一种具有电磁屏蔽功能的复合涂层纤维及其制备方法与流程

文档序号:12779992阅读:362来源:国知局
一种具有电磁屏蔽功能的复合涂层纤维及其制备方法与流程

本发明涉及一种功能纤维;特别涉及一种具有电磁屏蔽功能的复合涂层纤维及其制备方法,属于电磁屏蔽材料领域。



背景技术:

随着现代电子工业的高速发展,电子电器和无线电通讯得以普遍使用,电磁辐射己成为继噪声污染、大气污染、水污染、固体废物污染之后的又一大公害。电磁波不仅干扰着各种电子设备的正常运行,威胁通信设备的信息安全,而且对人类的身体健康会产生极大危害。目前消除电磁波危害的主要方法是采用电磁屏蔽材料对其进行屏蔽。因此,探索高效的电磁屏蔽材料已经成为迫切需要解决的问题。

碳纤维具有高强度、高模量、耐腐蚀、耐高温、低密度、抗烧蚀、低热膨胀、高电导和热导等一系列的优异性能,一直是增强材料的首选,但直接用于电磁屏蔽材料却难以满足要求。因此将碳纤维与磁性复合涂层结合有望获得具有增强和屏蔽双重功能的新型材料。

现有技术中普遍采用电镀或原子沉积的方法在纤维表面制备涂层,如专利号为201310639055.2,名称为“一种CuO/Ni/碳纤维复合吸波材料及其制备方法”,提出了利用电沉积法分别依次将金属镍层和氧化铜层电镀至碳纤维表面,经过清洗干燥、管式炉煅烧,即得到阻抗匹配特性优良的镀层碳纤维;专利号为201210472167.9,名称为“一种碳纤维表面纳米CoFeB吸波涂层的制备方法”,该方法采用硝酸活化后采用电镀沉积CoFeB磁性涂层,制得的涂层在较宽的频率范围内均有良好的阻抗匹配特性。但采用上述电镀制备的镀层通常结构较为疏松,且不均匀,易发生剥离或脱落,同时镀层中残留较多杂质,影响镀层性能。

专利号为CN201610895375.8,名称为“一种镍基吸波碳纤维的制备方法”的专利中,采用原子层沉积技术将镍基功能纳米粒子通过化学键键合在碳纤维表面,使碳纤维表面形成一层均匀致密的镍基功能纳米薄膜。但该制备工艺复杂,制备过程中碳纤维由于结构易发生变化而使其本身性能下降。



技术实现要素:

针对现有的镀层碳纤维材料存在的缺陷,本发明的目的是在于提供一种兼具优异力学性能和良好电磁屏蔽性能的碳纤维材料,解决了现有碳纤维作为电磁屏蔽材料使用过程中存在的电磁参数低,不能满足电磁屏蔽材料要求的问题。

本发明的另一个目的是在于提供一种基于磁控溅射法在碳纤维表面制备复合涂层的方法,通过磁控溅射法能在碳纤维表面制备厚度均匀、致密性好、结合性好、纯度高的复合涂层,且具有沉积速度快、操作简单、低成本的特点。

为了实现上述技术目的,本发明提供了一种具有电磁屏蔽功能的复合涂层纤维,是由碳纤维及其表面的复合涂层构成;所述复合涂层包括下层磁性层、中间Al2O3层和上层磁性层;其中,下层磁性层和上层磁性层独立选自FeNi层、FeCo层或NiCo层。

本发明的技术方案中首次提出在碳纤维表面制备磁性层/三氧化二铝/磁性层复合涂层。铁、钴、镍等磁性金属及其合金兼具有介电子损耗和磁损耗两种损耗机制,在纤维表面形成磁性涂层可调节碳纤维的电磁参数,从而使具有磁性涂层的碳纤维具有良好电磁屏蔽性能,但是磁性层在应用中存在吸收频段窄、电阻率低、密度大等问题。本发明巧妙地在磁性层中设置一层Al2O3陶瓷层,Al2O3具有电阻率高,密度小的优点,在磁性层中添加一层Al2O3层,不但可以在提高整个涂层的电阻率的同时减小其密度,并且Al2O3的掺入使涂层形成了良好的颗粒结构,改善了单一磁性层吸收频段窄的问题。

