技术领域
本发明涉及一种壳聚糖/细菌纤维素硫酸酯复合血液相容性材料的制备方法。
背景技术:
随着现代医学的发展,生物材料在组织替代及修复等医疗过程中起着日益显著的作用,除了医用功能性,生物相容性是生物材料必备的基本性能,生物相容性包含血液相容性和组织相容性两方面。与血液接触的医用材料,如血液透析材料、人工血管、人工皮肤等,需要具有好的血液相容性以抑制血管内血液形成血栓(即抗凝血性)和维持血液正常成分和功能。
肝素是天然的血液抗凝剂,在临床血液透析及器官移植等治疗中,通常需通过口服肝素或静脉注射小分子量肝素来克服生物材料血液相容性不足的问题,但是肝素存在价格昂贵、出血率高且缺乏长期稳定性等问题。肝素是由2-硫酸-a-L艾杜糖醛酸及6-硫酸-a-D-葡萄糖胺等糖元组成的生物多糖,肝素的抗凝血性与-OSO3-和-COO-等官能团有着直接关系。因此对生物材料进行化学改性或物理复合,引入-OSO3-、-COO-、-NH2,使生物材料具有类肝素结构成为提高生物材料血液相容性的重要途径。
壳聚糖(聚(2-氨基-β-(1,4)- D-葡萄糖),chitosan)是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,其具有良好的生物相容性、血液相容性及生物可降解性等优良性能,在医药、食品、化工、生化和生物医学工程等诸多领域获得广泛研究及应用。壳聚糖为自然界中存在的唯一碱性多糖,含有-NH2基团,对壳聚糖进行化学改性或物理复合,引入-OSO3-、-COO-等官能团,可获得与肝素类似的化学结构。
静电纺丝法是将聚合物溶液在高压电场作用下进行喷射拉伸而制备纳米级纤维丝的一种纺丝方法。通过静电纺丝技术,可以调控材料化学结构及表观形貌,获得具有良好细胞相容性和血液相容性的纤维膜,静电纺丝已被用于胶原蛋白、壳聚糖、纤维素、聚乳酸等高分子,制备人造血管、血管支架材料等生物材料。但是,由于静电纺丝所得纤维膜为无纺材料,机械强度较差,静电纺丝膜的应该受到了很大限制。
细菌纤维素是一种细菌胞外多糖,可由多种细菌(如Acetobacter、Agrobacterium等)在含糖分的椰子水、菠萝汁、桔子汁等果汁中合成。天然细菌纤维素具有纯度高(含量> 95%)、吸水持水率高(吸水量可达自身重量60-700倍)、聚合度高(DP 2000-8000)、杨氏模量大(100GPa)、呈超细纳米纤维三维网状结构(纤维束直径< 50 nm,约为植物纤维的1%)、高比表面积(200倍于植物纤维)和良好的透气透水性能等优点,是制备生物医用材料的理想原料,目前细菌纤维素已被开发用作创口敷料、人造血管、人造皮肤以及组织工程材料等。对细菌纤维素进行表面化学改性,引入-SO3H等荷电基团,可在保证细菌纤维素机械强度的情况下提高细菌纤维素的血液相容性。
本发明提供了一种壳聚糖/细菌纤维素硫酸酯复合血液相容性材料的制备方法,通过表面化学改性制备细菌纤维素硫酸酯膜,再通过静电纺丝技术,将壳聚糖(或羧甲基壳聚糖)与其他易纺丝高分子溶液喷纺在细菌纤维素硫酸酯膜上,得到一种血液相容性复合膜材料。本发明提供了一种具有类肝素结构的血液相容性材料的制备方法,相比其他类肝素结构材料,本发明所提供的材料具有制备方法简单、材料机械力学性能好等优点。
技术实现要素:
本发明的目的是提供一种壳聚糖/细菌纤维素硫酸酯复合血液相容性材料的制备方法。
本发明为解决其技术问题所采用的技术方案是:
一种壳聚糖/细菌纤维素硫酸酯复合血液相容性材料的制备方法,其特征在于:
(1)对细菌纤维素用三氧化硫吡啶进行表面硫酸酯化改性,制得细菌纤维素硫酸酯膜,硫酸酯取代度0.04-0.41;
(2)称取1.2g-3.2g壳聚糖,溶解在稀醋酸溶液中,配制成浓度为3%-10%壳聚糖溶液;
(3)称量易纺丝高分子溶解在蒸馏水或乙醇中,配制成浓度5-16%的易纺丝高分子溶液;
(4)把壳聚糖溶液和易纺丝高分子溶液按质量比6:1-1:4混合,搅拌均匀,制成纺丝液;
(5)将表面改性的细菌纤维素硫酸酯膜铺放在静电纺丝接收器上,把步骤(4)制得的纺丝液直接喷纺在细菌纤维素硫酸酯膜上,把步骤(4)制得的纺丝液在静电纺丝装置下纺丝,直接纺丝到细菌纤维素硫酸酯薄膜上,纺丝电压为10-40 kV,针头到接受板的距离为10—30cm。
进一步地,所述的细菌纤维素硫酸酯膜的硫酸酯取代度为0.05-0.40。
进一步地,用高分子有聚乙烯醇、聚乙二醇、烷基纤维素或聚乳酸高分子将壳聚糖与易纺丝高分子辅助纺丝。
4.进一步地,将壳聚糖溶解在稀酸溶液中,配制成浓度为4%-9%壳聚糖溶液。
