弹性双组分和双成分纤维,及由其制造纤维素结构的方法

文档序号:1722175阅读:251来源:国知局
专利名称:弹性双组分和双成分纤维,及由其制造纤维素结构的方法
技术领域
本申请要求2001年7月17日提交的第60/306,003号美国临时专利申请的权益。
本发明涉及弹性纤维。一方面,本发明涉及双组分弹性纤维,同时另一方面,本发明涉及双成分弹性纤维。另一方面,本发明涉及具有芯/鞘构造的双组分和双成分弹性纤维。再一方面,本发明涉及其中形成鞘的聚合物比形成芯的聚合物熔点更低的这类纤维。再另一实施方案中,本发明涉及结合纤维素纤维和具有芯/鞘构造的弹性双组分和/或双成分纤维从而形成弹性纤维素结构的方法。
背景技术
纤维素结构以其吸收性而闻名,而且此性能使这些结构适用于多种多样的用途。这些用途的典型例子是尿布、绷带、女性卫生用品、床垫、围兜、抹布等。当然这些产品的目的是,吸收和保留液体,并且完成这些任务时,这些产品的效率很大程度上由它们的结构决定。美国专利4,816,094、4,880,682、5,429,856和5,797,895描述了各式各样的这类产品,它们的构造和它们的原料,均在此引入作为参考。
典型地,吸收性纤维素结构由不易伸长的材料制成。例如,从任何意图上讲,纤维素纤维是非弹性的,而且在例如尿布等许多纤维素结构当中,它们例如通过使用胶乳彼此以相对无弹性的方式粘合。不幸的是,许多这些结构要求一定程度的弹性,这是为了舒适和符合人体外形地使用例如尿布,或者为了抹布有布料的手感和悬垂性,而且如果该结构的弹性不足,在其中会形成间隙。间隙由于阻止了液体向结构的所有部分迁移,而减低了该结构的吸收性。
因此,需要更好的适合形状的吸收产品。这通常意味着这些产品不仅必须改善弹性,而且还必须薄和轻。迄今,人们为获得弹性而采用的方法是,向纤维素纤维中添加弹性纤维,或者用弹性纤维替换一些纤维素纤维。例如,授予Anjur等人的美国专利5,645,542,其内容在此引用作为参考,该专利描述了由可润湿短纤维(staple fiber)(例如,纤维素纤维)和热塑性弹性纤维例如聚烯烃橡胶制造的吸收性产品。但是,只是把这些短纤维和弹性纤维共混,不足以在不牺牲短纤维的吸收性条件下获得弹性纤维的完全优点。纤维素纤维(最普通的短纤维)趋于彼此粘合而不是与弹性纤维粘合。结果,在吸收性结构制造过程中,除非两种纤维形成高度均匀的混合物,否则,两种类型的纤维趋于分离,且弹性纤维的优点会降低或失去。
因此,吸收性产品制造业一直关心改进弹性而不牺牲吸收性的吸收产品的设计和制造。这种兴趣延伸到制造吸收产品的两种纤维的特性,而且延伸到这些吸收产品的制造方法上。
发明概述在一个实施方案中,本发明是芯/鞘构造的双组分纤维,其中芯包括热塑性弹性体,优选热塑性聚氨酯(TPU),而该鞘包括均匀支链化的聚烯烃。优选该鞘聚合物比该芯聚合物的熔点低,并且更优选该鞘聚合物的凝胶含量少于30%。
在另一个实施方案中,本发明是一种双成分纤维,其中的一种成分包括热塑性弹性体,优选TPU,而另一种成分包括均匀支链化的聚烯烃。优选,形成纤维外表面主体的成分比其它成分的熔点更低,而且优选该成分的凝胶含量少于30%。
在另一个实施方案中,本发明是一种纤维的共混物(或者简单称作“纤维共混物”),其包括(i)一种包括弹性芯和弹性鞘的弹性纤维,和(ii)弹性纤维(i)之外的至少一种纤维。弹性纤维的芯优选包括热塑性弹性体,优选TPU,而弹性纤维的鞘优选包括均匀支链化的聚烯烃,更优选均匀支链化的、基本线型的乙烯聚合物。鞘聚合物的熔点比芯聚合物的熔点低,而且优选鞘聚合物的凝胶含量少于30重量%。纤维(ii)基本上可以是纤维(i)之外的任何纤维,优选纤维素纤维、毛、真丝、热塑性聚合物纤维、二氧化硅纤维或它们中两种或更多种的结合纤维。在本发明的另一个实施方案中,纤维(i)被熔融粘合在纤维(ii)上,优选通过暴露在一定温度下实现这一点,该温度为纤维(ii)和纤维(i)的芯聚合物两者的熔融温度或者略低于该温度而高于纤维(i)的鞘聚合物的熔融温度。在本发明的再另一个实施方案中,熔融粘合的纤维共混物基本上无任何添加的粘合剂,例如胶水。
