包括一个最好与CPU 302连通的踏板控制装置(“TCU”)304。如下文中所详细解释的,TCU 304控制施加到每个踏板12、14上的阻力,由此,控制每个踏板的相对位置和运行速度。由TCU 304所执行的对踏板位置和运动的控制通常根据接受自CPU 302的踏板控制信号来实现。
控制系统300可包括一个带速控制装置(“BSCU”)306。基于来自CPU 302的带速控制信号,BSCU 306控制踏板12、14上的带18的速度。
进而,控制系统300最好包括一个踏板位置传感器(“TPS”)308,其可以检测在任意给定时间时踏板12、14的运动和相对位置并将指示踏板运动和/或位置的信号传递给的CPU 302。
在控制系统300中还可包括至少一个用户界面310。如下文中所详细描述的,锻炼者(即该设备的使用者)使用用户界面(或多个)310来输入或者指定设备10的操作参数,报告当前使用者的状态信息,接受关于当前健身程序的信息和/或提供来自/到达设备10的信息。
同样的,外部界面312也可用来定位或者远距离设置系统和/或装置。可由人或虚拟教练和/或教练员恰当的利用该系统和装置为设备10的个体用户制定健身程序。
由此,本发明的实施例可包括用于控制设备10的不同特征和功能(包括踏板位置、带速、用户界面和外部界面)的不同的控制系统、控制装置、传感器、界面和激励器。这些中的每一个以及其它的控制系统构件、装置、特征和/或功能(其中一些是可选的)将在下文中做进一步说明。
CPU可以意识到CPU 302实际上可包括任意处理器或者其它控制器,其构造为或者可构造为处理输入值(例如接受自TPS 308、BSCU 306、用户界面310和/或外部界面312),并生成输出信号(例如那些传送到BSCU 306、TCU 304、用户界面310和外部界面312)。这样的处理器和/或控制器的例子包括但不限于数字信号处理器、微处理器(例如在个人电脑、个人数据助手、计算机工作站或者其它计算装置中的)、微控制器、可编程逻辑装置、输入/输出控制器、显示器驱动装置、处理“板”和其它装置(此处指全体“处理器”)。可以理解这样的处理器可单独使用和/或与其它装置和/或处理器一起使用。
CPU 302还可包括存储器和/或数据存储装置(图中未示)和/或与其兼容。这样的装置的例子包括但不限于ROM、PROM、EPROM、EEPROM、RAM、DRAM、RDRAM、SDLRAM、EO DRAM、FRAM、固定存储器、闪存、磁存储器装置、光学存储装置、电子存储装置、可移动存储装置(例如存储棒、USB存储装置和闪存卡)以及其它装置。CPU 302还包括电源(图中未示)或者可与其连接。必要时可提供备份电池以存储使用者的配置和/或其它信息。CPU 302还可配置为包括不同类型的输入和/或输出端口、界面和/或装置(此处即“I/O”)。这样的I/O的例子包括但不限于串行端口、并行端、RJ-11、和RJ-45接口、IEEE 802.15端口、无线接口、WiFi接口、智能卡端口、视频端口、PS/2端口、CSAFE接口、ISP接口和其它现有技术中公知的端口。同样的,可以理解CPU 302是但不限于任意特定的装置和/或系统或者构件配置,可以整体或者部分由单个的装置、多个并行装置、分布式装置、本地或远程装置或者任意其它能够支持本发明的不同实施例的特征和功能的处理器和装置的配置所提供。
踏板控制装置(TCU)如上所述,在本发明的一个实施例中,TCU 304基于来自CPU 302的踏板控制信号控制施加到每个踏板12、14上的阻力。通过改变和控制施加到任一或者两个踏板12、14上的阻力,可由CPU 302和TCU 304控制踏板12、14的移动速度、相对位置以及距离给定的静止位置的最大和最小位移。可以理解的是在其它实施例中,TCU 302可以独立于CPU 302,由使用者特定的手动设置和/或通过来自外部装置的控制信号控制。
在一个实施例中,TCU 304包括一个液压控制阀152(图29),其连接在两个液压缸150(图28)之间,液压缸分别连接到各个踏板12、14(参见图28-32)。基于接受自CPU 302的踏板控制信号,经由液压控制阀152,TCU 304控制第一液压缸和第二液压缸150之间的液压流体的流动。通过限制或者增大两个液压缸150之间的液压流体的流动,液压控制阀152分别增大或减小施加在任一踏板12、14上的阻力。这样的阻力最好抵消一些(通常不是全部)重力,重力是当使用者在给定踏板上启动并完成向前的踏步时施加在给定踏板上的力。也可以变化这些阻力以便将踏板12、14返回到一个静止位置,这优选发生在当两个踏板12、14相互平行时。通过控制施加到每个踏板12、14上的阻力,CPU 302可以控制或者调节每个踏板12、14的回落,包括踏板向下移动的速度(参见图59-60)。
液压控制阀152(特别是图29中的168)可以是任何适合于控制液体流动的阀,例如提升阀、双向阀、正常闭合阀(例如由HydraForce生产的SP08-20)。伴随这样的控制阀的最好是电子控制器(图中未示),例如由HydraForce生产的No.4000161或者相似装置。阀168的电子控制器通常与液压阀组件152设置在同一位置处,但是也可以设置在CPU 302内。在一个例子中,踏板控制信号以电压脉宽可调(“PWM”)信号的形式从CPU 302发送到阀152/168的电子控制器。正如通常所理解的,通过改变时间周期(在此其间提升阀打开或关闭),PWM信号可以用于控制DC装置,例如控制阀152/168。利用PWM来控制DC装置是本领域公知的。
在本发明的其它实施例中,TCU 304可包括和/或利用其它的激励器或装置以控制施加在任一或者两个踏板12、14上的阻力。这样的激励器/装置包括但不限于气动活塞、电磁阻力装置、磁充液压装置以及其它装置。这样的激励器/装置通常包括联合控制电子装置,其基于由CPU 302发送的踏板控制信号,恰当的控制位置、移动速度以及抵抗施加在任一或者两个踏板上的外部压力(例如由于使用者在单个踏板上的站立导致的)的力。此外,上述和/或本发明的其它实施例可包括所期望的激励器/装置的组合装置,用于提供相对于踏板12、14的抵抗和控制力的任意组合。
