碳纤维物质、碳纤维物质制造装置、制造方法和粘附防止装置的制作方法

文档序号:1743441阅读:196来源:国知局
专利名称:碳纤维物质、碳纤维物质制造装置、制造方法和粘附防止装置的制作方法
技术领域
本发明涉及碳纤维物质制造装置、碳纤维物质制造方法和碳纤维物质粘附防止装置以及通过这些装置和方法所制造的碳纤维物质,更详细地说,涉及具备难以堵塞炉芯管例如竖式炉芯管内的结构的碳纤维物质制造装置、利用该碳纤维物质的制造装置来制造碳纤维物质的方法、防止碳物质粘附在炉芯管例如竖式炉芯管的内壁上的碳纤维物质的粘附防止装置以及通过这些装置和方法所制造的碳纤维物质。
该制造装置具有在竖式炉芯管的上部将载体气体、包含成为催化剂的金属的催化剂金属源和成为碳源的例如碳氢化合物进行气体化并导入到竖式炉芯管内的原料供给部件;为了对通过上述原料供给部件供给的气体进行整流并在上述竖式炉芯管内向下流通而设置的气体整流部件;围绕上述竖式炉芯管配置、并加热上述竖式炉芯管的内部的加热部件。
就现有这样的制造装置来说,催化剂金属源的气体和碳氢化合物的气体与载体气体一起被导入到用加热部件加热的竖式炉芯管内。通过整流部件对被导入的气体进行整流并在竖式炉芯管内流通。在加热的炉芯管内生成碳纤维。
对于在炉芯管内生成碳纤维的结构,提出了几种装置,其中一种是将导入到竖式炉芯管内的催化剂金属源化合物分解生成催化剂金属,同时也将碳源分解,生成碳纤维,另一种是,将催化剂金属源在竖式炉芯管内分解生成熔融金属液滴,通过碳源接触该熔融金属液滴使碳源分解,分解的碳以金属为芯在长方向上成长而生成碳纤维。
不管哪种生成碳纤维的装置,生成的碳纤维通过为了整流而调整过的气流在竖式炉芯管内下降。下降的碳纤维与载体气体一起经过竖式炉芯管的下端开口部落到碳纤维收集部件(收集碳纤维的机械、器具、装置,例如被称为碳纤维收集槽、收集箱、捕集箱等)中。
可是,在具有这样结构的制造装置中存在以下的问题。
即,在竖式炉芯管中,以在气相中生成的熔融金属为核在气相中生成碳纤维,在气相中生成碳纤维是所期望的,但存在纤维状物粘附在竖式炉芯管的内壁上的问题。
纤维状物粘附在竖式炉芯管的内壁上的原因被认为有以下几种说法,例如,催化剂金属源分解后生成的熔融金属粘附在竖式炉芯管的内壁上,以粘附在内壁上的熔融金属为核生成基板成长碳纤维等纤维状物;催化剂金属源粘附在竖式炉芯管的内壁上,在竖式炉芯管的内壁面上,金属源分解后生成金属,以该金属为核生成上述基板成长碳纤维等纤维状物;在竖式炉芯管的气相中生成的碳纤维粘附在竖式炉芯管的内壁上,保持原样地向长方向成长或向粗方向成长;或者是这些说法的组合。
不管哪一种说法,一旦在管壁面上形成纤维状物,则从上部落下来的气相成长碳纤维就堆积在上面,越来越多地生成粗方向和长方向的不均匀的纤维状物,最后堵塞反应管。如果堵塞反应管,就停止了气相成长碳纤维的制造,必须进行堵塞的反应管内的清扫作业,这样就不能实现工业化的生产。
而且,在粘附于管壁面上的碳纤维和堆积在这上面的碳纤维上,形成热分解碳层,成为直径大并且物理性能恶劣的碳纤维。
在此,气相成长碳纤维意思是指在气相中成长的碳纤维。更具体地说,气相成长碳纤维是以作为碳源的化合物为原料、以过渡金属等的金属微粒子为核在气相中成长的碳纤维。因此,气相成长碳纤维在一端含有过渡金属等的超微粒子,形成中部空心,石墨网面使C轴正交于纤维轴呈年轮状叠层,也就是说,是石墨网面与纤维轴平行地叠层的纤维。而且,从概念上来说,该气相成长碳纤维包含被称为纳米碳管的纤维和被称为纳米碳纤维的纤维。可是不能很明显地区分纳米碳管和纳米碳纤维,如果粗略地说,多数是将直径是数nm~十数nm的气相成长碳纤维称为纳米碳管,将直径是数十nm~100nm的气相成长碳纤维称为纳米碳纤维。而且,气相成长碳纤维也包含催化剂金属粒子在不熔融的低温度中生成的石墨网面与纤维轴具有数十度角度的圆锥叠层状态、而且其直径为百nm以下的中空纤维,以及石墨网面相对于纤维轴近乎为直角、形成板状或带状的特殊形状并且其长边为百nm以下的纤维状物。
上述问题在炉的轴方向的各处容易形成独立对流的横式炉芯管中很明显。为了消除这样问题,提出的办法是使载体气体沿着炉芯管的内壁流通,使得催化剂金属源、熔融金属或碳纤维不粘附在炉芯管的内壁上。可是,虽然在某种程度上可以防止在管壁上生成纤维状物,但还很难说完全。
于是,作为除去在管壁上生成的纤维状物的部件,提出了例如向炉内加入耐热陶瓷球、在炉内转动的装置,或用于间歇地除去粘附在炉壁上的纤维状物的如刮刀或耙子形状的各种拨落部件。
就使用耐热陶瓷球的部件来说,不仅扰乱在炉芯管中流通的气体的流线,而且粘附在该耐热陶瓷球上的纤维向粗方向上成长而使气相成长碳纤维的特性恶化。也就是说,存在不能高效率地制造结晶性高且形成中部空心的气相成长碳纤维的问题。
在使用上述拨落部件的情况下,产生了如下新的问题因为使拨落部件间歇工作,故使得粘附在炉壁上的纤维向粗方向成长,并且如果拨落部件常驻在气相成长碳纤维生成的部位就扰乱气体流线,反而使粘附到壁面上的纤维状物的量增加了。
因此,就现有的制造装置来说,需要定期例如每数分钟就实施除去粘附在炉芯管内部的碳纤维等的操作,因此,这时必须停止制造装置,所以给碳纤维的有效的连续制造带来了障碍。
就现有的气相成长碳纤维制造装置来说,还有另外以下的问题。即,在炉芯管的一端配置将碳源气体和催化剂金属源导入的原料供给喷嘴。如果通过加热部件将该原料供给喷嘴内加热到碳源气体和催化剂金属源在炉芯管内分解程度的温度,碳源气体和催化剂金属源就会在原料供给喷嘴内分解,发生所谓已分解的成分或反应生成物堵塞原料供给喷嘴内的问题的可能性就会增大,所以为了不产生这样的问题,也就是说,为了使上述原料供给喷嘴内的温度不达到碳源气体和催化剂金属源分解的温度,通过采取某中方法将原料供给喷嘴内冷却下来。于是,将比炉芯管内的给定温度低的碳源气体和催化剂金属源从原料供给喷嘴供给到炉芯管中。这样,就产生了所谓碳源气体和催化剂金属源不能在炉芯管内迅速达到给定的温度、不能高效率制造期望的气相成长碳纤维的问题。
然而,在气相成长碳纤维中,不具有热分解碳层的纳米碳纤维、纳米碳管即使没有特别石墨化,石墨化程度也比较高、导电性优良,但不向粗方向成长直径很小,生产性低,所以希望提高生产性。
本发明的目的在于提供通过尽量降低炉芯管特别是竖式炉芯管的堵塞现象而可以长期连续运转的碳纤维物质制造装置。
本发明的目的在于提供连续且高效率地制造碳纤维物质尤其是在气相成长碳纤维中的直径小的纳米碳纤维、纳米碳管的方法。
本发明的其它目的在于提供在使用炉芯管特别是竖式炉芯管制造碳纤维物质例如气相成长碳纤维、纳米碳纤维、纳米碳管时,防止碳纤维物质粘附在炉芯管内壁上的碳纤维物质粘附防止装置。
本发明的其它的目的在于提供包含直径约为100nm以下,优选在50nm以下,在其中心部沿着纤维轴存在空心部,围绕该空心部以年轮状平行地形成单层或多层的石墨网面的纳米碳管和纳米碳纤维的气相成长碳纤维。
用于解决上述问题的本发明的碳纤维物质制造装置的特征在于包括具有将由碳源气体和催化剂金属源组成的原料供给到炉芯管内的原料供给部件、和使上述催化剂金属源和碳源气体进行热分解生成碳纤维物质的反应区域的反应部件;正对着上述原料供给部件和上述反应区域中的某一个而配置、将上述碳纤维物质和碳源气体及催化剂金属源的至少一个从开口部吸进来、在反应区域外具有排出碳纤维物质的排出管的排出部件;供给在与上述原料对向流动方向上向上述排出管的开口部流通、接着在上述排出管内流通的引导气体的引导气体供给部件。
并且,碳纤维物质制造装置的特征在于上述炉芯管是在上部具备上述原料供给部件、在下部具备上述排出部件的竖式炉芯管。
碳纤维物质的制造方法的特征在于将在上述碳纤维物质制造装置的炉芯管的反应区域中通过使催化剂金属源和碳源气体产生热分解而形成的碳纤维物质与通过引导气体供给部件供给的引导气体一起从排出部件的排出管的开口部吸引、收集。