在本发明的另一个实施方案中,前述段落描述的共混物用于制造弹性、吸收结构。这些结构包括具有弹性的纸,例如适合形状的(form-fitting)标签和一次性尿布的吸收性填塞物。
在另一个实施方案中,本发明为一种包括弹性纤维和无纺基底的制品,该纤维包括至少两种弹性聚合物,一种聚合物优选为热塑性弹性体,更优选为TPU,而另一种聚合物为均匀支链化的聚烯烃,优选均匀支链化的、基本上线型的乙烯聚合物,其中该纤维在不存在粘合剂条件下被熔融粘合到无纺基底上。本实施方案示例性制造的结构包括,裤管(leg cuffs)、袜筒收口(leg gatherers)、腰带和一次性尿布的侧翼。
在本发明的另一个实施方案中,通过其中弹性纤维是疏水性纤维接枝亲水剂,例如聚乙烯纤维接枝马来酸酐的方法,使粘合到弹性纤维上的非弹性短纤维例如纤维素纤维与粘合到其它非弹性短纤维的非弹性短纤维之间的比例得到增加。在此实施方案的扩展中,而且其中亲水剂为一种酸或酸酐例如马来酸酐时,一旦该亲水剂接枝到纤维上,其接着与一种胺反应。
在本发明的另一个实施方案中,对于由于氢键而彼此粘合的那些非弹性短纤维,例如纤维素纤维,粘合到弹性纤维上的非弹性短纤维与粘合到其它非弹性短纤维的非弹性短纤维之间的比例,因在非弹性短纤维与弹性纤维共混前或共混的同时,用脱粘剂例如含一个或多个酸基的季铵化合物处理这些非弹性短纤维而增加。这种脱粘剂使非弹性短纤维间的至少一部分氢键失活。
在本发明的另一个实施方案中,通过在水性介质中共混非弹性短纤维与弹性纤维,优选在表面活性剂存在下并伴随强烈搅拌,从而使非弹性短纤维与弹性纤维的共混得到加强。这过程增强了弹性纤维彼此之间的分离,因此使每根纤维更有可能粘合非弹性短纤维。这种方法可单独使用或者与本发明的一种或多种其它分离方案结合使用。
在本发明的另一个实施方案中,在与短纤维共混之前,使用高强度空气混合将弹性纤维彼此分开。这一技术还促进了弹性纤维彼此之间的分离,由此提高了它们粘合短纤维的可及性。本发明的此实施方案也能单独使用或者与本发明的一种或多种其它实施方案结合使用。
上述三种纤维分离和接枝的实施方案特别适用于制造弹性吸收结构,例如尿布、绷带等。
弹性双组分和双成分纤维在说明书中用到时,“纤维”或“纤维状”是指颗粒材料,其中该材料的长度对直径的比大于约10。与此相对,“非纤维”或“非纤维状”是指一种颗粒材料,其中长度对直径的比约为10或更低。
在本说明书中用到时,“弹性的”或“弹性体的”描述的是纤维或其它结构例如膜,其在首次拉长和第4次拉长到100%应变(双倍长度)这两种情况之后,会恢复到其被拉伸长度的至少约50%。弹性还能用纤维的“永久变形(permanent set)”来描述。永久变形通过将纤维拉伸到某一点随后释放它到其初始位置,然后再次拉伸它来测量。纤维开始牵引负荷的位置点被确定为永久变形的百分数。
在本说明书中用到时,“双组分纤维”是指,包括至少两种组分即具有至少两种可区分聚合物区域(regimes)的纤维。第一种组分,即“组分A”,用于在热粘合温度期间一般地保持纤维形状。第二种组分,即“组分B”起到粘合剂的作用。典型地,组分A比组分B的熔点高,优选组分A会在比组分B的熔融温度高至少20C,优选至少40C的温度熔融。
为简单起见,双组分纤维的结构一般被认为是芯/鞘结构。但是,纤维的结构可为许多多组分构型中的任何一种,例如用于双组分纤维的对称芯-鞘结构、不对称芯-鞘结构、并列结构、馅饼状结构(piesections)、新月结构等等。这些构型每一种的基本特征是,至少部分,优选至少大部分纤维外表面包括纤维的鞘部分,即,纤维的粘合剂,或更低熔点,或者少于30重量%的凝胶,或者组分B。美国专利6,225,243的

图1A-1F,其公开内容在此引入作为参考,阐述了不同的芯/鞘构造。
在本说明书中用到时,“双成分纤维”是指,包括至少两种聚合物成分的密切共混物的纤维。双成分纤维的结构是海-岛型结构。
