碳纤维表面有机高分子—无机纳米浆料及其制备方法

文档序号:1731131阅读:430来源:国知局
专利名称:碳纤维表面有机高分子—无机纳米浆料及其制备方法
技术领域
本发明涉及碳纤维表面有机高分子——无机浆料及其制备方法。
背景技术
碳纤维具有高比强度、高比模量和耐腐蚀性等优良性能,其复合材料已广泛应用于航空、航天、体育器材等领域的结构部件上。但是,由于碳纤维表面平滑、表面能小,纤维表面呈惰性,因此与基体树脂浸润性差,界面粘接强度低,复合材料界面性能差。这影响了碳纤维复合材料整体优异性能的充分发挥,限制了材料的应用。因此,对碳纤维表面进行处理势在必行。目前对碳纤维表面进行改性的方法主要有臭氧氧化法、电化学氧化法、等离子体氧化法等。这些方法虽然在一定程度上增大了碳纤维的表面积,增加了其表面宫能团的数量,提高了碳纤维与树脂的浸润性,从而增强了碳纤维与树脂的界面结合力。但同时,由于界面刚性增加使其韧性降低。

发明内容
为解决目前对碳纤维表面进行改性的方法使碳纤维的刚性增加、韧性降低的问题,本发明提供一种碳纤维表面有机高分子——无机纳米浆料及其制备方法。本发明的碳纤维表面有机高分子——无机纳米浆料是含有0.01%-5%重量的有机高分子——无机纳米颗粒的酮、醇稀薄液体浆料。所说的有机高分子—无机纳米颗粒,无机组分可以为金属或非金属氧化物,高分子组分可以为含有羟基、羧基、氨基基团的极性高分子化合物。所说的金属氧化物可以为钛、锌、铝的氧化物,非金属氧化物可以为硅的氧化物。所说的纳米颗粒尺寸为10~100纳米。本发明的有机高分子—无机纳米浆料的制备方法,是将金属或非金属醇盐加入到用酸或碱调至pH值为4.5~10.5的酮、醇混合溶剂中,酮、醇重量比为70~90%30~10%,放置1~10小时,加入带有羟基、羧基、氨基活性基团的高分子化合物,在20~30℃反应1~60分钟,使醇盐水解—缩合后,形成胶体颗粒,并与高分子化合物之间通过氢键和缔合/偶合的相互作用,达到“分子水平”的复合,或高分子化合物的羟基、羧基、氨基与无机物形成共价键,使两相形成共价交联,得到浓度为10~100g/L的浆料。所加金属或非金属醇盐是酮、醇溶液的重量的0.01~5%。本发明的有机高分子—无机纳米浆料纳米颗粒分布均匀,不团聚。将该浆料涂覆在碳纤维上,室温即可干燥成膜。本发明的有机高分子—无机纳米浆料适用于PAN基、沥青基和粘胶基碳纤维,提高聚合物基碳纤维复合材料的界面强度及断裂韧性。用本发明的有机高分子—无机纳米浆料处理过的碳纤维与未用该浆料处理的碳纤维相比,其浸润性及其复合材料的冲击韧性均有显著提高。其浸润量可提高40%~95%,冲击韧性可提高7~20%。通过浸润仪测定吸附量—时间曲线和碳纤维与树脂的接触角,评价碳纤维与树脂的浸润性。在特定的工艺下,将用该浆料处理和未处理的碳纤维制成模压复合材料制品,评价有机高分子—无机纳米浆料对复合材料界面性能和冲击韧性的影响。图1为碳纤维(曲线1)及其用有机高分子—无机纳米浆料处理后的浸润量—时间曲线。该图反应了处理前后碳纤维浸润性的变化。曲线2为用含Si纳米浆料处理后碳纤维的浸润量—时间曲线,曲线3为用含Ti纳米浆料处理后碳纤维的浸润量—时间曲线,曲线4为用含Zn纳米浆料处理后碳纤维的浸润量—时间曲线,曲线5为用含Al纳米浆料处理后碳纤维的浸润量—时间曲线,该图明显地表明,用有机高分子—无机纳米浆料处理后碳纤维的浸润性有了很大改善。用该浆料处理后,浸润量提高了39%~95%,浸润速度提高了73%~148%,接触角降低了6%~50%,如表1所示。
表1

图2为用不同纳米颗粒的浆料处理的碳纤维所制成的复合材料的冲击韧性的比较。柱1代表未用浆料处理的碳纤维复合材料的冲击韧性,柱2代表用含Si纳米颗粒的浆料处理的碳纤维所制成的复合材料的冲击韧性,柱3代表用含Ti纳米颗粒的浆料处理的碳纤维所制成的复合材料的冲击韧性,柱4代表用含Zn纳米颗粒的浆料处理的碳纤维所制成的复合材料的冲击韧性,柱5代表用含Al纳米颗粒的浆料处理的碳纤维所制成的复合材料的冲击韧性。由图所示,纳米颗粒不同对复合材料冲击韧性有影响,合适的纳米颗粒能更大的提高复合材料的冲击韧性。本发明的目的在于通过湿化学法制备有机高分子—无机纳米浆料,并将其应用于碳纤维表面,改善碳纤维对树脂的浸润性,改善碳纤维与树脂的界面结合,从而提高复合材料的冲击韧性和层间剪切强度。