5.进一步地,所述易纺丝高分子溶解浓度为6-15%,壳聚糖溶液和易纺丝高分子溶液在最终混合溶液中的质量比为5:1.5-1.5:3。
进一步地,静电纺丝时电压为15-35kV,静电纺丝时针头到接受板的距离为12-28cm。
本发明的方法不仅适用于制备壳聚糖/细菌纤维素硫酸酯复合血液相容性材料,还适用于以其他荷电性高分子为接收膜,对其它高分子进行静电纺丝,制备复合膜材料。
本发明的有益效果是:本发明提供了一种新的壳聚糖/细菌纤维素硫酸酯静电纺丝复合血液相容性材料的其制备方法,通过把壳聚糖和其他易纺丝高分子制成纺丝液,再直接进行静电纺丝纺到细菌纤维素硫酸酯薄膜上。本发明提供的方法相较于传统的溶解壳聚糖和细菌纤维素硫酸酯,溶液混合均匀后再进行静电纺丝的方法具有更安全、更便捷、更环保等优点。本发明为制备具有血液相容性的壳聚糖/细菌纤维素硫酸酯复合材料提供更为简单的静电纺丝技术。
具体实施方式
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
以下的实施例均在“对细菌纤维素用三氧化硫吡啶进行表面硫酸酯化改性,制得细菌纤维素硫酸酯膜,硫酸酯取代度0.04-0.41”的前提条件下进行的。
实施例1:
一种壳聚糖/细菌纤维素硫酸酯静电纺丝复合血液相容性材料的制备方法,包括如下步骤:
(1)称取2.0g壳聚糖溶解在1%醋酸中,配制成浓度为3%的溶液;
(2)称取5g聚乙烯醇溶解在蒸馏水中,配制成浓度为5%的溶液;
(3)称取质量比为6:1的壳聚糖溶液和聚乙烯醇溶液,混合搅拌均匀;
(4)将表面硫酸酯化度为0.04的细菌纤维素硫酸酯膜铺放在静电纺丝机接收器上;
(5)将所得纺丝液在电压10kv,针头到接收板距离10 cm的条件下静电纺丝,能得到均匀、无珠粒的纤维,纤维直径50~200 nm;
(6) 将戊二醛交联之后的复合膜进行血液相容性的表征,采用希森美康Sysmex全自动凝血仪测量样品的部分激活凝血酶时间(APTT) 49.4s、凝血酶原时间(PT)13.6s、凝血酶时间(TT)30.3s;
(7) 将交联后的复合膜进行富含血小板吸附2 h,复合膜表面无血小板吸附。
实施例2:
一种羧甲基壳聚糖/细菌纤维素硫酸酯静电纺丝复合血液相容性材料的制备方法,包括如下步骤:
(1) 称取2.4g壳聚糖溶解在1%醋酸中,配制成浓度为6%的溶液;
(2) 称取4.8g乙基纤维素溶解在80%的乙醇中,配制成浓度为16%的溶液;
(3) 称取质量比为5:1.5的壳聚糖溶液和乙基纤维素溶液,混合搅拌均匀;
(4) 将表面硫酸酯化度为0.25的细菌纤维素硫酸酯膜铺放在静电纺丝机接收器上;
(5) 将所得纺丝液在电压25kv,针头到接收板距离20cm的条件下静电纺丝,能得到均匀、无珠粒的纤维,纤维直径100-200nm;
(6) 将交联之后的复合膜进行血液相容性的表征,采用希森美康Sysmex全自动凝血仪测量样品的部分激活凝血酶时间(APTT)32.7s、凝血酶原时间(PT)11.2s、凝血酶时间(TT)19.6s;
(7) 将交联后的复合膜进行富含血小板吸附2 h,复合膜表面无血小板吸附。
实施例3:
一种壳聚糖/细菌纤维素硫酸酯静电纺丝复合膜的制备方法,包括如下步骤:
(1) 称取4.0g壳聚糖溶解在1%醋酸中,配制成浓度为10%的溶液;
(2) 将N,N-二甲基甲酰胺与二氯甲烷按体积比为7:3混合均匀,取6g聚乳酸加入其中,配制成浓度为12%的溶液;
(3) 称取质量比为1.5:3的壳聚糖溶液和聚乳酸溶液,混合搅拌均匀;
(4) 将表面硫酸酯化度为0.41的细菌纤维素硫酸酯膜铺放在静电纺丝机接收器上;
(5) 将所得纺丝液在电压40kv,针头到接收板距离30cm的条件下静电纺丝,能得到均匀、无珠粒的纤维,纤维直径50~300nm;
(6) 将交联之后的复合膜进行血液相容性的表征,采用希森美康Sysmex全自动凝血仪测量样品的部分激活凝血酶时间(APTT)50.7s、凝血酶原时间(PT)10.6s、凝血酶时间(TT)25.7s;
(7) 将交联后的复合膜进行富含血小板吸附2 h,复合膜表面无血小板吸附。
最后还需要注意的是,以上列举的仅为本发明的具体实施例子,本发明不限于以上实例,同样适用于其它物质如羧甲基壳聚糖及其他壳聚糖衍生物的静电纺丝。同时,本发明中以壳聚糖-细菌纤维素硫酸酯为实例,根据高分子聚合物的差异可以有许多变形。本领域的普通技术人员能从本发明公开内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。