本发明实施中使用的双组分纤维具有弹性,而且该双组分纤维的每种组分均是弹性的。在例如美国专利6,140,442中报导了弹性双组分和双成分纤维,其公开内容在此引入作为参考。
本发明中,芯(组分A)为热塑性弹性体聚合物,其说明性的例子是二嵌段、三嵌段或多嵌段弹性体共聚物,例如烯烃共聚物,例如苯乙烯-异戊二烯-苯乙烯、苯乙烯-丁二烯-苯乙烯、苯乙烯-乙烯/丁烯-苯乙烯或苯乙烯-乙烯/丙稀-苯乙烯,例如可得自Shell Chemical Company的这些聚合物,商业牌号为Kraton弹性体树脂;聚氨酯,例如得自TheDow Chemical Company的聚氨酯,商业牌号为PELLATHANE聚氨酯,或者得自E.I.Du Pont de Nemours Co.的弹力纤维(spandex),商业牌号为Lycra;聚酰胺,例如得自Elf AtoChem Company的聚醚嵌段酰胺,商业牌号为Pebax聚醚嵌段酰胺;以及聚酯,例如得自E.I.Du Pont deNemours Co.的那些聚酯,商业牌号为Hytrel聚酯。优选的芯聚合物是热塑性氨基甲酸酯类(即,聚氨酯类),尤其优选Pellethane聚氨酯类。
鞘(粘合剂或组分B)也是弹性体的,而且它是均匀支链化的聚烯烃,优选是均匀支链化的乙烯聚合物,而且更优选是均匀支链化的、基本上线型的乙烯聚合物。人们熟知这些材料。例如,美国专利6,140,442提供了这类优选的均匀支链化的、基本上线型的乙烯聚合物的详尽描述,而且它还包括对许多其它专利和非专利文献的参考,它们描述了其它的均匀支链化的聚烯烃。
均匀支链化的聚烯烃的密度(按照ASTM/D792测量)为约0.91g/cm3或更低,熔点为110C或更低(用DSC测定)。更优选该聚烯烃的密度介于约0.85和约0.89g/cm3之间同时熔点介于约50和约70C之间。优选该聚烯烃熔点时的粘度使其易于流动以粘合到短纤维或无纺布结构。该聚烯烃的熔体指数(MI按照ASTM D1238于190C测定)为至少约30,并优选至少约100。也能将添加剂例如抗氧化剂(例如,受阻碍酚(例如,Ciba-Geigy Corp.制造的Irganox.RTM.1010),和亚磷酸盐(例如,Ciba-Geigy Corp.制造的Irgafos.RTM.169)),粘着添加剂(例如,聚异丁烯(PIB)),防结块添加剂,颜料等加入用来制造弹性纤维的这类均匀支链化的乙烯聚合物中,添加量的限度是,它们不妨碍本发明增强的纤维和制品的性能特征。
聚烯烃的凝胶含量少于30,优选少于20并更优选少于10重量%。凝胶含量是聚烯烃交联程度的度量,而且由于此聚烯烃的主要功能是给纤维提供可熔融的外部组分,以便其容易热粘合短纤维和/或无纺结构,所以如果存在的话,聚烯烃少量的交联是优选的。另外,通常聚烯烃交联越少,其熔点越低。
“无纺结构(Nonwoven structure)”是指一组纤维按照一定的方式连接在一起,使得该组形成一个粘合的、整体的结构。能够用该技术领域已知的技术形成这类结构。例如气流铺置(air-laid)、纺粘法、短纤维梳理(staple fiber carding)、热粘合、和熔体喷射法及射流喷网成布法(spun lacing)。可用于制造这些纤维的聚合物包括PET、PBT、尼龙、聚烯烃、二氧化硅(silicas)、聚氨酯、聚(对亚苯基对苯二酰胺)poly(p-phenylene terephthalamide),Lycra(E.1.Du Pont de Nemours& Co.生产的一种聚氨酯,由聚乙二醇与甲苯-2,4-二异氰酸酯反应制造),碳纤维和天然聚合物例如纤维素和聚酰胺。
在本说明书中使用时,“短纤维”是指天然纤维或者由例如制造的丝切断成的一种长度。这些纤维在本发明的吸收性结构中起液体的临时蓄积器作用,而且还作为液体分配的管道。短纤维包括天然材料和合成材料。天然材料包括纤维素纤维和纺织纤维例如棉和嫘萦(rayon)。合成材料包括非吸收性合成聚合物纤维,例如,聚烯烃、聚酯、聚丙烯酸类、聚酰胺和聚苯乙烯。非吸收性合成短纤维优选经过卷曲化,即,纤维沿其长度方向具有连续的波曲状、弯曲状或锯齿状特征。考虑可用性、成本和吸收性原因,纤维素纤维是优选的短纤维。