应当理解,TCU 304可以以向上的方式(消减或减少人体登踏的影响)、向下的方式(加速向下登踏的效果)和其它方式(例如,向上加速或向下加速促使使用者行走的更轻松、更频繁,步幅更长或者类似效果)控制力的作用。可象预期的那样改变这样的力的强度、时间和持续时间,例如,提供一个抵抗力或者向上的力,其随着使用者的踏步持续时间、重量和/或其它参数而变化。
带速度控制装置(BSCU)如上所述,健身装置10的控制系统300可包括一个BSCU 306。BSCU 306控制踏板12、14上的带18的速度。在一个特定实施例中,三相交流电(“AC”)马达130和联合马达控制器(此处为“AC马达”)用于驱动带(参见图25-27)在一个例子中,AC马达130能够以任意期望的速度范围驱动带18,优选为以0.5m.p.h到6.0m.p.h的有效速度。基于接受自CPU 302的控制信号,通过改变供应到AC马达130的电流量,由BSCU 306控制带速。另外,可以理解,给定的马达通常在预定的转动速度范围内运转,利用滑轮、带驱动机构、离合器或者类似装置可得到更大或更小的速度。同样的,利用齿轮和/或其它公知的转动速度控制装置和/或概念,本发明的不同实施例可提供任意给定范围的带速。
此外,利用任意合适的接口将带速控制信号从CPU 302传送到BSCU 306(以及AC马达),接口包括但不限于在一个例子中,以常规信息包的形式利用标准RS-422接口通过UART通信。然而应当理解,可以利用其它异步和/或同步接口和零件来方便来自/到达CPU3 02和BSCU 306的带速控制信号的传送。
在其它实施例中,可以利用DC马达控制带18的速度和运动。在DC环境中,BSCU 306接受来自CPU 302的数字信号,例如PWM信号。PWMs可用于控制通过改变时间周期来驱动带18(或者分别驱动每个带)的马达(或多个),在所述时间周期内通过启动/关闭供给马达的输入电流为马达供应动力。利用PWMs控制DC马达是本领域公知的技术。BSCU 306可用在AC和/或DC实施例中用于控制带18运行(即速度)的方向和速度,带单独位于或者一起位于踏板12、14上。
当DC马达用作马达130时,BSCU 306还可包括一个踩踏速度传感器(“TSS”)。在这个实施例中恰当的定位TSS,以提供带18的转动速度的指示。应当理解,在AC马达中利用已知的AC马达的操作特性,可以很容易的确定踏板的速度。然而,如果希望,TSS也可用在AC马达的实施例中。
在一个实施例中,TSS包括一个开关(即弹簧开关或者其它监测器或者转换器),其构造为检测位于带18上的磁体或其它指示器的通过,或者检测其它的对应于驱动轴134的每次转动的驱动元件(例如驱动滑轮128、轴134、驱动带136、飞轮146)。更详细些,所述开关检测磁体的通过并向BSCU 306输出一个信号,如果希望的话,将这样的信号传送到CPU 302。BSCU 306和/或CPU 302利用这个信号来计算带18的有效速度(或者,如果每个带单独受驱动的话,则计算每个带的)。需要理解的是带18的有效速度(即在带上行走或者跑动的使用者能够感知到的速度)可以在从带18上的任意位置或者其它驱动装置获得的测量值的基础上确定。
应当理解的是,对于特定的可选择实施例,CPU 302还可提供检测BSCU 306的带速的控制信号,用于在第二或者相反的方向上驱动带18,其中第一踏板方向是指踏板/带离开用户界面控制台48为180°的运行方向,使得当使用者面向用户界面控制台48时,使用者在踏板上高效行走并朝着控制台48的方向,第二踏板下方向是指踏板/带朝着用户界面控制台48的运行方向,使得当使用者面向控制台48时,使用者向后高效行走并离开控制台48。应当理解的是当马达在第二踏板方向驱动踏板18时,使用者可以恰当的定位自己,使他们面向离开控制台48的方向,并且随着踏板朝控制台48的前进,使用者有效的利用一种“登高”运动。
当BSCU 306的现有实施例配置为通过控制供给马达130的电流来控制带18的速度时,应当理解的是,BSCU 306和/或CPU 302可恰当的利用带18的转动速度、马达130和/或任意其它带驱动机构来确定和控制带18的有效速度。此外,应当理解的是,如果有的话,不同的其它类型的传感器可用作替换或者附加到上述的开关和磁体中。所述的其它传感器包括但不限于流速计、电位计、光学传感器、限流器、转换器和其它装置。
踏板位置传感器(TPS)至少一个本发明的实施例还包括一个TPS38,其恰当的检测踏板12、14相对于彼此的运动以及该运动的速度。在图34所示的一个实施中,TPS包括至少一个用于检测任意给定时间的踏板的相对位置和运动方向的编码器309和联合的电子装置。当踏板12、14相互连接时,使得第一踏板向下的运动导致第二踏板向上的运动,反过来也是这样,可以使用一个单个的解码器。理想的情况是这样的单个编码器309可放置在一个从属机构附近(例如摆动装置190)或者其它的可以检测任意一个或两个踏板的运动的位置上。这样的位置包括,例如转动轴(例如后轴102),给定的踏板12、14可绕该轴向上或向下转动。
在一个实施例中,与电位计的构造相似,编码器309具有一个底部和一个可转动的轴。如图61所示,编码器309的底部311固定到健身装置框架(例如横向元件196)上,编码器309的轴313通过一个盘齿315与摆动装置190机械连接。由于编码器309的底部311固定到静止元件196上,当摆动装置190绕轴192移动或转动时,盘齿315相应的转动,其转动编码器309的轴313。编码器309将它的轴313的转动转换为电子信号,其可以被CPU 302读取以确定踏板运动的方向以及踏板12、14的位置。