碳纤维物质的制造方法的特征在于将从配置于上述碳纤维物质制造装置的炉芯管的一端的原料供给部件的喷嘴供给的催化剂金属源和碳源气体与通过引导气体供给部件而在炉芯管和上述排出管之间的间隙中流通的引导气体一起,吸入到正对着上述喷嘴的前端开口部配置的上述排出管的开口部内,在炉芯管内的反应区域配置的排出管中,通过热分解反应而制造碳纤维物质。
碳纤维物质粘附防止装置的特征在于包括正对着配置于炉芯管的一端的将碳源气体和催化剂金属源供给到炉芯管内的原料供给部件和使上述催化剂金属源和碳源气体进行热分解生成碳纤维物质的反应区域中的某一个而配置的、将上述碳纤维物质、碳源气体和催化剂金属源的至少一个从开口部吸入、并具有将其排出到反应区域外的排出管的排出部件;供给从上述炉芯管的另一端向上述排出管的开口部流通、接着在上述排出管内流通的引导气体的引导气体供给部件。
本发明的碳纤维物质是在使催化剂金属源和碳源气体产生热分解的炉芯管的反应区域内形成的,其特征在于与沿着正对着上述反应区域的排出管的圆周侧面上升并从上述排出管的开口部被吸入到排出管内部的引导气体一起、从反应区域被送入到排出管内,被收集。
碳纤维物质的特征在于将从设置于炉芯管一端的原料供给部件的喷嘴供给的碳源气体和催化剂金属源与通过引导气体供给部件而在炉芯管和上述排出管之间的间隙中上升的引导气体一起吸入到在上述炉芯管内插入配置的排出管的正对着上述喷嘴的前端开口部而邻近配置的开口部内,使上述碳源气体和催化剂金属源进行分解反应,由此得到碳纤维物质。
图2是表示本发明的其它的实施例的简要说明图。
图3是表示本发明的其它的实施例的简要说明图。
图4是表示本发明的一个实施例的排出管的一个例子的简要说明图。
图5是表示本发明的一个实施例的排出管的其它例子的简要说明图。
图6是表示本发明的一个实施例的排出管的其它例子的简要说明图。
图7是表示本发明的一个实施例的整流板的简要说明图。
图8是表示本发明的一个实施例的整流板的配置状态的简要说明图。
图9是表示本发明的一个实施例的整流板的其它例子的简要说明图。


图1中表示具有这样优点的微细气相成长碳纤维制造装置的一个示例。而且,本发明不局限于该图1所示装置。
就图1所示的装置来说,炉芯管是竖式炉芯管,因此反应部件也是竖式反应部件。本发明能够适用于竖式和横式中的任何一种炉芯管,但竖式炉芯管更好,因为竖式炉芯管难以引起因对流造成的不均衡,比较容易进行原料气体和引导气体等气体整流。
在图1中,1是作为本发明一个示例的微细气相成长碳纤维制造装置;2是容纳碳源和催化剂金属源例如有机金属化合物的混合物的原料容器;3是将原料容器内的混合物吸出、排出并调节其流量的泵;4是将上述混合物预热至给定温度的预热器;5是通过进一步加热已预热的混合物使其气化、生成与被送来的混合物组成相同的气体的加热气化器;6是调整与已气化的混合物一起流通的载体气体的流量的第1质量流量调节器;7是测定向安装在作为本发明的微细气相成长碳纤维制造装置的原料供给部件的喷嘴的一个示例的原料供给喷嘴上的冷却用套管中供给的冷却气体例如空气或氮气的流量的流量计;8是调整载体气体的流量的第2质量流量调节器;9是维持被加热的混合气体为给定温度的耐热管;10是从竖式炉芯管的顶部向其内部导入混合气体的圆筒管状的原料供给喷嘴;11是竖式炉芯管;12是围绕上述原料喷嘴的冷却用套管;13是冷却气体供给口;13A是将供给到上述冷却用套管内的冷却用气体排出的冷却气体排出口;14是载体气体供给喷嘴;14A是安装在上述载体气体供给喷嘴的前端部的气体整流部件;15是作为加热部件的电炉;18是作为原料供给喷嘴中的原料气体供给口的前端开口部;19是配管;20是配管;21是将从泵排出的混合物送到气化器中的原料供给管;22是配管;23是配管;30是排出部件;31是排出管;31A是排出管31的开口部;32是驱动气体喷出喷嘴;33是喷射器管;40是引导气体供给部件;41是气体均匀供给槽;42是引导气体供给管;43是流量调整部。
下面,参照图1进一步说明本发明的实施方式。
<竖式反应部件>
如图1所示,竖式反应部件优选具有在与轴线正交的方向上的内部截面形状沿着轴线方向同样形成的、例如圆筒形或角筒形的竖式炉芯管。
该竖式炉芯管被设计成使得与载体气体一起供给的催化剂金属源和碳源气体产生热分解。而且,在本发明中,虽说在竖式炉芯管内产生热分解,但在从原料供给喷嘴到排出管的开口部之间也进行一部分热分解,故通过在原料供给喷嘴紧邻的位置上配置排出管的开口部,使得在排出管内进行热分解。
该竖式炉芯管如后所述,被设计成使得通过在一般炉芯管的周围设置加热器等的加热装置,达到给定的反应温度。而且,不一定必须在炉芯管的周围设置加热装置,例如,通过使用保温材料包覆在炉芯管的周围、使载体气体的温度比给定的反应温度高,也可以进行催化剂金属源和碳源气体的热分解反应。
对于该竖式炉芯管来说,为了使碳源气体和催化剂金属源分解,要加热到所需的高温度,并且流通作为载体气体的例如氢气,所以优选使用能够耐高温氢蚀脆性反应和渗碳反应的材质,例如碳化硅、氮化硅、氧化铝、多铝红柱石等的陶瓷制作。
在此,催化剂金属源只要是因热分解而产生起催化剂作用的金属的物质及化合物就没有特别限制。作为可以使用的催化剂金属源来说,可以列举出在特开昭60-54998号公报的第3页左上栏第9行~同页右上栏最下行内记载的有机过渡金属化合物、在特开平9-324325号公报的段落序号 中记载的有机过渡金属化合物、在特开平9-78360号公报的段落序号 中记载的有机过渡金属化合物等。
作为优选的催化剂金属源,例如可以列举出二茂铁和二茂镍等的有机过渡金属化合物,或包括羰基铁等的羰基金属等的过渡金属化合物。既可以单独使用一种催化剂金属源,也可以多种催化剂金属源并用。
并且,催化剂金属源也可以与催化助剂一同使用。作为催化助剂,只要是与上述催化剂金属源产生的催化剂金属相互作用而促进气相成长碳纤维例如纳米碳纤维、纳米碳管的生成即可,并且可没有局限地使用特开平9-78360号公报的段落序号 和特开平9-324325号公报的段落序号 所记载的含硫杂环化合物和硫化合物。作为合适的助催化剂,可以列举出硫化合物、特别是噻吩和硫化氢等。
催化剂金属源在原料供给部件的喷嘴内以液体或气体状态存在,在均热区域进行热分解时,作为催化剂金属源气体而存在。
碳源气体只要是能够因热分解而产生碳并生成气相成长碳纤维例如纳米碳纤维、纳米碳管的化合物,就不作特别限制。作为可以使用的碳源来说,可以列举出特公昭60-54998号公报的第2页左下栏第4行~同页右下栏第10行记载的碳化合物、特开平9-324325号公报的段落序号 中记载的有机化合物、特开平9-78360号公报的段落序号 中记载的有机化合物等。在各种碳源中作为合适例子可以列举出苯、甲苯等芳香族碳氢化合物、正己烷、丙烷、乙烷、甲烷等脂肪族碳氢化合物、环己烷等脂环族碳氢化合物等。而且,既可以单独使用一种碳源,也可以多种碳源并用。作为制造除纳米碳纤维和纳米碳管以外的气相成长碳纤维的合适的碳源,可以列举出一氧化碳。
投入到竖式炉芯管中的碳源气体和催化剂金属源气体占全部混合气体的比例分别为0~40%和0.01~40%较好,更好是分别为0.5~10%和0.05~10%。在此,碳源气体的浓度可以为0的意思是指在作为催化剂金属源的例如有机金属化合物的分子中含有足够的碳的情况下,不一定需要碳源气体。因此,在本发明中,碳源和催化剂金属源也可以是同一化合物。
并且,在生成气相成长碳纤维时,如果向粗方向成长,就含有很多热分解碳,所以为了得到没有热分解碳析出、很细且石墨化度很高的微细气相成长碳纤维、特别是纳米碳纤维和/或纳米碳管,可以降低碳源的浓度、提高催化剂金属源的浓度。
就上述载体气体来说,可以适当采用众所周知的、在气相成长碳纤维例如纳米碳纤维、纳米碳管等的制造中所使用的气体,作为合适的例子可以列举出氢。
而且,可以使用特开昭60-54998号公报所记载的载体气体、有机金属化合物和碳源气体,在本发明的气相成长碳纤维制造装置中可制造微细气相成长碳纤维。