为了促进短纤维和弹性纤维很好地混合,优选“润湿的”双组分纤维。在本说明书中用到时,“润湿的”或“可润湿的”是指一种纤维,其呈现小于90度的液体-空气接触角。这些术语及此性能的测量在美国专利5,645,542中有更完整的描述。
可润湿的短纤维和弹性纤维存在于本发明的弹性体吸收性结构中,其量足以赋予所需的吸收性和弹性。典型地,以短纤维和弹性纤维的总重量计,短纤维的存在量为约20到约80重量%,优选约25到约75重量%,并更优选约30到约70重量%。
虽然以与其它弹性体纤维一样的方式在弹性、吸收性结构中使用双组分和/或双成分纤维,但是优选这些纤维与本发明的一种或多种实施方案结合使用,这些实施方案描述如下。但是在任何情况下,双组分或双成分纤维用作弹性、吸收性结构中弹性纤维的组分,这会弹性、吸收性结构提供改进的弹性而又不牺牲该结构的吸收性。这导致产生更轻、更薄和/或更好的适合形状的结构。
接枝改性的弹性纤维在本发明的这一实施方案中,通过把含极性基团例如羰基、羟基或酸基的化合物接枝到弹性体纤维上,使弹性体纤维对短纤维的粘合得到加强。本发明的这一实施方案可应用于单组分纤维和双组分或双成分弹性体纤维。“单组分丝(homofil)”纤维是包括单一组分的纤维,或者换言之,是其整个长度上基本上均匀的纤维。关于双组分和双成分纤维,含极性基团的化合物被接枝到纤维的鞘组分(即,形成至少部分外表面的组分)上。
能够用任何已知技术将含极性基团的有机化合物接枝到弹性体纤维上,例如,在美国专利3,236,917和5,194,509中教导的那些技术,两者的内容在此引入作为参考。例如‘917专利中,聚合物(即弹性体纤维聚合物)被导入双辊混合机中并在60C混合。然后将不饱和、含羰基有机化合物与自由基引发剂例如过氧化苯甲酰一起加入其中,而且在30C混合这些组分,直到完成接枝。在‘509专利中,过程类似,不同的只是反应温度更高,例如210-300C,而且未使用自由基引发剂。
在美国专利4,950,541中教导了一种可选的且优选的接枝方法,其公开内容也在此引入作为参考。此过程使用一种双螺杆去挥发组份的挤出机作为混合设备。在自由基引发剂存在下,弹性体纤维例如聚烯烃与不饱和含羰基化合物进行混合并在该挤出机中于使反应物熔融的温度下反应。在此过程中,优选将不饱和含羰基有机化合物注射到挤出机中维持在压力下的区段中。
制成纤维的聚合物通常在(用制造纤维的任何方法)形成纤维之前用含极性基团的化合物接枝。
接枝到弹性体纤维上的含极性基团的有机化合物是不饱和的化合物,即它们至少含有一个双键。代表性的和优选的含至少一个极性基团的不饱和有机化合物是烯键式不饱和羧酸、酸酐、酯及其金属和非金属盐。优选此有机化合物含有与羰基共轭的烯键式不饱和(ethylenicunsaturation)。代表性的化合物包括,马来酸、富马酸、丙烯酸、甲基丙烯酸、衣康酸、巴豆酸、α-甲基巴豆酸、肉桂酸等及其酸酐,酯和盐衍生物,如果有的话。马来酸酐是优选的含至少一个烯键式不饱和和至少一个羰基的不饱和有机化合物。
以弹性体纤维和有机化合物结合重量计,接枝弹性体纤维的不饱和有机化合物组分的存在量为至少约0.01%,优选至少约0.1并更优选至少约0.5%。不饱和有机化合物的最大量能够方便地改变,但是典型地,该量为不超过约10,优选其不超过约5,并最优选不超过约2,重量%。
关于双组分和双成分纤维,接枝的制备可通过含极性基团化合物与所有的鞘组分(组分B1)进行接枝反应,或者通过使用接枝浓缩物或母料(B2),即与鞘组分混合的含极性基团化合物。如果使用这些组分的这种共混物,则优选组分B2为B1和B2总和的约5-50重量%,且更优选约5-15重量%。共混物中含极性基团化合物的优选浓度是如此的浓度,该浓度使得在与该鞘组分共混后,最终混合物中极性基团的最终包含浓度为至少0.01重量%,并优选至少约0.1重量%。