在一个特定实施例中,编码器309可包括一个Grayhill Series63RY3035光学编码器,其输出一个两相正交信号。该正交信号用于检测踏板12、14的运动方向以及运动速度。在一个例子中,编码器产生256圈/转,每转得到1024个状态。然而,可以利用其它数量的圈/转和/或其它信号特征,以提供检测和测量踏板12、14的运动时所需要的特定角度。此外,该编码器还可包括一个中心脉冲特征,不管踏板12、14是否相互平行,其中编码器产生一个信号,用于传送到CPU 302。这样的中心脉冲可用于将踏板12、14设置在中心和/或锁定位置上,例如,当健身程序停止和/或当没有使用设备10时。如下文所详细描述的,通过使用两相正交信号,CPU 302可以确定任意给定时刻的每个踏板12、14的位置、运行方向和运行速度。CPU 302可以利用这样的踏板信息以控制健身级别和持续时间。
在其它实施例中,TPS 308可包括单独的或者结合在一起的其它传感器,例如电位计、无线电频率反射测量装置、近程式传感器、声学测量装置、光学传感器、红外传感器、安装在上述液压缸内的位置传感器、加速计、被动传感器和其它装置。由此,应当理解的是,本发明的不同实施例可利用TPS 308中的一个或多个传感器来确定踏板12、14的位置、运行方向和运动速度。相同的,应当理解的是这样的传感器可以设置在任何合适的位置上。这样的附加位置包括但不限于从属臂188/190、踏板臂(或多个)、液压缸(或多个)和其它装置。
TPS 308可构造为包括一个底部位移检测器。通过提供一个踏板12、14移动到和/或接近它的移动行程或最大位置极限的读数,该检测器预期的放大编码器或其它位置传感器。为了防止踏板“降至最低点”以及任何关联的危险的发生,在踏板接近全程时,底部位移检测器向CPU 302传递一个信号,CPU接下来增大施加到踏板12、14上的阻力。在一个实施例中,传送到液压控制阀152/168的PWM信号从当前值上升到一个增大值,用于生成更坚韧或更大的阻力。可以理解的是通过增大给定踏板的阻力,逐渐的促使使用者迈到另一个踏板上。
在本发明的又一实施例中,TPS可构造为包括一个步伐传感器(“SS”)。SS可构造为提供一个关于给定踏板12、14多久被提升或降低以及由此设备10的使用者所采用的“步伐”的指示。在一个实施例中,SS构造为通过使用一个开关(即弹簧开关或其它开关或转换器)和一个对应的磁体或其它指示器来检测附属臂(例如188或者摆动装置190)的相对运动。在这个实施例中,当在第一方向上移动右侧踏板时(即相对于踏板的转动轴线向上或向下),固定到摇臂188/190上的步伐磁体相应的经过步伐开关。相同的,当降低左侧踏板时,摇臂和步伐磁体相应的在相对的或第二方向上移动,并经过步伐开关。不论摇臂188/190转动的方向,弹簧开关可设置为检测步伐磁体以及摇臂(磁体固定在其上)的向上/向下的运动和设备10的使用者所采用的相应的每一步(它可以是一完整的步伐或者仅是其中一部分)。
用户界面该设备还优选包括一个或多个用户界面310。如图57所示,这样的用户界面(或多个)310与CPU 302相连通。用户界面310方便了对设备10的操作的用户控制,将使用者的特定信息(例如重量、年龄、心率和其它参数)传送给CPU 302用于健身控制,并为正处于健身进程和锻炼的使用者提供反馈。用户界面310还通过包括视频、音频和其它类型的内容(例如电子邮件、语音/电话以及其它服务)的控制和/或展示装置,为使用者提供更愉悦的健身过程。
如图58所示,在一个例子中,包括一个主用户界面(“MUI”)320和一个远程用户界面(“RUI”)322。该MUI 320包括供健身者(使用者)使用的这些输入和输出装置,用于在健身过程中对设备10操作的控制。这样的输入和输出装置可包括但不限于显示器324、主控制键盘326、高级特征键盘328、声频展示装置(例如扬声器或者耳机插孔)和其它可选择的接口332(例如用于将手机连接到装置上的接口,使不用手接听电话)。这些输入和输出装置中的每一个都将在下文中做详细描述。其它的输入和输出装置也可按照所希望的那样设置在MUI 320上或者与其一起联合使用。
相同的,光学RUI 322包括这些特征和功能,它使用户可以很容易的控制健身过程中设备10的操作和使用。在一个实施例中,RUI 322可设置在一个元件46或者横向手柄50(位于上面设置有MUI 320的控制台48的前面)上。再次参照图58,RUI 322可包括但不限于显示器340、快速启动键盘342、心率接收器344(用于接收有线或者无线心率或者其它生物-米制信息信号)、和一对扶手传感器346(也可用于向设备提供心率)。其它的输入和输出装置也可设置在RUI 322上或者与其一起联合使用,例如一个安全传感器348,如果使用者距离安全传感器348移动太远或者如果使用者从踏板12、14上移开,安全传感器348将停止带18的转动。
如上所述,MUI 320和RUI 322每一个和/或两个都包括一个显示器324、340。可以使用任意类型的显示器装置,其包括但不限于阴极射线管、液晶显示器、等离子显示器、发光二极管显示器和其它显示器。此外,多个显示器可以包括在MUI和/或RUI中。例如,在本发明的一个实施例中,MUI 320包括一个上部显示器,用于向健身者展示关于时间、速度和踏板运动的信息。此外一个下部显示器展示程序曲线和其它与健身相关的信息。除了和/或替换健身信息和/或健身参数之外,还可利用显示器(或多个)提供娱乐特征和功能,例如提供电视或广播信号,提供交互特征,例如一条模拟路径或路线(例如通过它健身者模拟穿过山或沿着海滩踏步),提供进入到因特网和/或电子邮件和其它类型信息的入口。同样的,显示器324、340可用作输入装置以及输出装置。例如,触感控制板显示器可用于替换和添加到键盘和按钮。可以理解的是,显示器324、340可设置在MUI 320、RUI 322和/或设备10处或者远离它们。
本发明的各个实施例还可包括一个、零个或者多个键盘。这样的键盘用于控制设备10的操作和特征。在一个实施例中,MUI 320包括一个主控制键盘326,其提供了用于增大或降低给定参数的按钮。这样的参数包括但不限于使用者的体重、健身级别、健身时间、健身速度(即一个预期的有效带速度)、目标心率、健身曲线图和其它参数。此外,可设置“停止”和“开启”按钮以及一个“平静”按钮,选定平静按钮时将降低锻炼的强度和速度,以便渐渐的使健身者“平静”。这样的“平静”程序将基于不同的参数(包括年龄、重量、强度、持续时间、心率和其它)。还可在控制台326上设置其它按钮。当需要时这样的按钮可以在其背面由LED灯或者其它视觉指示器照亮。