在竖式炉芯管的上部设置载体气体供给喷嘴14、向竖式炉芯管的内部供给催化剂金属源和碳源气体的原料供给喷嘴10。该原料供给喷嘴10是本发明的原料供给部件的喷嘴,只要可以将催化剂金属源例如有机金属化合物和碳源气体与载体气体一起从竖式炉芯管的上部导入其内部,就不局限于其构造。
更具体地说,如图1所示,在原料供给喷嘴10的外围上安装着冷却用套管12,从设置于冷却用套管12上的冷却气体导入口13将冷却气体导入冷却用套管12内,被导入的冷却气体流过与原料供给喷嘴10的外围按触的冷却用套管12内部之后,从冷却气体排出口13A排出到冷却用套管12的外部。并且,从载体气体供给喷嘴14导入的载体气体在竖式炉芯管11的内壁和上述冷却用套管12的外壁之间的间隔中流过。
如上所述,在作为本发明的合适示例的气相成长碳纤维制造装置中设置有通过原料供给部件从竖式炉芯管的顶部使与载体气体一起供给的碳源和催化剂金属源例如有机金属化合物的气体以活塞式流动地在竖式炉芯管内流过乃至流下的气体整流部件。作为该气体整流部件,可以列举出特开平9-324325号公报中的段落序号 所记载的第1整流部件、 和 所记载的整流筒、特开平9-78360号公报中段落序号 所记载的原料气体用整流部件、 所记载的第1整流部件、 所记载的第2整流部件、 所记载的蜂窝状板等。
为了在该竖式反应部件中的竖式炉芯管的内部进行碳源气体和催化剂金属源特别是有机金属化合物的分解反应及生成微细气相成长碳纤维的反应,通过加热部件进行加热。
作为加热部件,采用可以将竖式炉芯管11内加热至进行上述分解反应和生成反应所需要的足够的温度的部件。可是,不管采用哪种加热部件,实际上对竖式炉芯管11的内部的顶部到下部进行均匀加热是非常困难的。这样说是因为,例如即使从竖式炉芯管11的一端到另一端用加热部件包覆,竖式炉芯管11的端部的散热比面积也比竖式炉芯管11的中央部的大。
例如,在从距竖式炉芯管11的下端一定距离的位置到距竖式炉芯管11的上部一定距离的位置的竖式炉芯管11的外围部缠绕作为加热部件的电加热器15。换言之,在通常的竖式炉芯管中,不在其两端部的给定区域设置加热部件。而且,作为加热竖式炉芯管的加热部件的电加热器15可以分割为很多块。其结果,在竖式炉芯管11的内部形成将竖式炉芯管11的给定区域近乎均匀地加热为给定温度的反应区域(称为均热区域),从该均热区域向下,温度渐渐降低。将该温度渐渐降低的区域称为温度降低部或温度降低区域。在本发明中,在上述反应区域内配置排出管31,而且,正对着原料供给喷嘴10的头端开口部18配置排出管31的开口部31A。
就加热部件来说,以下的事项也可以考虑。气相成长碳纤维制造装置需要在排出管31内将由原料供给喷嘴10供给的原料气体分解并在排出管31内生成气相成长碳纤维。因此,希望在不破坏对由原料供给喷嘴10供给的原料气体和由载体气体供给喷嘴供给的载体气体进行整流的范围内,提高并维持被排出管31的开口部31A吸引的引导气体的温度。为此,希望通过加热部件例如电加热器15加热竖式炉芯管11,以便提高经过竖式炉芯管的内壁和排出管外壁之间上升的引导气体的温度。但是,将竖式炉芯管11的引导气体加热至排出管31内的气体的密度小于排出管31的排出口上方存在的气体的密度的温度是不可取的。只要引导气体的密度大于存在于竖式炉芯管11上部的气体密度,就可以用加热部件加热竖式炉芯管11,使得引导气体的温度提高。
如果通过本发明的气相成长碳纤维制造装置制造作为气相成长碳纤维的纳米碳纤维和纳米碳管,那么,作为均热区域的加热温度,更正确地说,作为存在于均热区域的排出管内的温度,可以采用众所周知的制造流动气相成长碳纤维的加热温度。
在生成纳米碳纤维和纳米碳管时,设定比较高的反应温度为900~1300℃,1000~1250℃较好,更好是1050~1200℃。
另一方面,反应区域的加热温度在比较低的400~700℃时,催化剂金属处于固体状态,与碳晶格面以年轮状排列相比,具有更多生成相对于纤维轴倾斜的圆锥状排列的碳纤维的倾向。
而且,因为催化剂金属粒子的直径越小,催化剂金属的熔点就越低,所以对于适宜的反应温度范围来说,不必一律局限于上述温度范围,根据目的的碳纤维的直径和所使用的催化剂金属源的种类作适当变动。
作为具备竖式炉芯管、加热部件和原料供给部件的反应炉,可以适合地采用特开平9-78360号公报、特开平9-229918号公报和特开平9-324325号公报中的实施例所记载的反应炉。
<排出部件>
该排出部件包括将由上述反部件形成的气相成长碳纤维与引导气体一起从开口部取入并排出到炉芯管的外部的排出管31。
在图1中表示具有排出管31的排出部件的一个具体实例。在图1中,排出管31的上部插入竖式炉芯管11内,设定排出管31的位置,使得原料供给喷嘴10的前端开口部18与排出管31的开口部正对着,排出管31的另一端部与排气装置和收集装置连接。
将图1所示的排出管31配置在竖式炉芯管11的内部,使得原料供给喷嘴10的中心线和排出管31的中心线一致。而且,在本实施例中,因为在竖式炉芯管11中配置1根原料供给喷嘴10,所以在竖式炉芯管11的内部配置1根排出管31。可是,相对于在竖式炉芯管11的上部配置的1根原料供给喷嘴10,在竖式炉芯管11内插入多根排出管31,并正对着1根原料供给喷嘴10配置各排出管31的开口部31A也可以。另一方面,在竖式炉芯管11的上部配置多根原料供给喷嘴10时,针对每根该原料供给喷嘴10,在竖式炉芯管11的内部配置1根排出管31,因此,可以在竖式炉芯管11的内部配置与原料供给喷嘴10的设置数目相同的排出管31。
在图1中,将紧邻作为原料供给部件喷嘴的原料供给喷嘴10的前端开口部18而配置的排出管31A的位置设计成使得由原料供给喷嘴10供给的原料气体到达上述开口部31A的时间为0.05~2秒,0.1~1秒为较好,更好是0.2~0.5秒。因此,根据由原料供给喷嘴10供给的原料气体的流速来决定排出管的开口部31A的位置。如果像上述那样来决定排出管的开口部31A的位置,就可以通过在排出管31和竖式炉芯管11的间隔中从下方逐渐上升的引导气体使原料气体在良好的包覆状态下导入排出管31内。在此,所谓用引导气体将原料气体包覆的状态,若为极端表现,就是指在排出管31内,原料气体存在于排出管31的中心部,在其周围存在载体气体,而且在其周围存在引导气体的一种状态。
正交于排出管31中心轴线的平面的截面形状优选是与正交于竖式炉芯管11中心轴线的平面的截面形状相同。在通常情况下,竖式炉芯管11是圆形的管体,因此,排出管31也是水平截面为圆形的管体。
在排出管31是从开口部31A到后端部具有相同直径的直管时,该排出管31的开口部31A的内径是原料供给喷嘴10的内径的1.3~10倍,1.5~8倍较好,更好是1.7~6倍。如果排出管的开口部31A的内径处于上述范围之内,就有下述优点由上部供给的原料气体和载体气体在很少紊乱的状态下,被引导气体包覆着被导入排出管31内,防止在竖式炉芯管11的内壁上生成纤维。
并且,排出管31不局限于是直管,也可以是开口部31A的直径和排出管31的开口部以外的管路部分的直径不相同的管体。
此时,排出管31中的开口部以外的插入部分即管路部分的内径是原料供给喷嘴10的内径的1.1~10倍,1.3~8倍为较好,更好是1.5~6倍。如果是这样比率的排出管31,则排出管31内的气流线速度较合适,排出管31内的气流不紊乱。
为了将由原料供给喷嘴10供给的原料气体以及由该原料气体的一部分生成的气相成长碳纤维从开口部18高效率地吸入到排出管31内,作为排出管31的形状,优选是从开口部31A的排出管中央部(也称为直管部)向着开口部31A的边缘扩大的形状,形成漏斗状。在此,称为漏斗状的意思是指开口部31A边缘部的内径比排出管31的中央部内径大的形状,例如可以列举出如图4所示的圆锥形31B,如图5所示的喇叭形31C,如图6所示的碗形31D等。也就是说,从开口部31A的边缘至排出管31的中央部的线是直线(此时为圆锥形)也行,是曲线也行。将形成该漏斗状的部分称为渐缩管。