在这些就双组分纤维而使用接枝浓缩物的情况中,优选接枝浓缩物(B2)的粘度比基质粘合材料(B1)的更低。这会增强材料经纤维成形口模通过期间,接枝组分向纤维表面的迁移。当然,其目的是增强粘合纤维对短纤维的粘附,这通过提高到达纤维表面的接枝化合物的浓度完成。优选,组分B2的熔体指数介于组分B1的熔体指数的2和10倍之间。
纤维素氢键的失活在本发明的另一个实施方案(其中短纤维是纤维素纤维的一个实施方案)中,通过在损害纤维素-纤维素纤维键的情况下,促进更多纤维素-弹性纤维键,从而增强吸收性弹性结构的弹性性能。在此实施方案中,纤维素短纤维在它们与弹性体纤维混合之前或同时,用脱粘剂进行处理。这些键及其瓦解在Craig Poffenberger题为“Bulk andPerformance,But Soft and Safe(大块和性能,但柔软且安全)”讲演中做了描述,该讲演是在2000年10月30日至11月2日于多伦多举行的“洞察2000无纺布/吸收物会议”(Insight 2000 Non-wovens/AbsorbentsConference)上作出的。由于使这些氢键去偶合,更多纤维素纤维易于与弹性纤维粘合,并且形成更多的纤维素-弹性纤维键,获得的吸收性结构更具弹性。
用于纤维素纤维的纤维间氢键去偶合的化合物包括含一个或多个酸或酸酐基团的季铵化合物。这些化合物的典型代表是,二脂肪二甲基(difattydimethyl)、咪唑啉鎓(imidazolinum)、N-烷基二甲基苄基和二烷氧基化烷基二甲基。这种脱粘剂的用量以所要处理的纤维素纤维的重量计为约0.01到约10重量%。用于纤维素-纤维素氢键去偶合的另一种化合物是AROSURF PA-777,一种由Goldschmidt Corp.生产的表面活性剂。
本发明的这一实施方案能够单独使用或者与本发明的一种或多种其它实施方案结合使用,在水介质中搅动以分离弹性纤维在本发明的这一实施方案中,通过在水介质中搅动,将弹性纤维彼此分开。弹性纤维,典型地细纤度弹性纤维,难于彼此分开,并由此在制造弹性吸收结构过程中,其难于与短纤维均匀共混。在本说明书中用到时,“细纤度”弹性纤维是指,每根丝的直径小于约15旦的一种弹性纤维。纤维一般按照它们的直径分类,而且单丝纤维通常定义为具有大于约15旦、通常大于约30旦单根纤维直径的纤维。微细纤度(microdenier)纤维一般定义为直径小于约100微米的纤维。
在这一实施方案中,将弹性纤维置于含水介质中,然后用任何常规手段例如机械搅拌器、喷射泵等进行激烈搅拌。可采用表面活性剂和/或润湿剂,并且在弹性纤维彼此充分分离后,即可添加短纤维。在本发明的一个优选实施方案中,短纤维与脱粘剂结合加入。在弹性纤维和短纤维的均匀共混物形成后,除去水,这一般通过过滤、随后暴露于热例如定时的烘箱中完成。一旦充分干燥,得到的短纤浆即准备好加工成弹性吸收性结构。这一时间点上,可向浆粕中加入各种添加剂,例如超强吸收性粉末。在牵伸步骤中,需要小心地避免把纤维加热到会提前活化/熔融粘合纤维的温度。
这一具体实施方案还用于任何组合物和结构(包括单组分丝纤维)中的任何弹性体纤维,而且也用于任何短纤维。
高强度空气混合在本发明的这一实施方案中,使用高强度空气混合技术将弹性体纤维彼此分开。这种技术类似于上述水介质中搅拌的技术,不同的是,不采用含水介质(或者就此而论,任何液体介质)。弹性体纤维,单组分或双组分的,进行机械的或经气动方式的剧烈搅拌,一旦充分分开,在本发明的进一步实施方案中,便与短纤维共混。尽管此技术避免了干燥所得纤维共混物的需要,但是这不能使它本身在与纤维素纤维脱粘剂、或者与用于弹性体纤维的表面活性剂和/或润湿剂结合时很好地使用。但是,这里再次地,本实施方案能够与本发明的一种或多种其它实施方案结合,例如使用双组分或双成分弹性体纤维、接枝改性弹性体纤维和其中的纤维间氢键已经事先被失活的纤维素纤维。