在本发明的不同实施例中还可包括高级特征键盘328。高级特征键盘328可包括按钮和/或输入装置,其使使用者可以很容易和很快捷的选定很多健身程序或曲线中的一个,和/或输入定制的健身时间或强度,例如,通过10个健的数字键盘。高级特征键盘328还可用于诊断和其它目的。高级健身程序的例子包括手动、脂肪燃烧、卡路里燃烧、速度间隔、HR区域锻炼和其它例子。
与MUI 320相似,RUI 322可包括一个、零个或多个键盘。可利用这样的键盘(或多个)来提供设备的完整操作控制,或者有限的控制,例如提供设备的特征和功能的“快速启动”控制。例如,“快速启动”按钮342可包括那些便于使用者增强或降低健身级别、增大和降低有效带速以及启动和停止设备操作的装置。然而应当理解,如果需要,RUI 322可提供按钮、键盘上的输入装置和/或输出装置、接触屏或其它装置的预期的组合。
虽然键盘是最常使用的用户控制界面,应当理解其它的输入装置也可用于配置和控制设备10的操作。这样的输入界面的例子包括但不限于智能卡、生物测定传感器(接触、声音、指纹、心率、呼吸速度和其它)和其它装置,可用于识别特定的使用者和/或可用于根据得到的和/或存储的用户信息来配置设备10。由此,可以理解,本发明的不同实施例可以配置为由使用者或者其它人为设备的10的控制提供的不同输入装置和不同的级别。
可包括其它的用户界面元件,例如安全传感器(例如磁体安全开关,当使用者移动离开对应的磁体传感器一个给定距离时,安全开关指示设备停止带的转动)和生物测定传感器(例如无线心率控制器和类似装置)。如图58所示,一个遥测心率接收器344可以包括在RUI322或(选择性)在MUI 320内。可与设备兼容的遥测心率接收器的例子包括那些由POLAR公司、CICLOSPORT公司和其它公司生产的装置。相同的,非遥测生物传感器也可设置作为用户界面元件。这样的装置的例子包括有线生物测定传感器、触摸或接触心率传感器,例如用于左右手的扶手传感器346和其它装置。这样的接触心率传感器的生产商包括Salutron公司、POLAR公司、Direction公司和其它公司。其它的生物测定传感器也可与本发明的不同实施例一起联合使用。这样的传感器的例子包括血氧传感器(其测量在人体血液流中的氧气饱和度水平)、VO2测量装置、呼吸测量装置和其它装置。这样的传感器可为本地(或者使用者)的使用和/或远程监控(例如通过护士、物理治疗家、呼吸治疗家、医生、训练者、教练或者其它人)提供输出信号。
本发明的实施例可配置为包括声频展示装置。这样的装置通常包括扬声器330,但是可包括连接其上的无线或有线耳机或插孔。更特别的是,这样的声频展示装置可产生不同的声音,例如嘟嘟响和其它关于设备10的状态或操作的指示。其它的实施例可包括用于展示音乐或者其它能听到的内容的装置或接口,例如地面或卫星无线频率广播,CD、DVD或MP3格式声音文件(其可通过外部或内部装置设置在设备上,例如内置CD唱机或者连接外部装置的接口)和其它。还可包括WiFi接口和性能。其它实施例可以配置为提供与动力或锻炼相关的信息,例如设计用于鼓励健身者跑的更快、步伐更轻或者类似的激励评论。简而言之,本发明的不同实施例可配置成为使用者展示各种类型的信息(以声音、图像或者其它方式)。
除了提供带有可听展示装置的界面外,本发明还包括连接到例如个人数据助手(“PDA”)、手机、MP3、手携音乐回放装置和其它装置的接口。通过标准有线和/或无线接口,这样的装置可以连接到设备10上使得使用者在健身时可以使用这样的装置。例如,健身者已经将他们的电话“插入”到设备10中,就不需要必须拿起电话来打接电话,而是仅仅按RUI 322或者MUI 320上的一个按钮(或者向设备提供一个口头指示)来接听或者打电话,通话通过耳机、麦克和/或其它可听装置传送到健身者。相同的,本发明可设置为健身程序自动记录在健身者的PDA中用于后来的分析或者用于在接下来或者以后的健身时以相同的方式配置设备10。由此,可以理解的是,本发明的不同实施例可包括不同的接口,其使得使用者处于“可联系”状态,如果需要,在锻炼时,记录健身结果并提供其它的特征和功能。
踏板运动的操作和控制如上所述,健身设备10可配置为踏车和步进健身装置的组合装置。控制系统30控制这种组合运动的每个方面。更详细些,在本发明的一个实施例中通过一个包括一个液压控制阀152/168(参见图29)的TCU 304来控制踏板运动。当TCU 304接受来自CPU 302的优选以PWM信号形式的踏板控制信号时,液压控制阀152/168控制用于“负载踏板”(即当前使用者的重量施加在踏板12、14上)的下落速度,当在两个踏板12、14之间存在附属关系时,其相应的产生对“非负载踏板”的上升速度的控制。
另外,如上所述,利用TPS 308和CPU 302来确定对踏板位置、方向和高度的控制。更特别的,可基于一个给定负载踏板12、14从“完全上升”位置到“完全下降”位置的距离来确定踏板12、14的当前位置。应当理解的是任意给定的踏板12、14可获得的最高点“完全上升”或者最低点“完全下降”位置部分的由设备的特定约束条件来控制,特定的约束条件为例如连接踏板12、14的任意附属臂长度的一半,踏板转动的转轴距离地面的高度,止动是否出现(其限制了向上和/或向下的踏板12、14的运动)和其它系数。由于这样的上/下运动本质上是转动运动(即踏板12、14绕各自的转轴转动),基于负载踏板12、14从第一位置运行到第二位置(直到检测到踏板12、14方向的变化)的速度,可计算任意给定的脚步下落的距离(即健身者攀爬的脚步)。