从排出管的开口部31A的边缘至排出管31的中央部的线为曲线时的优选形状是众所周知的作为风洞用收缩喷嘴的形状。即在以向下流动而缩小从上面的宽阔处来的气流时,在收缩变化部中,使截面内的流速以稳定、平行地一样分布,并且使气流的紊乱强度很小的形状。[例如,小林陵二「关于风洞用收缩喷嘴的设计」(風洞用収縮ノズルの設計について);东北大学高速力学研究所报告,第46卷(1981)第400号,P17~P37的第2图、第3图、第4图、第9图中所示R/D1的曲线形状]。并且,因为在将大口径的气体配管焊接到小口径的气体配管上时所使用的渐缩管能够同样使气体流速平滑地变化,所以可以说是理想的形状。
将排出管31插入竖式炉芯管11的内部并被加热到反应区域的加热温度,所以在使用氢气作为载体气体时,优选使用能够耐高温氢蚀脆性反应和渗碳反应的材质例如碳化硅、氮化硅、氧化铝、多铝红柱石等陶瓷来制成排出管31。
该排出部件包括排出上述排出管内的气体的排气装置,同时优选与收集吸入排出管内的微细气相成长碳纤维的收集装置连接。
作为上述排出装置,可以形成将在排出管31内生成的微细气相成长碳纤维与引导气体一起吸引搬运的气流,例如可以采用在距上述排出管31的开口部31A足够远的排出管31的内部或排出管31的出口、甚至比排出管31的出口更远的位置上配置的风扇和喷射器33等。
喷射器33从外部将高速气流导入排出管31内,用该高速气流发挥高速运送排出管内的气流的功能,换言之,喷射器33构成为使高速气流与排出管内的气流合流位置中的气压形成0~-100mm水柱、较好是-1~-50mm水柱、更好是-3~-30mm水柱的减压,例如,如图1所示,形成的喷射器33包括为了使下方开口部位于内部而将排出管31的下端部插入的喷射器33的主体;插入该喷射器33主体内部的高速气流导入管32;与排出管31同心且面对排出管31的下方开口部而设置于喷射器33主体上的导出管,对排出管31的内径、从高速气流导管32喷出的高速气流的流速、导出管的内径进行设计,使得排出管31的下方开口部中的气压处于上述范围内。在实际运转时,因为上述排出管31的出口的气流含有生成的纤维,所以测定与高速气流的合流点的压力是困难的。因此,在没有原料气体流动的状态下,事先测定上述合流点的压力和引导气体均匀供给槽的压力之间的关系,用引导气体均匀供给槽的压力代替。
在上述排气装置是喷射器33的情况下,可以在比该喷射器更低的位置上设置上述收集装置,在上述排气装置是风扇等的情况下,在该排气装置的上侧设置收集装置,这有利于保护风扇等。对于该收集装置来说,只要是能够收集微细的气相成长碳纤维的装置,就可以采用各种众所周知的机械、器具、装置等,例如,可以列举出电子吸尘机、袋滤器和旋流器等干式收集装置、以及将水或有机液体喷雾的湿式收集装置。
<引导气体供给部件>
本发明的引导气体供给部件,不形成使引导气体从排出管31的一端到排出管31的开口部31A沿着排出管31的外围旋回流动的气流例如旋回流,因此,实际上使引导气体沿着排出管31的外壁像活塞式那样流过,遍及开口部31A的整个边缘将均匀的引导气体供给开口部内。该引导气体供给部件40包括流量调整部43,其在与排出管31的中心轴线正交的任意一个平面内,将引导气体变为实际上与排出管31的中心轴线平行的气流,以均匀的流速使引导气体流向排出管31的开口部31A;气体均匀供给槽41,其贮存从外部导入的引导气体。
如图1所示,作为其中一例的引导气体供给部件40与插入并配置在竖式炉芯管11的内部的竖式排出管31组合。该引导气体供给部件40包括气体均匀供给槽41;将引导气体导入该气体均匀供给槽41内的引导气体导入管42;对气体均匀供给槽41内的气体进行整流并将引导气体引导到排出管31的开口部31A中的流量调整部43。
该气体均匀供给槽41的与排出管31的中心轴正交的平面中的截面可以是矩形,也可以是圆形。并且,在该气体均匀供给槽41是圆筒形状时,其内径是竖式炉芯管11的内径的1.1~4倍,1.3~3为较好,更好是1.5~2.5倍。如果将气体均匀供给槽41的内径设定在上述范围内,供给到排出管31的开口部31A中的引导气体量就会过剩,不会使竖式炉芯管11内的气流紊乱,可以遍及开口部31A的整个圆周边均匀地供给引导气体。
并且,为了遍及开口部的整个圆周边均匀地供给引导气体,将引导气体的流量调节为从竖式炉芯管11的上部流下的原料气体和载体气体的全部流量的0.1~10倍,较好是0.3~5倍,更好是0.5~3倍。
该引导气体的量和经过竖式炉芯管11下降的气体量的合适值与竖式炉芯管11的内径、排出管31的直径和排出管31的开口部31A的直径之间有关系,但总而言之,从引导气体不使以活塞式流动经过竖式炉芯管11内下降的气体的气流紊乱,并且不使降下来的气体从排出管31的开口部31A的外侧降下,不使纤维粘附到竖式炉芯管11的内壁上这点来说,排出管31的外壁和竖式炉芯管11的内壁之间的引导气体的上升线速度是经过竖式炉芯管11内下降的气体的平均线速度的0.1~10倍,较好是0.3~5倍,更好是0.5~3倍。
在气体均匀供给槽41中产生引导气体的旋转流时,流量调整部43具有将流入排出管31的开口部31A中的引导气体调整为与排出管31的中心轴平行的上升气流的功能,并且,在原料供给喷嘴10和排出管的开口部31A之间的反应气体产生旋转时,流量调整部43可以具有旋转引导气体的功能,以便抵消该反应气体的旋转,使其径直向下流动。
并且,在排出管31的开口部31A插入竖式炉芯管11的内部的情况下,竖式炉芯管11的内壁和排出管31的外壁之间的空间可以形成流量调整部43。为了通过流量调整部43更进一步确保可靠,在与排出管31的中心轴线正交的任意平面内都形成均匀的上升气流时,如图7所示,可以在竖式炉芯管11的内周面和排出管31的外周面之间设置整流板44。如图8所示,可以在排出管31的外壁面和竖式炉芯管11的内壁面之间形成的水平截面为环状的空间内配置该整流板44,使其以排出管31的中心轴线为中心呈放射状。
以放射状配置的整流板44的数目通常是2~8张。就整流板44的配置位置来说,只要发挥上述功能,就没有特别限制,例如,如图7所示,可以配置整流板44,使得整流板44的上端部和下端部位于排出管31的中间部分,并且,如图9所示,可以使得整流板44的上端与开口部31A的端部边缘一致。对于整流板44的长度不特别限制,只要设计的长度在与中心轴线正交的任意平面中确实形成相同流速的上升气流就可以。
并且,在气体均匀供给槽41内产生引导气体的旋转流时,为了不使该旋转流流入流量调整部,如图9所示,可以在整流板44的下方配置干扰板45。例如,如图9所示,该干扰板45可以由设置于竖式炉芯管11的内周面上的向下方倾斜的环状板和设置于排出管31的外周面上的向下方倾斜的环状板组合而成。
作为在该引导气体供给部件中使用的引导气体,只要能够达到本发明的目的,就不作特别的限制,但优选是在反应区域中为惰性的气体。作为惰性的气体,可以列举出氩气等稀有气体和氮气。如果引导气体的分子量和载体气体的分子量之差很大,引导气体与原料气体和载体气体几乎不混合,将它们完全包住,其结果可以实现在排出管31的内壁上不生成碳纤维的状况。该状况在载体气体采用氢气、引导气体采用氮气时很显著。在气体回收和再利用这点上来说,优选使引导气体和载体气体具有相同或近似的组成。
<微细气相成长碳纤维粘附防止装置>
上述碳纤维制造装置中的排出部件和引导气体供给部件的组合成为本发明的微细气体成长碳纤维粘附防止装置的一个示例。
<气相成长碳纤维制造装置的运转>
该气相成长碳纤维制造装置例如像以下那样运转。如图1所示,一旦从引导气体导入管42向气体均匀供给槽41内导入引导气体,在气体均匀供给槽41内,虽然因其容积而有所不同,通常会以排出管31为中心产生旋转流。