弹性吸收性结构的制造本发明的弹性吸收性结构能够由短纤维与芯/鞘构造的双组分和/或双成分弹性纤维的共混无制造,该芯/鞘构造中,芯为热塑性氨基甲酸酯而鞘为均匀支链化的聚烯烃。按照这一实施方案,短纤维与弹性纤维的共混物用任何常规的方法制备,和/或用上述本发明的技术任意之一制备,任选地,随后与一种或多种高吸收性聚合物掺混。这一掺混也使用常规技术进行,但由于在双组分或双成分纤维(即,该均匀支链化的聚烯烃)中存在低熔融温度的粘合剂组分,可用低至约70C的加热方法将短纤浆粘合在一起以形成弹性吸收性结构,例如尿布。弹性粘合纤维的粘合剂组分的更低熔点允许以更低温度使用当前所用的商业设备,这意味着随之在单丝弹性体纤维和双组分弹性体纤维上获得的更快生产速度,其中粘合剂组分具有更高的熔融温度。然而,更低的熔融温度和/或更快的粘合速度减少了或减轻了粘合纤维活化的问题,该活化发生在结构制造机械中,或者在该机械的生产线上,例如尿布制造机。
在常规的吸收性芯或结构中,一般用胶乳使纤维素纤维彼此粘合。胶乳常常汇集在纤维素纤维的界面上,且固化时把纤维素纤维固定在一起。在两个截然不同的区域(regimes),例如芯和鞘中,使用双组分或双成分粘合纤维,形成更好的粘合系统。芯的熔点高于烘箱的温度,而鞘的熔点低于烘箱的温度。双组分和双成分纤维有效地熔合到纤维素纤维上,不论它们接触的位置在哪里。因此,纤维素纤维之间的连接比仅熔融点的尺寸更长。由此,产生更柔韧的结构。
均匀支链化的乙烯聚合物,特别是均匀支链化的、基本上线型的乙烯聚合物,产生优异的鞘材料,因为它们的熔点比许多其它的弹性聚合物材料更低。优选鞘材料会在低于芯材料熔点至少约20C,更优选至少约40C时熔融。
弹性纸的制造可用双组分和双成分弹性粘合纤维生产弹性纸,即,具有一定弹性度的纸。如上述,这些弹性纸用的弹性粘合纤维包括一种弹性聚氨酯芯,该芯带有弹性的均匀支链化的聚烯烃,更优选用马来酸酐或类似化合物接枝的均匀支链化的聚烯烃。如果这些双组分弹性纤维与纤维素纤维混合而不断开纤维素-纤维素氢键,这时添加这些双组分或双成分弹性纤维会降低张力(tensil),并提供一些弹性量,但是该纸会在应变为5%时被撕裂。换言之,如果纤维素-纤维素氢键不断开,添加双组分和/或双成分弹性纤维的好处就被减到最小了。
但是,如果用双组分或双成分弹性纤维断开纤维素-纤维素氢键,则这时获得的纸的张力会显著降低,弹性回复明显,而且能耐受在5%应变时的撕裂。可以如以上所教导地断开纤维素-纤维素氢键。
为了把干扰纤维素-纤维素氢键的效果发挥到最大,需要很好地分散双组分弹性纤维与纤维素纤维。通过在与纤维素纤维混合之前分开弹性纤维束,强化双组分弹性纤维在纤维素纤维基质中的分散。这里采用以上教授的干(即,高强度空气搅拌)或湿分离方法,也会促进纤维束分离,其中干分离法比湿分离法优选。
纸的弹性也受到纤维的结构的影响。低模量弹性纤维提供好的织物性能,但是难以加工。长粘合纤维(即,双组分和双成分弹性纤维)与短的基质纤维(即,纤维素纤维)混合,产生弹性更好(即,交叉点粘合更少)的纸,但是完全分散会更困难,因为长的柔韧弹性纤维容易扭曲缠绕,这使它们难于解缠。但是,如果弹性粘合纤维粗,则尽管它们不利于节约成本,但有助于更好的分散。总之,由于使用低模量纤维混合物,其粘合纤维长且粗而基质纤维短,所以弹性和分散性获得更好的平衡。
另外,纸中弹性纤维的量也影响纸的强度和弹性。太少的双组分或双成分弹性粘合纤维导致其它纤维与织物的不良粘合,这使纸强度和弹性差。太多的这种弹性粘合纤维则导致太多的交叉点粘合,且尽管纸的强度好了,但它的弹性差了。但是通过在造纸中使用更大的厚度(loft),能减少太多双组分弹性粘合纤维的负面效果。
以下实例举例说明上述的本发明的某些实施方案。所有的份数和百分数均以重量计,除非有另有所指的说明。
具体实施方案实施例1聚乙烯的接枝改性用马来酸酐接枝基本上线型的乙烯/1-辛烯聚合物(MI-73,密度-0.87g/cm3),以制造熔体指数MI为34.6且衍生自马来酸酐的单元的重量百分含量为0.35重量%的材料。依照美国专利4,950,541中所教导的接枝过程。用接枝的聚乙烯作为接枝浓缩物,并用MI为30且密度为0.87g/cm3的乙烯/1-辛烯聚烯烃按2∶1稀释。获得的稀释材料用于形成以下实施例中使用的双组分弹性纤维的鞘(粘合剂组分)。