例如,当使用两相正交信号编码器时,在踏板绕它的轴转动一整圈的过程中该编码器利用齿轮比“R”生成一个给定数量的计数“C”,踏板12、14从“完全上升”位置到“完全下降”位置转过一个最大“X”的角度,使得“完整步伐”与脚步高度“H”英寸相等,那么对于任意给定的“步伐”,健身者走过的距离“D”由下面等式确定 对于本发明的一个实施例,上述等式优选产生一个结果,其中对于任意给定的编码器计数的运行距离等于步进的高度0.0579英寸。然而应当理解的是步进高度与编码器计数之间的比值将随着上述提到的系数、所使用的编码器的敏感度、编码器的齿轮比、预期的最大步进高度、对于单个步伐而言踏板转动的预期最大角度、预期的强度级别和/或预期的控制和其它参数变化而变化。同样的,本发明的不同实施例可使用不同的编码器、步进高度、步进角度和其它参数的组合来控制健身者的任意步进高度。
还应当理解的是由健身者完成的工作量取决于至少两个参数每步的踏板的位移高度(“步进高度”)和经过给定的时间段所迈的步伐的数量。在一个实施例中,利用液压控制阀152/168,通过缩减固定到负载踏板12、14上的液压缸150和固定到非负载踏板12、14上的液压缸150之间的流体速度来控制步进高度。通过控制流体速度,本发明可以控制由液压缸150施加在负载踏板上的阻力,由此控制负载踏板的下落速度。
然而,应当理解的是踏板下落速度(“RF”)(即每步踏板下落的程度)和步进速度(“SR”)(即每给定时间间隔的最大步幅)之间存在附属关系。这种附属关系的特征基于一个变量(“V”)(该变量可在实际测量值的基础上确定)、每给定时间间隔的步进距离(“SD”)和最大步幅长度(“MSL”)。通过下面的等式显示这种关系RF=v*SR;其中SR=SD/MSL随着步进速度的增大,每一步使用者的脚在负载踏板上施加的力时间减少。所施加的压力的时间减少,而所有的系数值不变,将导致每个负载踏板12、14的位移高度减小。同样的,为了在给定的健身级别上每一步负载踏板12、14都获得预期的位移,负载踏板12、14的下落速度需要增大。在一个实施例中,利用液压控制阀152/168,通过增大固定到负载踏板12、14上的液压缸150和固定到非负载踏板12、14上的液压缸150之间(下文中为“流体通道”)的流体速度,可增大下落速度。因此,为了确保当步进速度增大或降低时踏板12、14的下落深度保持相同,控制系统300改变流体沿流体通道的速度。应当理解的是利用数学模型或者基于实际的测试结果,可逐步接近所需的流体速度的变化。还可以为不同范围的使用者重量、有效带速和预期的踏板位移深度完成这样的接近和/或测试结果。这样的接近或者实际的测试值将被记录在包含在一个数据库或者其它存储介质内的查阅表中,并与所测量(例如通过编码器)的实际踏板下落速度作比较,用于确定是否增大或降低流体离开负载缸150的速度。
在健身装置10的一个例子中,在供电条件下,健身装置10将允许踏板12、14寻找一个水平位置。这可以通过允许使用者将踏板12、14移动到一个水平位置来实现。移动踏板12、14到达该水平位置,基于编码器高度信号,健身装置10将踏板12、14锁定在那个位置上。在数据进入程序开始运行前,踏板12、14将保持在那个位置。
在一个例子中,在数据进入状态过程中,将要求使用者输入一些数据项,例如重量、级别(即难度级别或锻炼级别)、速度和锻炼时间。锻炼级别从1到10。这些级别代表了在锻炼过程中的踏板12、14的位移或运动。在一个例子中,“级别1”是每个完整的步伐移动3.5英寸,“级别10”是每个完整的步伐移动8.5英寸。基于使用者的预期速度,当使用者在踩踏带18上进行完整的踏步时,将计算踏板的移动速度以实现使用者的正确位移。每次速度变化时都将重新计算踏板的运动速度,以容许使用者总能移动相同的量。
在一个实施例中,在健身程序的第一时刻过程中,踏板12、14保持锁定使得踩踏带速度加速到预期的速度。一旦踏板速度在目标时速的1.0mph内,踏板运动将从锁定位置慢慢上升到预期的踏板运动速度。没有马上达到全速以及实现踏板的运动,这使得使用者具有充足的时间来调整运动。
在一个例子中,在锻炼程序(例如脂肪燃烧和卡路里燃烧)过程中,程序曲线改变锻炼强度。当强度变化时,位移量或者踏板运动将增大和减少。位移量将基于使用者的基础值级别,并按比例增大到较高强度的较大位移。
在一个实施例中,当使用者按下停止健时,踩踏带速度将降低到一个能控制并合理的速度零。踏板运动将从当前踏板运动速度降低到与1.0mph的级别1相等的速度。一旦踩踏带速度到达1.0mph,健身装置10将检测当踏板位置处于水平位置的时刻。此时,健身装置将踏板12、14锁定在水平位置上,在该程序运行的时间段内它们将保持在那里。
在图59中示出了一种用于确定在给定重量的使用者、在给定健身设定级别的情况下踏板12、14的下落速度以及有效踩踏速度的方法。如图59中的例子所示,这个操作的例子可包括在步骤360处,指定一个预期的健身级别,例如级别1,等同于每步4英寸;在步骤362处,指定一个预期的有效踩踏速度,例如3英里/小时;在步骤364处,指定一个平均步幅长度;在步骤368处,指定一个使用者的重量或者使用一个默认重量值。可以理解的是对于高的使用者而言,步幅长度要比矮的使用者长。然而,有效带速指示的是在给定时间内任意使用者所走过的最大距离,这样对于一个给定距离,一个较高的、频率低的踏步者在给定踏板上将消耗与一个矮的、频率高的踏步者相同的时间。
基于在给定时间内的平均步幅长度和有效带速,在步骤366处,接着可以进行对使用者每一步在踩踏带上的平均时间的计算。利用每一步的平均时间,步骤370-372可测量和/或计算下落速度,其对于得到给定重量的使用者每一步的踏板的预期位移是必需的。可以理解的是,施加在上面的力以及由此导致的踏板的下落速度随使用者的重量而发生变化。由此,对于一些实施例而言,有的人可能希望确定对于一定重量范围的一系列的下落速度,并确定一个平均下落速度,或者对于使用者重量、有效带速和/或预期踏板位移的变化的范围,利用其它统计和/或模拟程序来模拟设备的操作。