另一方面,通过喷射器33将排出管31内的气体从排出管31的下方开口部排出去。因此,从排出管31的开口部31A的外部向内部吸入气体。
因为在排出管31的开口部31A的近旁向开口部31A的内部吸入气体,所以气体均匀供给槽41内的引导气体被吸到上方。在气体均匀供给槽41内的引导气体上升时,由于流量调整部43的作用,旋转流消失,并形成与排出管31的中心轴线平行的上升气流。
另一方面,通过电加热炉15加热竖式炉芯管11的内部。此时,通过电炉15加热,竖式炉芯管11的中央部成为反应区域并维持均匀的高温度,在其上部和下部的区域温度降低。从设置于竖式炉芯管11的上部的原料供给喷嘴10将碳源气体和催化剂金属源与载体气体一起供给到竖式炉芯管11内。
将上述原料供给喷嘴10正对着反应区域配置,而且正对着上述原料供给喷嘴10配置排出管31的开口部31A,所以从上述原料供给喷嘴10喷出的原料气体中的碳源气体和催化剂金属源通过经排出管31的外周面和竖式炉芯管11的内周面之间的间隔逐渐上升的引导气体的作用从排出管31的开口部31A被引入到排出管31内。
通过电炉15加热的竖式炉芯管11的幅射热和被加热的引导气体的作用,排出管31的、插入到竖式炉芯管11的反应区域内的部分被加热到与反应区域相同的温度。
从开口部31A引入到内部的原料气体立即分解并在排出管31内的反应区域生成以催化剂金属为核的微细气相成长碳纤维。
也就是说,即使被冷却气体冷却的原料气体从原料供给喷嘴10喷出到竖式炉芯管11内,因为排出管31的开口部31A在正对着并紧邻原料供给喷嘴10的前端开口部18的位置上开口,所以被冷却而温度低的原料气体在排出管31内一下子被加热到反应温度,在排出管31内的反应区域高效率地形成气相成长碳纤维。
另一方面,载体气体从载体气体供给喷嘴14沿着竖式炉芯管11的内壁以环状向下流动。而且,与原料气体和引导气体一起从排出管31的开口部31A被引入到排出管31内。可以推定,如果将氢气作为载体气体使用,并且将氮气等作为引导气体使用那样,将与载体气体不同种类的气体作为引导气体使用,将形成该载体气体包住原料气体、而且包住原料气体的载体气体则被引导气体包住的状态,进而被吸入到排出管31内。可是,从开口部31A引入到内部的载体气体和引导气体也许在流过排出管31的过程中产生混合,但推定在排出管31的、从开口部31A向着排出管31的内部的给定区域即被加热到给定温度的反应区域中,至少为上述状态。也就是说,可以认为载体气体和引导气体在上述反应区域不混合,成为载体气体与原料气体和引导气体隔开的状态。通过实现这样的状态,存在这样的优点原料气体和生成的气相成长碳纤维不会接触排出管31的内壁,并且碳纤维也不会在排出管31的内壁上成长。
在排出管31的反应区域中形成的微细气相成长碳纤维被集中约束在排出管31的中心部,在排出管31内与引导气体一起被传送,最后用收集装置来收集。
而且,因为在排出管31的反应区域中生成的气相成长碳纤维几乎不向粗的方向成长就被排出到竖式炉芯管11的外部,所以可以收集像纳米碳纤维和纳米碳管那样的产品。
在此,由其纤维直径来对纳米碳管和纳米碳纤维进行分类是困难的。例如,纳米碳管的直径有时是1~10nm,有时是1~15nm。并且纳米碳纤维的直径有时是10~100nm,有时是15~数百nm。
不管哪一种,本发明的气相成长碳纤维都是用气相法生成的微细碳纤维,其中具有如下的结构直径约为100nm以下较好,更好是50nm以下,在其中心部沿着纤维轴存在空心部,围绕该空心部以年轮状平行地形成单层或多层的石墨网面,而且其晶格面间隔d002处于0.336~0.360nm范围内。因此,所谓纳米碳管和纳米碳纤维包含于气相成长碳纤维之中。
就本发明的其它的实施例的碳纤维物质制造装置来说,在碳纤维物质粘附到反应区域的管内壁之前,将从竖式反应部件的竖式炉芯管的上部供给的催化剂金属源和碳源气体在竖式炉芯管的反应区域进行分解、反应所形成的碳纤维物质、所生成的金属催化剂和未反应的碳源气体等,与通过引导气体流通部件供给的引导气体一起向排出管的开口部内吸引,由此,具有防止竖式炉芯管中的碳纤维物质的堆积和由此造成的管堵塞的作用。
在图2中表示具有这样作用的碳纤维物质制造装置的一个例子。而且,图2所示的碳纤维物质制造装置是其中一个例子,本发明不局限于图2所示的装置。
图2所示的装置的各符号与图1的符号相同。
<竖式反应部件>
用于发挥这样作用的竖式反应部件,具有与轴线正交的方向上的内部截面形状沿着轴线方向同样形成的例如圆筒形或角筒形的竖式炉芯管。
该竖式炉芯管11具有使与载体气体一起供给的催化剂金属源和碳源气体进行热分解并在反应区域形成、成长碳纤维物质的反应管的功能。
在该碳纤维物质制造装置中也可以使用在上述气相成长碳纤维制造装置中说明的催化剂金属源、辅助催化剂和碳源气体。并且,碳源气体和催化剂金属源占全部混合气体的比例优选是上述的比例。
并且,如果在生成碳纤维物质时向粗的方向成长就含有很多热分解碳,所以为了得到没有热分解碳析出、细且石墨化度高的气相成长碳纤维或比该气相成长碳纤维直径小的纳米碳纤维和/或纳米碳管,可以降低碳源的浓度,提高催化剂金属源的浓度。
在该碳纤维物质制造装置中也可以采用在上述气相成长碳纤维制造装置中说明的众所周知的载体气体。
该碳纤维物质制造装置中的载体气体供给喷嘴、原料供给喷嘴和冷却用套管的安装位置与在气相成长碳纤维制造装置中说明的相同。
并且,对于气体整流部件来说,也可以采用在气相成长碳纤维制造装置中说明的众所周知的部件。
为了进行碳源气体和催化剂金属源特别是有机金属化合物的分解反应以及生成碳纤维物质的反应,通过与在气相成长碳纤维制造装置中说明的相同的加热部件来加热该竖式反应部件中的竖式炉芯管的内部。
如果通过本发明的碳纤维物质制造装置来制造作为碳纤维物质的气相成长碳纤维以及比这直径更小的纳米碳纤维和/或纳米碳管,作为均热区域中的加热温度,可以采用在制造气相成长碳纤维时的众所周知的加热温度。
并且,即使在碳纤维物质中,当催化剂金属源分解所生成的催化剂金属的粒子是熔融液滴状态时,存在生成纳米碳纤维和/或纳米碳管的倾向。而且,当催化剂金属的粒子是固体粒子时,观察到了生成鱼骨状(或圆锥叠层状)的碳纤维物质。
因此,由于金属固体粒子的直径越小金属固体粒子的熔融点就越低,所以根据所形成的金属固体粒子的直径来决定加热温度。因为决定比根据所使用的催化剂的种类、想要制造的碳纤维物质的直径等的熔融点高的加热温度范围,所以不必规定固定的加热温度,但在大多数情况下,反应区域中的加热温度优选是900~1300℃,更优选是1000~1200℃。另外,如果碳源的分解温度和加热温度之差过大,热分解碳就沉积乃至叠层在反应区域中生成的碳纤维物质的表面上,由此形成直径大的碳纤维物质,所以想要制造直径特别小的纳米碳纤维和/或纳米碳管例如直径中10nm以下的碳纤维物质时,最好是比碳源的分解温度高300~500℃的加热温度。总之,只要是催化剂金属和碳源接触时足够生成碳的温度就可以。
一般来说,如果加热温度低,如上述那样,就会得到具有鱼骨构造(例如可以列举出碳晶格以圆锥状叠层、沿着轴线的截面观察为鱼骨状的构造)的碳物质或碳晶格与纤维轴正交而叠层的带状的碳物质。
作为具备竖式炉芯管、加热部件和原料供给部件的反应炉,可以采用特开平9-78360号公报、特开平9-229918号公报以及特开平9-324325号公报等的实施例所记载的反应炉。
<排出部件>
该排出部件包括将在上述竖式反应部件的竖式炉芯管中的反应区域所形成的碳纤维物质与排出气体和引导气体一起从开口部取进并排出竖式炉芯管的外部的排出管。
图2中表示具备排出管的排出部件的一个具体实施例。在图2中,排出管31的上部插入到竖式炉芯管11内,固定排出管31的位置,使得排出管31的开口部正对着竖式炉芯管11中的反应区域近旁,排出管31的另外一端与排气装置和收集装置连接。