实施例2A在含水介质中用强烈混合分离纤维按照以上实施例1所述制备包括50% PellathaneTM2103-80PF(由The Dow Chemical Company生产的一种弹性体热塑性聚氨酯)和50%均匀支链化的、基本上线型的乙烯/1-辛烯聚烯烃的双组分、11.2旦尼尔的弹性纤维。热塑性聚氨酯形成双组分纤维的芯,而MAH-接枝的乙烯聚合物形成双组分纤维的鞘。30%这种弹性体粘合纤维与70%的Hi Bright纤维素纤维(未打浆,漂白的硫酸盐浆软材,以1.1%在水中过夜浸渍和浸透)在具有5克表面活性剂(Rhodameer,Katapol VP-532)的5升水中的混合物,和110克0.5%固体Magnafloc 1885阴离子聚丙烯酰胺粘度改进剂加入Waring掺混器中。搅拌这种混合物,以便生产基本上均匀的弹性纤维和纤维素纤维的混合物,它们随后形成弹性吸收性纸。
实施例2B在含水介质中使用强烈混合的纤维分离以及氢键失活

最初,用剪刀将上列的全部5种纤维系统(丝束)剪断成1/8″长。带有12%粘合剂纤维的100g/m2气流铺置的垫子按重量需要加入0.43克的粘合剂纤维。在所有情况下把足够量的纤维切断,以便制作3块垫子。
在把纤维束(每束有72根纤维丝)切成一定长度后,下一步是从丝束上分离单根纤维,使得它们能加进纤维素浆粕中,并气流铺置为垫。就所有情况而论,鞘聚合物(一种或多种)是十分“粘的”,甚至在室温也是如此(密度0.870g/cc),并且所有情况下,随着时间过去,单个纤维完全被“熔合”在一起。
为了把纤维束分开成单根的丝,称量0.43克的粘合剂纤维并将它加入Waring掺混器(WaringTMblender)中。对它加入2.00克纤维素浆粕(总共3.195克纤维素浆粕用于100gsm垫中)。接着,水与GoldschmidtCorp.出品的AROSURFTMPA-777表面活性剂共混物按25∶1配成的溶液加入到粘合剂纤维加纤维素浆粕的混合物中。激活该掺混器器2-3秒,并在此时间内,粘合剂纤维丝束瞬间“开松”成单根的纤维丝。把纤维素浆粕加入上述混合物中,以便确保粘合剂纤维丝在随后的干燥方法中保持分开状态。以上过程不仅能够把粘合剂纤维分开成单根的丝,而且它致使浆粕中的氢键失活。
下一步必然需要干燥粘合剂纤维与浆粕的混合物。首先用筛网从水/表面活性剂溶液中分离这些纤维。然后在真空烘箱中于50℃过夜干燥此纤维混合物,以便确保也除去任何残留水分。然后,干燥后的纤维混合物加入到气流铺置腔室(此时,还加入另外的1.195gsm“失活的”且干燥的纤维素浆粕),并用真空辅助方法将其制成吸收性垫结构。
实施例3弹性纸的比较使用实施例2的过程制备8英寸×8英寸(8″×8″)的弹性纸样品。实施例3.1和3.2均包括100%Hi Bright纤维素纤维。实施例3.3到3.8由不同百分数的Hi Bright纤维素纤维和以上实施例2所述弹性双组分纤维制成。实施例3.9和3.10含第三纤维组分,即尼龙纤维。使用Noble& Wood造纸机制造这些纸样品。
通过在50cc水加5滴Katapol表面活性剂(VP-532)中预浸渍0.9克双组分纤维制备样品3.4,然后在加入190cc Hi Bright纤维前再另外浸渍5分钟。此过程的理论基础是利用纤维素纤维的增稠效应开裂双组分纤维浆块。以1500rpm运行Waring掺混器。获得的纸于250F在Emerson设备上干燥,仍然观察到双组分纤维的浆块。但是,当撕裂纸时,裂口介于粘合的弹性纤维之间。
按照与样品3.4基本上相同的方式制备样品3.5的纸,不同的是,一些双组分纤维的浆块在Waring掺混器内在干燥状态下崩裂(高强度空气搅拌的一个实例)。在这些浆块崩裂后,向此掺混器中加入50cc水和5滴Katapol,并再次在低设置下搅拌混合物。随后,向混合物中加入190cc Hi Bright纤维素纤维与另外100cc水,然后再以1000rpm另外搅拌5分钟。这一样品的纸可见的浆块更少,而且撕裂出现在粘合的弹性纤维之间。