在本发明的一个实施例中,通过改变沿流体通道的流体速度,控制系统300随着时间改变负载踏板12、14的下落速度,使得随着有效带速的增大,下落速度增大,对于指定的健身级别,每一步预期的踏板位移出现。然而在另一实施例中,控制系统300可配置为独立于有效带速而设置沿流体通道的流体的速度。当由增大的有效踩踏速度所实现的增大的运行级别充分补偿每一步减小的最大踩踏位移时,这样的一个实施例是理想的。或者,换句话说,由于通过走/跑快一些,健身者消耗更多的能量,每一步没有完成完整的踏板位移的效果减轻了、可以忽略和/或无关紧要。可选择的是,最大踏板位移可独立于有效带速而变化。例如,以有效带速3m.p.h健身的使用者可能希望增大最大踏板位移,将它从健身级别设定(3)增大到健身级别设定八(8)。为了在不改变有效带速的前提下完成一个完整的步进,沿流体通道的流体速度增大。通过打开液压控制阀152/168使得更多的流体流过阀,和/或通过增大流体压力使得更多的流体流过阀一段时间,这样的增大可能发生。除了任何的重力外,通过使用者每一步都施加一个更大的向下的力,可以增大流体压力。由此,可以理解的是通过改变有效带速和流体速度,CPU 302可以以任意给定的时间间隔控制使用者所要求的消耗级别。
在利用流体速度来控制和实现每一步的踏板12、14的最大位移时,还可使用TPS 308来补偿踏步的缺陷。例如,一些健身者发现当一条腿与另一条相对的行走时,倾向于承受更多他们的重量。这样沉重的行走的特征在于蹒跚、摆动的腿部运动以及类似形式。当在硬地面上行走时这样不正常的行走模式是可以忽略或者根本就注意不到。然而,当这样的人在本发明的设备10上行走时,如果不正确,每一次交替的沉重行走在很大程度上增大了它的效果,使得一个“重”负载踏板(例如右侧踏板)到较轻负载的踏板(例如左侧踏板)的最高“向上”和最低“向下”位置之间发生一个显著的差别。在本发明的至少一个实施例中,TPS 308和组合的CPU 302设置为检测这样的“沉重”行走,通过测量和比较处于它们的最高位置、最低位置、平均或其它位置处的各个踏板12、14的相对位置;确定和比较一个踏板12、14相对于另一个踏板12、14(“重”的踏板将比“轻”的踏板下落的快)的下落速度;以及其它。利用这些信息,接下来CPU 302可以命令TCU304降低沿着来自“重”踏板的流体通道的流体的速度,并增大沿着通向“轻”踏板的流体通道的流体的速度。结果,CPU 302、TPS 308和TCU 304可提供变化的阻力使得两个踏板的运动范围在给定的健身路线上基本相同。
通过选择具有预期敏感度的编码器以及通过改变由TPS 308或CPU 302接受的来自编码器或者其它传感器的信号的采样速度,可以得到控制设备10的操作的任意预期的级别设定。在一个实施例中,CPU302配置为从编码器每四毫秒抽取输出信号的样品。CPU 302接着在一个五(5)秒的时间段内取这些信号的平均值,以获得任意给定时间的踏板12、14的平均位置。这个平均位置可被CPU 302使用用于控制流体速度和其它操作参数。其它取样速度、传感器敏感度、平均时段、统计技术和类似参数可以被TPS 308和/或CPU 302使用用于控制设备的操作。
例如,CPU 302可设置为在启动阶段(即当使用者刚开始健身或者重新开始健身时)逐渐增大踏板位移、有效带速和类似参数。这些参数中的任意一个都可以被单独控制,例如当踏板12、14处于锁定或限制运动状态时增大有效带速。在一个实施例中,启动阶段锁定踏板12、14,同时增大有效带速。一旦有效带速在预期的有效带速1英里/小时以内时,允许踏板12、14逐渐增大速度,一直到获得预期的每一步的踏板位移。可选择的是,可以在启动时锁定带18,同时逐渐将踏板位移增大到预期高度。一旦到达那种状态,可以允许带18上升到预期的有效带速。
同样的,当停止健身时,不管什么原因,本发明的不同实施例逐渐的抑制踏板位移,同时降低有效带速。在特定实施例中,停止程序可以采用持续逐渐降低的方法,其中在准备就绪的状态下在给定的时间段内降低有效带速和/或踏板位移。在另一实施例中,可以使用多阶段停止程序,其中有效带速和/或踏板位移以阶段递加的方式降低,例如从6m.p.h到3m.p.h到1m.p.h到停止。在其它实施例中,停止程序可以包括一旦有效带速下降到低于一给定极限(例如1英里/小时),将踏板12、14锁定在一个中央位置。而且,应当理解的是这样的切断程序由CPU 302来执行,其生成传送到TCU 304和BSCU 306的合适的控制信号,用于控制踏板位移和有效带速。
图60显示了根据本发明的一个实施例的用于控制健身装置10的踏板12、14的下落速度的操作的一个例子。在一个例子中,初始状态可包括踏板12、14锁定或者集中在一个零或者启动位置上,此处描述的操作可利用由使用者(例如预先-锻炼的数据)提供的数据,或者在使用者按了“快速启动”健或者其它相似功能的健来启动健身装置10后执行此处的操作。在步骤380中,踏板下落速度从零逐渐增大。在一个例子中,这个操作要考虑当前行走带速、预期的踏板下落速度和其它系统条件。
在步骤382中,读取踏板位置传感器,在步骤384中确定踏板运动的方向。在一个例子中,从步骤382-384获得的踏板位置和踏板方向存储在存储器内,例如存储结构或缓存,一个或多个踏板位置和踏板方向的先前数值保存在存储器内用于计算。这些数据中的每一个都与时间标记联合,以便利用这个数据还可进行时间的计算。
在步骤386中,用于确定从上一次读数起踏板方向是否发生变化,例如,使用者是否已经将重量从一只脚转换到相对的一只脚以改变踏板运动的方向。如果是这样的话,控制传送到下文所述的步骤392。然而,如果步骤386确定踏板方向没有变化的话,控制传送到步骤388。步骤388确定是否超出最大的踏板位置极限。如果没有的话,控制传到步骤382-384,再次读取踏板位置并确定踏板方向。如果步骤388确定已经超出了最大的踏板位置极限,控制传送到步骤390,其降低踏板的下落速度(即增大踏板上的阻力),控制返回到步骤382-384。
如果步骤386确定踏板方向已经变化,控制传送到步骤392。步骤392计算从踏板上次方向变化的踏板位置到新方向变化处的踏板位置的整个踏板运行距离。在一个例子中,步骤392将与踏板先前的方向变化相关的踏板位置数据和与踏板最近或当前方向变化相关的踏板位置数据做比较,这些距离值之间的差异用于计算整个的踏板运行距离。