如果在竖式炉芯管中的反应区域所形成的碳纤维物质粘附于管内壁以前,该排出管发挥能够将生成的碳纤维物质从开口部吸入的功能,就不特别限制其开口部的位置,例如,(1)也可以如图3所示那样配置排出管31,使得排出管31的上方开口部31A正对着竖式炉芯管11的下端部,(2)也可以不正对着反应区域配置排出管,但在反应区域生成的碳纤维物质例如纳米碳纤维和/或纳米碳管到达低温区域中的管壁之前,在可以吸进该碳纤维物质的温度低区域中的适宜位置存在排出管的上方开口部,(3)也可以配置排出管,使得排出管插入竖式炉芯管的内部,上方开口部位于正对着反应区域的位置上。在将排出管插入到竖式炉芯管中使得上方开口部位于低温区域的情况下,可以配置排出管使得上方开口部位于比均热温度低200℃的温度区域,优选是低100℃的温度区域。
对于排出管31的位置来说,上述(3)的情况较好。此时,降低了原料气体到达竖式炉芯管的内壁的可能性。
优选正对着竖式炉芯管11来配置排出管31,使得排出管31的中心轴线与竖式炉芯管11的中心轴线一致。并且,正交于排出管31的中心轴线的平面的截面形状优选与正交于竖式炉芯管的中心轴线的平面的截面形状相同。一般情况下,竖式炉芯管11是圆形的管体,排出管31也是圆形的管体。
在这种情况下,在将排出管31插入到竖式炉芯管11内时,排出管31中的上方开口部以外的插入部位(即,管体部分)的内径是竖式炉芯管11的内径的1/10~3/4,较好是1/8~2/3,更好是1/4~1/2。如果是处于这样比率之中的排出管31,竖式炉芯管11的内壁中的气流线速度比较合适,竖式炉芯管11内的气流不会紊乱。
排出管31的上述上方开口部的形状优选如在气相成长碳纤维制造装置中说明的那样,形成漏斗形、风洞用收缩喷嘴等众所周知的形状或渐缩管形状。
并且,排出管31的开口端边缘的外径,在前面记述的排出管31直管部内径和炉芯管内径的比率关系、上述开口端边缘内径和排出管直管部内径的比率关系的基础上,还由排出管开口端边缘部的厚度来决定(厚度通常是1~10mm左右)。但是,即使在厚度特别厚时和开口端边缘部是特殊形状时,而且在炉芯管内设置多根排出管时,为了得到引导气体流动的空间,排出管31的开口端边缘部外侧和炉芯管11的内壁之间间隔的最狭窄处优选是5mm以上。
该排出部件优选具备排出上述排出管31内的气体的排气装置,同时与收集吸入到排出管31内的碳纤维物质的收集装置连接在一起。
上述排气装置和上述收集装置可以采用与在气相成长碳纤维制造装置中使用的相同的装置。
<引导气体流通部件>
在此所使用的引导气体流通部件可以采用与在气相成长碳纤维制造装置中使用的相同的部件。
如图2所示,引导气体流通部件40的一个示例包括气体均匀供给槽41;向该气体均匀供给槽41导入引导气体的引导气体导入管42;对气体均匀供给槽41内的气体进行整流并将引导气体引导到排出管31的上方开口部31A中的流量调整部43。
流量调整部43具有在气体均匀供给槽41中发生引导气体的旋转流时在排出管的上方开口部将引导气体调整为与排出管的中心轴平行的上升气流的功能,并且,也可以具有旋转引导气体的功能,以便在原料供给喷嘴10和排出管的上方开口部31A之间反应气体流产生旋转时,消除该反应气体的旋转,形成一直向下的气流。
气体均匀供给槽41的容积足够大,并且引导气体供给管42的在气体均匀供给槽41中的开口部处于距离流量调整部足够远的位置上,例如处于气体均匀供给槽41的底部附近的情况下,如图3所示,在上方开口部31A位于竖式炉芯管的下端开口部附近时,气体均匀供给槽41的上部发挥流量调整部43的功能。
可以在引导气体流通部件中配置与在气相成长碳纤维制造装置中使用的相同的整流板44和干扰板45。作为引导气体,可以采用与在气相成长碳纤维制造装置中使用的相同的引导气体。
<碳纤维物质粘附防止装置>
碳纤维物质制造装置中的排出部件和引导气体供给部件的组合就是本发明的碳纤维物质粘附防止装置。
<碳纤维物质制造装置的运转>
该碳纤维物质制造装置例如像以下那样运转。如图2所示,如果从引导气体导入管42向气体均匀供给槽41内导入引导气体,在气体均匀供给槽41内,因其容积而有所不同,通常会以排出管31为中心产生旋转流。
另一方面,通过喷射器33将排出管31内的气体从排出管的下方开口部排出去。因此,从排出管31的上方开口部31A的外部向内部吸入气体。
因为在排出管31的上方开口部31A的近旁向开口部31A的内部吸入气体,所以气体均匀供给槽41内的引导气体被吸到上方。在气体均匀供给槽41内的引导气体上升时,由于流量调整部43的作用,旋转流消失,并形成与排出管31的中心轴线平行的上升气流。
另一方面,通过电加热炉15加热竖式炉芯管11的内部。此时,通过电炉15加热,竖式炉芯管11的中央部成为反应区域并维持均匀的高温度,在其上部和下部的区域温度降低。从设置于竖式炉芯管11的上部的原料供给喷嘴10将碳源气体和催化剂金属源与载体气体一起供给到竖式炉芯管11内。因为将上述原料供给喷嘴10正对着反应区域配置,所以从上述原料供给喷嘴10喷出的原料气体中的碳源气体和催化剂金属源立即分解,在反应区域生成以催化剂为中心的碳纤维物质。载体气体从冷却气体供给喷嘴13和载体气体供给喷嘴14沿着竖式炉芯管11的内壁以环形向下流动。因此,可以防止在反应区域中生成的碳纤维物质被该载体气体阻塞而立即粘附在管壁上。
在反应区域中形成的碳纤维物质落下去,一到排出管31的上方开口部31A的附近,就与引导气体一起被吸入上方开口部31A内。被吸入的碳纤维物质被约束在排出管31的中心轴线上,在排出管31内与引导气体一起传输,最后被收集装置收集。
然而,在反应区域中生成的碳纤维物质在到达排出管31的上方开口部的中途,因为条件关系会向粗方向成长。如果上述上方开口部31A向着被称为反应区域的加热温度均匀的区域开口,生成的碳纤维物质被吸入上方开口部31A内而不会向粗方向成长,所以该碳纤维物质变为纳米碳纤维或纳米碳管而被收集。如果载体气体的流速较大,即使上方开口部没有位于反应区域,因为不给予在反应区域中成长的碳纤维物质充分向粗方向成长的时间,所以该碳纤维物质保持纳米碳纤维或纳米碳管的状态被吸入到上方开口部31A内,并被收集。
在反应区域中生成的碳纤维物质被吸入到排出管31的上方开口部31A内之前而向粗方向成长时,该碳纤维物质作为纳米碳纤维或纳米碳管以外的气相成长碳纤维来制造、收集。
本发明的碳纤维物质是用气相法生成的微细碳纤维,其中具有如下的结构直径约为100nm以下较好,更好是50nm以下,在其中心部沿着纤维轴存在空心部,围绕该空心部以年轮状平行地形成单层或多层的石墨网面,而且其晶格面间隔d002处于0.336~0.360nm范围内。因此,所谓纳米碳管和纳米碳纤维包含于气相成长碳纤维之中。
实施例(实施例1)使用图2所示的碳纤维物质制造装置,在以下条件下制造纳米碳纤维。
(1)竖式炉芯管11·内径9cm、外径10cm、长度2m的碳化硅制管·从原料供给喷嘴到下端开口部的长度100cm
·竖式炉芯管内温度分布从原料供给喷嘴到下方80cm的区域(均热部)的温度1120~1100℃、从上述均热部到下方20cm的区域(低温区域)的温度1100~900℃·原料气体组成二茂铁0.12摩尔%、噻吩0.10摩尔%、甲苯5.80摩尔%、氢气93.98摩尔%·原料供给喷嘴的气体供给量2.60升/分钟·冷却气体供给喷嘴的载体气体(氢气)的气体供给量8.0升/分钟·载体气体供给喷嘴的载体气体(氢气)的气体供给量7.0升/分钟(2)排出管·从排出管的上方开口部到下方开口部的长度120cm·在与排出管的上方开口部的边缘同高度的位置上具有上端部的整流板的长度5cm·整流板的数量4个·整流板的配置状态以排出管的中心轴线为中心的放射状配置·从原料供给喷嘴到排出管的上方开口部的长度80cm·排出管的内径4cm·排出管的上方开口部的内径4.4cm·排出管的下端开口部中的压力-3mm水柱·驱动气体供给喷嘴的驱动气体(空气和氮气的混合物)喷出速度调整达到上述压力(3)引导气体供给部件·气体均匀供给槽的内径20cm·气体均匀供给槽的容积15升·引导气体供给喷嘴的引导气体(氮气)的供给量15升/分钟在上述条件下,使用气相成长碳纤维制造装置进行5个小时的连续运转。其结果,可以得到23g直径为20nm、内径为5nm和d002为0.360nm的纳米碳纤维。