样品3.6的纸是约70磅级别的纸,该纸用和前述样品相同的纤维素浆粕含量制造的,即190cc。向其中加入2克的双组分纤维,然后在干燥基础上(即没有含水介质)在Waring掺混器内崩裂它们,这在低设置下持续1.5分钟(此过程重复3次,在每次搅拌之间刮擦掺混器的壁)。随后添加100毫升水与5滴Katapol,获得的混合物在更低的设置下被再次搅拌1分钟,然后它与190cc的Hi Bright纤维素纤维和足够的水结合,以便制备600cc的总混合物。然后将此总混合物转移到一个烧杯中,并以1500rpm搅拌2分钟。此混合物造的纸表明撕裂前有一些弹性。
样品3.7是样品3.6的重复,不同在于使用2.4克双组分纤维,而不是2.0克。
样品3.8是样品3.7的重复,不同在于与Katapol(DiamondShamrock制造的Foammaster VF,3滴)一起加入消泡剂。
样品3.9是样品3.8的重复,不同在于还加入由Microfibers ofPawtucket,RI提供的5克0.080 SD尼龙纤维。和100cc水一起加入该尼龙,其几乎无需搅拌即产生高度分散。向双组分纤维-Hi Bright混合物中加入尼龙-水混合物,且以1500rpm搅拌600cc的总混合物2分钟。添加尼龙的目的是帮助崩裂纤维素纤维之间的粘合。
样品3.10是样品3.9的重复,不同在于使用2.4克双组分纤维、20滴Katapol、6滴消泡剂、2克尼龙纤维和100cc的Hi Bright纤维素纤维(约1.1克)。
这些样品的详细数据和它们在英斯特朗(Instron)仪上的试验结果记录于下表。
弹性纸数据一览表

虽然已经通过前述实施例详细描述了本发明,但是这些具体细节目的在于举例说明,不应将其理解为限定本发明。不背离权利要求的精神和范围情况下,仍能对前述实施例作出多种改变。
权利要求
1.一种具有芯/鞘构造的弹性纤维,其中所述纤维包括至少两种聚合物,所述芯包括一种热塑性弹性体而所述鞘包括一种均匀支链化的、凝胶含量少于30重量%的乙烯聚合物。
2.根据权利要求1所述的纤维,其中所述鞘聚合物比所述芯聚合物的熔点低。
3.一种纤维共混物,其包括(A)具有芯/鞘构造的弹性纤维,所述弹性纤维包括至少两种聚合物,所述芯包括一种热塑性弹性体而所述鞘包括均匀支链化的乙烯聚合物,所述鞘聚合物的凝胶含量少于30重量%,和(B)至少一种非弹性纤维。
4.根据权利要求3所述的纤维共混物,其中所述非弹性纤维是纤维素纤维、毛、真丝和硅酸盐纤维的至少一种。
5.根据权利要求3所述的纤维共混物,其中所述纤维(A)被熔融粘合到所述纤维(B)上。
6.一种加工制品,其包括权利要求3所述的纤维共混物。
7.一种将纤维素纤维彼此分开的方法,所述方法包括用季铵化合物处理所述纤维素纤维,然后搅拌这些处理过的纤维。
8.一种将弹性纤维彼此分开的方法,所述方法包括在包括表面活性剂的含水介质中搅拌所述弹性纤维。
9.一种将弹性纤维彼此分开的方法,所述方法包括对所述弹性纤维进行高强度空气混合。
全文摘要
通过使用双组分和/或双成分弹性纤维,改进弹性、吸收性结构例如尿布的弹性而不显著牺牲该结构的吸收性。该吸收性结构典型地包括一种短纤维,例如纤维素纤维和一种双组分和/或一种双成分弹性体。该双组分纤维一般为芯/鞘构造。所述芯包括弹性的热塑性弹性体,优选TPU,而所述鞘包括均匀支链化的聚烯烃,优选含均匀支链化的基本上线型的乙烯聚合物。在本发明的各种实施方案中,通过提高弹性纤维纤维素纤维键对于纤维素纤维纤维素纤维键的比率的制备技术改进弹性。这些技术包括在与纤维素纤维混合之前,对弹性纤维进行湿和干的高强度搅拌,去活化纤维素纤维之间的氢键,并用含极性基团的化合物例如马来酸酐接枝该弹性纤维。
文档编号D04H1/54GK1555431SQ02817947
公开日2004年12月15日 申请日期2002年7月15日 优先权日2001年7月17日
发明者A·森, J·克利尔, R·A·毛甘斯, K·B·斯图尔特, A 森, 斯图尔特, 毛甘斯 申请人:陶氏环球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1