在步骤394中,计算从上次方向变化到由步骤386检测到的新的方向变化之间的总的时间。在一个例子中,步骤394将从先前的踏板方向变化起的时间标记和与最近或当前踏板方向变化相关的时间标记做比较,这些时间标记之间的差异提供了踏板方向变化之间的整个时间。在步骤396中,利用由步骤392-394计算的数据来计算踏板的下落速度。在一个例子中,下落速度等于整个的踏板运行距离(由步骤342计算)除以在踏板方向变化之间的整个时间(由步骤394计算)。
步骤398确定实际的下落速度是否高于预期的下落速度。在一个例子中,步骤398将由步骤396计算的下落速度(形成了实际的下落速度)与预期的踏板下落速度(其是预先-锻炼数据输入的一部分或者由使用者提供的数据获得或者由健身装置10的设定提供)做比较。如果步骤398确定实际的下落速度高于预期的下落速度,步骤400降低下落速度(即增大踏板的阻力)并将控制传送到步骤382。然而如果步骤398确定实际的下落速度不比预期的下落速度高,步骤402确定是否实际下落速度比预期的下落速度低。如果不低的话,控制传送到步骤382。然而如果实际下落速度比预期的下落速度低,那么步骤404增大下落速度(即降低踏板的阻力)并且控制传送到步骤382。
在本发明的一个实施例中,控制系统300包括一个自动对中特征,通过它CPU 302主动平衡使用者的位移和每个踏板12、14的下落速度。只要编码器或者其它传感器检测经过中央位置(即左右踏板12、14平行的位置)的负载踏板,CPU 302配置为接收而TPS 308配置为生成一个对中脉冲。利用这个对中脉冲并基于对这样的脉冲之间的时间值的计算,在这样的下落速度和位移相等之前,CPU 302控制每个踏板12、14的下落速度。
相同的,当使用者希望对一个给定的腿(例如右腿)的锻炼比另一条(左)腿多时,例如通过采用更高的步伐锻炼四头肌或者其它肌肉的特定方面,CPU 302和TPS 308可配置为当使用者抬升右腿时(使得一个较大的阻力施加到右侧踏板上,使得使用者必须施加使踏板以预期的速度下落的力)增大流体速度,和/或当使用者抬升左腿使得左侧踏板降低一个较大的距离使得使用者在下一步中使用右腿抬升的更高时,增大流体速度。由此,通过改变流体速度和有效带速,本发明的不同实施例可配置为提供定制以及标准的锻炼程序。
在一个实施例中,当使用者利用此处描述的健身装置10进行锻炼时,健身装置10将主动的监控使用者的位移和速度。健身装置10可确定使用者的位移范围和范围中点,并确定范围的中点是否落在健身装置的水平位置。如果范围中点不在健身装置10的水平位置的话,CPU302可以调整用于踏板运动(右或左)的PWM信号,使得中点返回到健身装置10的水平位置。这个功能将有效的设法补偿行走不均衡的使用者。这个功能还为使用者提供了一个改进的机会,以便健身过程中采取完整的踏步,并且防止了使用者在一侧可能降至最低或者在另一侧阻止踏板12、14的完整的向下位移的可能性。
虽然上述讨论内容主要是针对单个实施例,但是应当理解的是本发明不是并非如此有限。如上所述的,本发明可以配置为采用多种控制装置、传感器、激励器、输入装置和输出装置。更详细些,特别参照本发明的控制装置300和/或数据处理器方面,应当理解的是可以使用很广范围的控制器/处理器。在某一实施例中,还可以不包括处理器/控制器。同样的,CPU 302所归属的范围通常包括那些不提供任何控制功能的处理器,其配置为仅仅接收用于生成显示或者用户信息的数据输入。可选择的是,该范围可包括复杂的处理器,例如PENTIUM处理芯片,并可视为能够控制设备的所有方面并提供附加功能和/或控制特征的计算机。同样的,应当理解的是本发明不限于那些具有最少或最多控制/处理能力的实施例。
对于上述所讨论的和/或不同的其它实施例而言,与大范围的控制/处理能力相关但不依赖于它的是本发明与大范围的传感器/传感装置之间的适应性和/或兼容性。如上所述,本发明可配置为实际上包括任意预期的传感器。这样的传感器实际上可监控关系到使用者对设备的使用和/乐趣的装置的任意方面。这样的传感器,例如,可监控速度、倾角、步伐高度、步伐深度、使用者的脚对踏板的冲击(例如确定使用者是沉重的还是轻轻的踩踏,并基于上述数据调节系统性能)、使用者施加到任意手柄上的压力(例如,确定使用者是否“作弊”)、心率或者任意使用者身体条件的生理指示、步幅长度(例如,为了为使用者提供更优和/或更为舒适的锻炼,确定应当向着还是远离控制台移动踏板)以及其它方面。此外,传感器可设置为,可以独立或者联合监控那些与使用者的经验相关之外的参数。这样的参数可包括马达时间、液压系统的使用(例如,为了确定需要维护的时间,液压缸已经进行了多少次压缩)以及其它参数。
正如本发明配置为处理由多个传感器和输入装置提供的输入一样,它可以配置为控制各种激励器。如上所述,一个这样的激励器是马达130,其驱动带18。其它的激励器包括但不限于步伐高度激励器(例如,基于使用者的高度、预期的锻炼类型或者类似方面调节步伐高度和/或步伐深度的激励器);踏板激励器(例如,可以控制速度、角度、方位和单个或两个踏板的其它方面的激励器);振动或阻力激励器(例如,用于控制踏板升降的速度或者能量的电磁阻力装置、液压、充气和其它类型的装置);环境激励器(例如与使用者的感受相关的冷却扇、加热器、视听装置和类似装置);安全激励器(例如那些设计用来在需要的时候避免伤害使用者或者其它人的装置);和其它激励器。
考虑提供给控制装置(或多个)的输入,输入可以由前面提到的控制器(例如来自从属或者远程控制装置的输入,例如TCU)、传感器和激励器提供。此外,可以由使用者提供输入。使用者输入,例如,涉及全部的从人口统计指示(例如高度、重量、年龄、吸烟/不吸烟)到病历信息(例如使用者是否有过心脏病发作或有心脏病-由此重视基于使用者的心率控制锻炼或者要求一个较长的平静时段)、到锻炼目标或者其它信息。也可以由其他人或其它装置提供输入。例如,本发明配置为在一个群体或者班级设置下操作,其中指导者或者其他人为踏板速度、阻力水平以及类似指数设定一个的目标,其可按照特殊使用者可能的要求(例如,由班级上超重的使用者使用的设备可按比同一班级的指导者或者其他选手低的阻力级别上运行(按照指导者的设定仍然增大或者减少锻炼))对每个设备做或者不做适应性调整。此外,可由自动系统提供输入,例如锻炼视频,其可包括视频信号触发器,信号指示设备何时为给定的激励器或者类似设备改变设置。同样的,该输入可由远程或本地计算机程序、软件程序或者类似程序提供。