(比较例)
另一方面,除不用排出管以外,使用与实施例1相同的条件和装置结构的碳纤维物质制造装置进行碳纤维物质的制造。此时,最初纤维状物遍及全部炉芯管下端开口部,粘附成蜘蛛网状,炉芯管内压力有大的变动。在该状态下运转约10分钟时,因为炉芯管内压力上升到30mm水柱以上故停止运转,进行氮气置换并清理装置。
其结果,气相成长碳纤维不仅粘附为竖式炉芯管的下端开口部的蜘蛛网状,而且在反应温度区域的炉芯管壁上粘附着大量的气相成长碳纤维。下端开口部的碳物质重量为0.1g,为少量,其直径在20~200nm的范围内变化。另外,粘附在反应温度区域的壁上的气相成长碳纤维约为1g,但其直径太粗,为100nm~400nm,达到目的的50nm以下的纤维几乎没有。
因此,在该碳纤维物质制造装置中,排出管的作用是极其重要的。
(实施例2)使用图1所示的气相成长碳纤维制造装置,在以下条件下制造纳米碳纤维。
(1)竖式炉芯管11内径90mm、外径100mm、长度2m的碳化硅制管竖式炉芯管内温度分布上端~60cm的温度250~1120℃的温度梯度。
60~160cm的温度近乎1120℃的均热。
160cm~下端的温度1120~600℃的温度梯度。
(2)原料供给喷嘴10形成了在内径为14mm、长度为1m的SUS304制的原料供给喷嘴10的外侧以同心圆状安装着SUS304制的冷却用套管12的二重管结构。冷却用套管12的外径是40mm。在原料供给喷嘴10内流通原料气体,在原料供给喷嘴10的外周面和冷却用套管12的内周面之间的环状空间内流通冷却气体例如空气或氮气,由此控制在原料供给喷嘴10内流通的原料气体的温度约为400℃。而且,在冷却用套管12内流动的冷却气体从冷却气体排出口13A排出。
在冷却用套管12的外周面和炉芯管11的内壁之间填充整流用的耐热金属整流栅。
将原料供给喷嘴10设置在竖式炉芯管11上,使得该原料供给喷嘴10的头端位于距炉芯管上端60cm的位置上。
(3)排出管31直管部内径40mm、厚度4mm、长度2m的碳化硅制管。
将上端内径为43mm、下端内径为40mm、长度为50mm的碳化硅制渐缩管结合在排出管31的上部。在渐缩管的外侧以放射状安装4块外径为88mm、厚度为4mm的碳化硅制的整流板44(长度为50mm)。
从原料供给喷嘴10的前端到排出管31的上端的距离30cm(距竖式炉芯管上端是90cm)。
设置排出管31,使得其下端开口部位于从直接与竖式炉芯管11的下端连接的引导气体供给部件40的气体均匀供给槽41的底部向下约65cm探出来的位置上。
在排出管31的下端周围设置的喷射器33以100升/分钟(20℃)射出稀释用氮气,同时与大量空气一起吸到袋滤型吸尘机(未图示)中,在过滤机上得到纳米碳纤维。
(4)引导气体供给部件40气体均匀供给槽41的内径20cm气体均匀供给槽41的容积15升引导气体(氮气)的供给量16升/分钟(20℃)引导气体均匀供给槽内的压力-6mm水柱。
(5)其它条件原料气体组成二茂铁0.12摩尔%、噻吩0.10摩尔%、甲苯5.80摩尔%、氢气93.98摩尔%原料供给喷嘴10的气体供给量2.60升/分钟(20℃)载体气体供给喷嘴14的载体气体(氢气)的气体供给量12.0升/分钟(20℃)原料供给喷嘴10的喷出速度64.6cm/秒(400℃)(如果假定气体以该速度到达排出管10的上端(30cm),则气体的滞留时间是0.46秒。)排出管中的合计原料气体、载体气体和引导气体的气体速度186.6cm/秒(1120℃)如果假定气体以该速度通过均热部(100cm),则气体的滞留时间是0.38秒。因此,反应时间合计是0.84秒。
使用上述条件的气相成长碳纤维制造装置进行6个小时的连续运转。其结果,可以得到30g的直径为15~20nm、内径为4~5nm和d002为0.35nm的纳米碳纤维。
(实施例3)在实质上与实施例2相同的装置中,仅变更以下条件来制造纳米碳纤维。
(1)竖式炉芯管11竖式炉芯管11的内部的温度分布上端~60cm的温度 270~1180℃的温度梯度。
60~160cm的温度 1180℃近乎均热。
160cm~下端的温度1180~650℃的温度梯度。
(3)排出管31从原料供给喷嘴10的前端到排出管31的上端的距离10cm(从竖式炉芯管11的上端到排出管31的上端的距离是70cm)。
原料供给喷嘴10的喷出速度64.6cm/秒(400℃)如果假定气体以该速度到达排出管31的上端(10cm),则气体的滞留时间是0.15秒。
排出管中的合计原料气体、载体气体和引导气体的气体速度194.6cm/秒(1180℃)如果假定气体以该速度通过均热部(100cm),则气体的滞留时间是0.46秒。因此,反应时间合计是0.61秒。
使用上述条件的气相成长碳纤维制造装置进行4个小时的连续运转。其结果,可以得到40g的直径为8~30nm、内径为2~5nm和d002为0.36nm的纳米碳纤维。
(实施例4)
除了在实施例1的气相成长碳纤维制造装置中原料供给喷嘴10和排出管31分别为3根、连接排出气体回收装置等为主要不同点以外,使用实质上与上述实施例2相同的气相成长碳纤维制造装置,在以下的条件下制造纳米碳纤维。
(1)竖式炉芯管竖式炉芯管的内部的温度分布上端~60cm的温度 230~1150℃的温度梯度。
60~160cm的温度 1150℃近乎均热。
160cm~下端的温度1150~650℃的温度梯度。
(2)原料供给喷嘴形成了在内径为12mm、长度为80cm的SUS304制的原料供给喷嘴的外侧以同心圆状安装着SUS304制的冷却用套管12的二重管结构。冷却用套管的外径是36mm。在原料供给喷嘴内流通原料气体,在原料供给喷嘴的外周面和冷却用套管12的内周面之间的环状空间内流通冷却气体例如空气或氮气,由此控制在原料供给喷嘴内流通的原料气体的温度约为400℃。
这样,以原料供给喷嘴和冷却用套管成为一体的二重管结构体作为一组,将三组的二重管结构体配置于竖式炉芯管的顶部,使得该二重管结构体的相互的中心线间的距离为39mm,并且使得上述二重管结构体的中心成为正三角形的顶点。并且,在竖式炉芯管的内壁和上述二重管结构体的冷却用套管的外周之间的空间中填充整流用的耐热金属整流栅。将耐热金属整流栅设计为使得该耐热金属整流栅的下端和三组的二重管结构体的下端一致。设置该二重管结构体的下端,使其距离炉芯管上端为50cm。
(3)排出管直管部内径28mm、厚度3mm、长度2m的碳化硅制管。
将上端内径为31mm、下端内径为28mm、长度为50mm的碳化硅制渐缩管结合在排出管的上部。在渐缩管的外侧以放射状安装2块宽度为15mm、长度为50mm、厚度为4mm的碳化硅制的整流板。
将具有这样结构的3根排出管与上述二重管结构体1∶1对应地配置于竖式炉芯管内。上述二重管结构体中的原料供给喷嘴的前端开口部和排出管的开口部的距离是20cm,从竖式炉芯管的上端到排出管的开口部的距离是70cm。
设置排出管,使得其下端开口部在直接与竖式炉芯管的下端连接的引导气体供给部件的气体均匀供给槽的底部向下约45cm的位置上探出来。
该3根排出管的下端与排出气体回收装置结合在一起。该排出气体回收装置具备在3根排出管的下端结合处的密闭的2m2的SUS容器;在该SUS容器内从3根排出管向下10cm的位置上配置的网眼约1mm的SUS网状移动型过滤器;在该SUS网状移动型过滤器的下方约10cm的位置处设置的具有吸出口的200升/分钟的排气扇;与微型压力计连动的排气扇;回收通过该容器之后在回收处的包含未反应物的载体气体和引导气体的气体回收容器。