图1是碳纤维及其用有机高分子碳——无机纳米浆料处理后的浸润量—时间曲线,图2是用不同纳米颗粒的浆料处理的碳纤维所制成的复合材料的冲击韧性的比较。
具体实施例方式
一将正硅酸四乙酯加入到用丙烯酸调pH=0.5~4.5的酮、醇混合溶剂中,酮、醇重量比为70~90%30~10%,放置1~10小时,加入带有羟基的高分子化合物,在20~30℃反应1~60分钟,使正硅酸四乙酯水解—缩合后,形成胶体颗粒,并与高分子化合物的羟基形成共价键,使两相形成共价交联,得到浓度为10~100g/L的浆料。所加正硅酸四乙酯是酮、醇溶液重量的0.01%~5%。对比该浆料对碳纤维浸润性的影响及其对复合材料层间剪切强度和冲击韧性的影响,结果如表2所示。可见,羟基高分子—硅纳米颗粒浆料可以使碳纤维浸润量提高95%,浸润速度提高148%,可以使聚合物基碳纤维复合材料的层间剪切强度提高15%,冲击韧性提高20%。
表2

具体实施方式
二将正硅酸四乙酯加入到用草酸调pH=0.5~4.5的酮、醇混合溶剂中,酮、醇重量比为70~90%∶30~10%,放置1~10小时,加入带有羧基的高分子化合物,在20~30℃反应1~60分钟,使正硅酸四乙酯水解—缩合后,形成胶体颗粒,并与高分子化合物的羧基形成共价键,使两相形成共价交联,得到浓度为10~100g/L的浆料。所加正硅酸四乙酯是酮、醇溶液重量的0.01%~5%。对比该浆料对碳纤维浸润性的影响及其对复合材料层间剪切强度和冲击韧性的影响,结果表明羧基高分子—硅纳米颗粒浆料可以使碳纤维浸润量提高88%,浸润速度提高140%,可以使聚合物基碳纤维复合材料的层间剪切强度提高13%,冲击韧性提高18%。
具体实施方式
三将正硅酸四乙酯加入到用氨水调pH=7.5~10.5的酮、醇混合溶剂中,酮、醇重量比为70~90%∶30~10%,放置1~10小时,加入带有氨基的高分子化合物,在20~30℃反应1~60分钟,使正硅酸四乙酯水解—缩合后,形成胶体颗粒,并于高分子化合物之间通过氢键和缔合/偶合的相互作用,达到“分子水平”的复合,使两相形成共价交联,得到浓度为10~100g/L的浆料。所加正硅酸四乙酯是酮、醇溶液的重量的0.01%~5%。对比该浆料对碳纤维浸润性的影响及其对复合材料层间剪切强度和冲击韧性的影响,结果表明,氨基高分子—硅纳米颗粒浆料可以使碳纤维浸润量提高91%,浸润速度提高136%,可以使聚合物基碳纤维复合材料的层间剪切强度提12%,冲击韧性提高19%。
权利要求
1.碳纤维表面有机高分子——无机纳米浆料,其特征在于它是含有0.01%-5%重量的有机高分子——无机纳米颗粒的酮、醇稀薄液体浆料。
2.根据权利要求1所述的碳纤维表面有机高分子——无机纳米浆料,其特征在于所说的有机高分子—无机纳米颗粒,无机组分为金属或非金属氧化物。
3.根据权利要求1所述的碳纤维表面有机高分子——无机纳米浆料,其特征在于高分子组分为含有羟基、羧基、氨基基团的极性高分子化合物。
4.根据权利要求1所述的碳纤维表面有机高分子——无机纳米浆料,其特征在于所说的金属氧化物为钛、锌、铝的氧化物,非金属氧化物为硅的氧化物。
5.根据权利要求1所述的碳纤维表面有机高分子——无机纳米浆料,其特征在于所说的纳米颗粒尺寸为10~100纳米。
6.碳纤维表面有机高分子——无机纳米浆料的制备方法,其特征在于是将金属或非金属醇盐加入到用酸或碱调至pH值为4.5~10.5的酮、醇混合溶剂中,酮、醇重量比为70~90%30~10%,放置1~10小时,加入带有羟基、羧基、氨基活性基团的高分子化合物,在20~30℃反应1~60分钟,使醇盐水解—缩合后,形成胶体颗粒,并与高分子化合物之间通过氢键和缔合/偶合的相互作用,达到“分子水平”的复合,或高分子化合物的羟基、羧基、氨基与无机物形成共价键,使两相形成共价交联,得到浓度为10~100g/L的浆料。所加金属或非金属醇盐是酮、醇溶液的重量的0.01~5%。
全文摘要
碳纤维表面有机高分子——无机纳米浆料及其制备方法,它涉及碳纤维表面有机高分子——无机浆料及其制备方法。它是含有0.01%-5%重量的有机高分子——无机纳米颗粒的酮、醇稀薄液体浆料。其制备方法是将金属或非金属醇盐加入到用酸或碱调至pH值为4.5~10.5的酮、醇混合溶剂中,放置1~10小时,加入带有羟基、羧基、氨基活性基团的高分子化合物,在20~30℃反应1~60分钟,使醇盐水解—缩合后,形成胶体颗粒,并与高分子化合物之间通过氢键和缔合/偶合的相互作用,得到浓度为10~100g/L的浆料。所加金属或非金属醇盐是酮、醇溶液的重量的0.01~5%。它解决了目前对碳纤维表面进行改性的方法使碳纤维的刚性增加、韧性降低的问题。
文档编号D06M15/00GK1477260SQ0313248
公开日2004年2月25日 申请日期2003年7月7日 优先权日2003年7月7日
发明者张志谦, 张春红, 曹海琳, 金政 申请人:哈尔滨工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1