而且,可由本发明的不同实施例提供各种输出。如上所述,传送到激励器的输出信号可由CPU 302或者其它处理器提供。而且,传送到使用者的输出信号可以以音频、视频、触觉或者其它的信号形式提供。其它的信号包括针对设备/使用者的锻炼级别,也可以通过设备输出。例如,在一个群体或者班级设置中,这样的级别和使用者的锻炼级别信息可以提供给指导者,以便确保使用者不过度用力或未尽力。相同的,这样的锻炼信息可以提供给监控仪器。例如,心脏病病人的锻炼数据(例如锻炼级别、所获得的最大心率、平均心率和类似值)可以提供给紧急监控仪器,提供给医生或者治疗专家(用于病人监控)或者其他人,包括使用者。而且,为了使用、发现并修理故障、趋势以及其它诊断应用,设备运行数据可以提供给制造商、研究人员或者其他人,例如通过有线或无线互联网。
通过采用各种控制器、传感器、激励器、输入和/输出可能,本发明可以配置为支持大范围的设置和操作。例如,在基于使用者或者其它输入基础上的锻炼过程中,一个实施例可以配置为支持在三个不同模式(例如仅步进模式、仅踏车模式和步进-踏车的组合模式)之间的转换。可提供一个设备,其支持踏板12、14所围绕转动的水平或垂直轴线的变换、该转动的深度、步伐的高度和/或其它设置。可以提供这样的实施例,其包括多个设备之间的串话性能,例如,通过有线或无线通讯连接。可以提供这样的实施例,其支持在可移走的智能卡上对使用者操作和/或设置的记录,在体育馆、旅馆或者其它地点这样的实施例是非常理想的。
包括一个或多个此处公开的操作(例如从图59-60、或者此处的描述)的本发明的实施例可以包含在计算机程序产品中。应当理解的是包括一个或多个本发明的特征或操作的计算机程序可以创建在计算机可用介质中(例如CD-ROM、计算机文件、计算机程序或其它介质),该介质中具有包含在此的计算机可读代码。计算机可用介质优选包含多个计算机可读程序代码装置,该装置配置为促使计算机(例如CPU302或者其它计算机装置)来影响或者实施此处描述的各种功能或操作中的一个或多个。
尽管已参照特定顺序执行的特定操作,对在此描述的方法进行了描述,但是,可以理解的是,这些操作可以结合、再分或重排以形成等同的方法,而不会超出本发明的教导。因此,除非在此有明示,否则操作的顺序和重组不是本发明的限制。
应当理解的是通篇所采用的“一个实施例”或者“一实施例”或者“一个例子”指的是,如果希望此处描述的与这个实施例相关联的特定特征、结构或者特征可以包含在本发明的至少一个实施例中。因此,应当理解的是,在本说明书的不同部分处所采用的两个或更多个的“一实施例”或“一个实施例”或“一个可选择的实施例”或“一个例子”不一定所有的都指代相同的实施例。而且,特定特征、结构或者特点可以按照所希望的方式组合在一个或多个本发明的实施例中。
虽然已经参照一个优选实施例对本发明做了特定的显示和描述,但是应当理解在不偏离本发明的精神和范围的前提下,本领域技术人员可以做出各种其它形式和细节上的变化。
权利要求
1.一种具有一个或多个能够上下运动的踏板的健身装置,包括用于控制踏板阻力的踏板控制装置;用于检测踏板的上下运动并提供一个代表所述运动信号的踏板位置传感器;和接收该信号并向踏板控制装置提供一个踏板控制信号以调节踏板阻力的中央处理装置。
2.根据权利要求1的健身装置,其中踏板的阻力受流过阀的流体的控制;并且其中踏板控制装置调节流过所述阀的流体流。
3.根据权利要求2的健身装置,其中当流过所述阀的流体流增多时,踏板阻力增大。
4.根据权利要求2的健身装置,其中当流过所述阀的流体流减少时,踏板阻力减小。
5.根据权利要求1的健身装置,其中踏板控制信号是脉宽可调信号。
6.根据权利要求1的健身装置,其中踏板位置传感器包括至少一个检测踏板的上下运动的编码器。
7.根据权利要求1的健身装置,还包括一个转动连接在踏板之间的摆动臂;其中该至少一个的编码器具有底部和一根轴,该底部连接到健身装置的一个固定部分上并且该轴与摆动臂连接。
8.根据权利要求1的健身装置,其中踏板位置传感器包括一个光学编码器。
9.根据权利要求1的健身装置,还包括主用户界面;和远程用户界面。
10.一种健身装置,包括框架结构;包括第一移动表面的第一踏板组件,第一踏板组件转动支撑在框架结构上;包括第二移动表面的第二踏板组件,第二踏板组件可转动的位于框架结构上;用于检测第一和第二踏板的上下运动并提供一个代表所述运动信号的踏板位置传感器;接收该信号并提供一个踏板控制信号以调节踏板阻力的中央处理装置。
11.根据权利要求10的健身装置,还包括一个可操作的连接在框架结构和第一踏板组件之间的第一活塞-缸组件。
12.根据权利要求11的健身装置,还包括一个可操作的连接在框架结构和第二踏板组件之间的第二活塞-缸组件。
13.根据权利要求12的健身装置,还包括一个将第一活塞-缸与第二活塞-缸组件液压连接的可调阀组件。
14.一种用于控制具有至少一个能够上下运动的踏板的健身装置的方法,该方法包括生成一个指示所述至少一个的踏板位置的踏板位置信号;和部分的基于该踏板位置信号来调节所述至少一个的踏板向下运动的阻力。
15.根据权利要求14的方法,包括接受至少一个用户输入信号;和部分的基于使用者的输入信号来调节所述至少一个的踏板向下运动的阻力。
全文摘要
控制健身设备的操作,该设备配置为促进基本水平和基本垂直的健身运动的组合。这样的控制功能提供了各种健身级别和/或程序,并可利用各种机构、传感器和其它控制设备来控制用于各种健身程序的健身设备的操作。
文档编号A63B71/00GK101087633SQ200580013164
公开日2007年12月12日 申请日期2005年2月28日 优先权日2004年2月26日
发明者D·A·克劳福德, A·P·卢尔, J·丹尼尔 申请人:鹦鹉螺公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1