纳米碳纤维附着的SUS网状移动型过滤器可以从SUS容器的排出管正下方的位置移动到给定的地方,在其移动中用刷子将纳米碳纤维扫下来而回收纳米碳纤维,在回收之后可以再次返回到排气管正下方的位置上。
(4)引导气体供给部件气体均匀供给槽41的内径20cm气体均匀供给槽41的容积15升引导气体(氮气)的供给量16升/分钟(20℃)引导气体均匀供给槽内的压力-6mm水柱。
(5)其它条件原料气体组成二茂铁0.06摩尔%、噻吩0.04摩尔%、甲苯5.90摩尔%、氢气94.00摩尔%原料供给喷嘴的气体供给量1.50升/分钟载体气体供给喷嘴的载体气体(氢气)的气体供给量9.0升/分钟原料供给喷嘴的喷出速度50.8cm/秒(400℃)如果假定气体以该速度到达排出管的上端,则气体的滞留时间是0.39秒。排出管中的合计原料气体、载体气体和引导气体的气体速度124.7cm/秒(1150℃)如果假定气体以该速度通过均热部(100cm),则该气体的滞留时间是0.72秒。因此,反应时间合计是1.11秒。
使用上述条件的气相成长碳纤维制造装置进行30分钟的连续运转。其结果,可以得到10g的直径为5~20nm、内径为2~5nm和d002为0.35nm的纳米碳纤维。
(实施例5)使用图2所示的气相成长碳纤维制造装置,在以下条件下制造纳米碳纤维。
(1)竖式炉芯管11竖式炉芯管内的温度分布上端~60cm的温度100~600℃的温度梯度。
60~160cm的温度 600℃近乎均热。
160cm~下端的温度600~500℃的温度梯度。
(2)原料供给喷嘴10与实施例2的相同,将从原料供给喷嘴10供给的原料气体的温度控制为100℃。
(3)排出管31除了用100目金属网代替袋滤型吸尘机收集微细气相成长碳纤维以外,其余的与实施例2相同。
(4)引导气体供给部件40与实施例2相同。
(5)其它条件原料气体组成五羰基铁1摩尔%、一氧化碳75摩尔%、氢气24.摩尔%原料供给喷嘴10的气体供给量1.2升/分钟(20℃)载体气体供给喷嘴14的载体气体(氢气)的气体供给量10.8升/分钟(20℃)原料供给喷嘴10的喷出速度16.5cm/秒(100℃)(如果假定气体以该速度到达排出管10的上端(30cm),则气体的滞留时间是1.82秒。)排出管中的合计原料气体、载体气体和引导气体的气体速度82.5cm/秒(600℃)如果假定气体以该速度通过均热部(100cm),则该气体的滞留时间是0.85秒。因此,反应时间合计是2.67秒。
使用上述条件的气相成长碳纤维制造装置进行30分钟的连续运转。其结果,得到2g的气相成长碳纤维。通过SEM·TEM观察该气相成长碳纤维,结果主要是石墨网面与纤维轴呈直角带状的、长径为10~40nm的碳纤维,也发现多数外径为30nm左右、内径为5~8nm、具有与纤维轴呈45度的石墨网面的碳纤维。也观察到极少的、石墨网面与纤维轴平行、而且中空、外径为10nm左右的纳米碳管。通过X射线衍射分析包含该纳米碳管的微细气相成长碳纤维,d002为0.34nm。产业上可利用性根据本发明,竖式炉芯管的下方不会被碳纤维、特别是纳米碳纤维等碳纤维物质堵塞,因此,可以高效率地实现碳纤维物质的连续生产,而且可以提供全部装置不用大型化的气相成长碳纤维制造装置和碳纤维物质制造装置。
根据本发明,可以提供通过尽量降低竖式炉芯管的堵塞现象而能够长期运转的气相成长碳纤维制造装置和碳纤维物质制造装置。
根据本发明,可以提供连续并高效率地制造碳纤维物质、特别是具有年轮状结构的碳纤维、尤其是比气相成长碳纤维直径更小的具有年轮状结构的纳米碳纤维和/或纳米碳管的方法乃至装置。
根据本发明的气相成长碳纤维制造装置,将排出管插入到竖式炉芯管内,使得排出管的开口部正对着竖式炉芯管的原料供给喷嘴的前端开口部,所以即使向竖式炉芯管的反应区域供给通过将原料供给喷嘴的外周冷却而温度低的原料气体,原料气体也能立即被加热、产生分解而高效率地形成气相成长碳纤维。
根据本发明,在制造气相成长碳纤维时,可以提供能够防止因内壁的粘附物的堆积造成的竖式炉芯管堵塞的气相成长碳纤维粘附防止装置。
根据本发明,可以提供具有直径约为100nm以下,尤其是50nm以下,在其中心部沿着纤维轴存在空心部,围绕该空心部以年轮状平行地形成单层或多层的石墨网面,而且其晶格面间隔d002处于0.336~0.360nm范围内的包含所谓纳米碳管和纳米碳纤维的气相成长碳纤维。
权利要求
1.一种碳纤维物质制造装置,其特征在于具备具有将包含碳源气体和催化剂金属源的原料供给到炉芯管内的原料供给部件、和使所述催化剂金属源和碳源气体进行热分解生成碳纤维物质的反应区域的反应部件;面对所述原料供给部件和所述反应区域中的某一个配置的、将所述碳纤维物质和碳源气体及催化剂金属源的至少一个从开口部吸进来、并将碳纤维物质排出到反应部件外的具有排出管的排出部件;供给在与所述原料对向流动方向上向所述排出管的开口部流通、接着在所述排出管内流通的引导气体的引导气体供给部件。
2.如权利要求1所述的碳纤维物质制造装置,其特征在于所述炉芯管是在上部具备所述原料供给部件、在下部具备所述排出部件的竖式炉芯管。
3.一种碳纤维物质的制造方法,其特征在于将在权利要求1或2所述的碳纤维物质制造装置的炉芯管的反应区域中,通过使催化剂金属源和碳源气体产生热分解而形成的碳纤维物质与通过引导气体供给部件供给的引导气体一起,从排出部件的排出管的开口部吸引、收集。
4.一种碳纤维物质的制造方法,其特征在于将从配置于权利要求1或2所述的碳纤维物质制造装置的炉芯管的一端的原料供给部件的喷嘴供给的催化剂金属源和碳源气体,与通过引导气体供给部件而在炉芯管和所述排出管之间的间隙中流通的引导气体一起,吸入到面对所述喷嘴的前端开口部配置的所述排出管的开口部内,通过在炉芯管内的反应区域配置的排出管中进行热分解反应而制造碳纤维物质。
5.一种碳纤维物质粘附防止装置,其特征在于具备面对配置于炉芯管的一端将碳源气体和催化剂金属源供给到炉芯管内的原料供给部件以及使所述催化剂金属源和碳源气体进行热分解生成碳纤维物质的反应区域中的某一个配置的、将所述碳纤维物质、碳源气体和催化剂金属源的至少一个从开口部吸进来、并将其排出到反应部件外的具有排出管的排出部件;供给在所述炉芯管的另一端向所述排出管的开口部流通、接着在所述排出管内流通的引导气体的引导气体供给部件。
6.一种在将催化剂金属源和碳源气体热分解的炉芯管的反应区域内形成的碳纤维物质,其特征在于该碳纤维物质与沿着面对所述反应区域的排出管的周侧面上升并从所述排出管的开口部吸入到排出管内部的引导气体一起、从反应区域被送入到排出管内,并被收集。
7.一种碳纤维物质,其特征在于该碳纤维物质是将从设置于炉芯管一端的原料供给部件的喷嘴供给的碳源气体和催化剂金属源,与通过引导气体供给部件而在炉芯管和所述排出管之间的间隙中上升的引导气体一起,吸入到插入配置在所述炉芯管内的排出管的、面对所述喷嘴的前端开口部并配置在其附近的开口部内,使所述碳源气体和催化剂金属源分解而得到的。
全文摘要
本发明提供一种不会引起炉芯管内的堵塞事故而可以长时间进行气相成长碳纤维的连续生产的气相成长碳纤维制造装置,以及使用该装置的气相成长碳纤维的制造方法,气相成长碳纤维粘附防止装置和通过上述制造装置制造的气相成长碳纤维,提供一种将排出管插入配置于炉芯管内,使得排出管的开口部正对着配置于炉芯管一端的原料供给喷嘴的前端开口部的气相成长碳纤维制造装置,以及使用该装置的气相成长碳纤维、特别是纳米碳纤维和/或纳米碳管的制造方法,防止气相成长碳纤维等碳物质粘附在上述炉芯管的内壁上的装置和通过上述制造装置制造的气相成长碳纤维。
文档编号D01F9/133GK1376218SQ00812199
公开日2002年10月23日 申请日期2000年9月1日 优先权日1999年9月1日
发明者大崎孝, 河村文夫 申请人:日机装株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1