优选的方案,所述复合涂层为FeNi-Al2O3-FeNi涂层、FeCo-Al2O3-FeCo涂层或NiCo-Al2O3-NiCo涂层。

较优选的方案,所述下层磁性层的厚度为40~400nm。

较优选的方案,所述中间氧化铝层的厚度为30~300nm。

较优选的方案,所述上层磁性层的厚度为40~400nm。

优选方案中涂层厚度的选择主要从吸收波段、纤维直径、纤维密度等方面加以考虑,碳纤维本身直径为7μm,具有密度小、轴向强度高的特点,涂层总厚度过大会导致纤维直径改变过大,重量增加,影响纤维在电磁屏蔽器件中的使用;涂层总厚度过小,对碳纤维本身的电磁参数起不到较好的调节作用,因此,优选方案中涂层总厚度为100~1000nm。中间氧化铝层的厚度过大,会减弱磁性层对电磁波的损耗,无法达到电磁屏蔽的效果,过小对涂层颗粒结构的调节作用不明显,无法改善磁性层吸收频段窄的问题,因此优选方案中中间氧化铝层厚度为30~300nm,下层和上层磁性层厚度均为40~400nm。

较优选的方案,上层磁性层中Fe和Ni、Fe和Co、或Ni和Co的质量比为1:99至99:1;下层磁性层中Fe和Ni、Fe和Co、或Ni和Co的质量比为1:99至99:1。

本发明还提供了一种具有电磁屏蔽功能的复合涂层纤维的制备方法,该制备方法是将碳纤维经过650~750℃高温处理后,采用丙酮洗涤,得到预处理碳纤维;以所述预处理碳纤维为基体,通过磁控溅射法在所述基体表面依次制备下层磁性层、中间氧化铝层和上层磁性层,即得。

本发明通过对碳纤维进行高温处理及丙酮洗涤处理,能有效改善磁控溅射法在碳纤维表面的成膜能力。碳纤维通过高温处理,能将其表面的有机成分碳化脱除,同时能使碳纤维表面粗化,再结合丙酮洗涤进一步清除表面杂质,同时保护碳纤维表面免受损伤,经过预处理过程能大大提高生成的金属膜与碳纤维表面之间的结合能力,改善金属膜层的致密性,能获得均匀性好、致密及结合性好的复合涂层。

优选的方案,所述高温处理的时间为5~20min。优选的高温处理时间范围内,能有效脱除碳纤维表面的有机成分,并对碳纤维表面适当粗化。

优选的方案,所述洗涤采用超声洗涤方式,洗涤的时间为10~30min。

优选的方案,下层磁性层通过射频磁控溅射法制备,射频磁控溅射条件:溅射前真空度为1.0×10-3~1.0×10-4Pa,射频溅射功率为100~2000W,沉积时间为30~300min,靶和纤维之间的距离为50~80mm,氩气流量为30~50sccm。

优选的方案,中间氧化铝层通过直流磁控溅射法制备,直流磁控溅射条件:溅射前真空度为1.0×10-3~1.0×10-4Pa,直流溅射电流为10~100mA,沉积时间为30~300min,靶和纤维之间的距离为50~80mm,氩气流量为30~50sccm。

优选的方案,下层磁性层通过射频磁控溅射法制备,射频磁控溅射条件:溅射前真空度为1.0×10-3~1.0×10-4Pa,射频溅射功率为100~2000W,沉积时间为30~300min,靶和纤维之间的距离为50~80mm,氩气流量为30~50sccm。

本发明的技术方案中磁性合金(钴镍、钴铁、镍铁)靶材纯度不低于99.999%,合金靶材中两种金属质量比从1:99~99:1可调。

本发明的技术方案中氧化铝靶材纯度不低于99.999%。

相对现有技术,本发明的有益效果:

1)本发明的含复合涂层的碳纤维相对碳纤维的电磁参数得到明显改善,电磁屏蔽性能得到提高,具有较好的电磁屏蔽性能,在2.6~18GHz范围内,其反射率在-5dB以下的合格带宽约为12.0GHz,最大吸收峰位于9.6GHz处,反射率约为-14.3dB。

2)本发明的含复合涂层的碳纤维最大限度地保持碳纤维优秀的机械性能以及耐腐蚀、耐高温、高电导和热导等优良综合性能,涂层碳纤维直径改变小,且柔韧性好,可进行纺丝。

3)本发明的含复合涂层的碳纤维使通过磁控溅射法得到,具有沉积速度快、金属薄膜与碳纤维结合好、金属薄膜纯度高、致密性好、成膜均匀性好、镀层厚度和颗粒大小可精确控制等优点。

4)本发明的制备含复合涂层碳纤维的方法操作简便,成本低,适用于工业大批量生产。

附图说明

【图1】为FeCo-Al2O3-FeCo复合涂层碳纤维的形貌图;

【图2】为FeNi-Al2O3-FeNi复合涂层碳纤维的形貌图。

【图3】为未经高温处理的FeNi-Al2O3-FeNi复合涂层碳纤维的形貌图。

具体实施方式

以下实施例旨在进一步说明本发明内容而不是限制本发明权利要求的保护范围。

实施例1

本实施方式的一种具有电磁屏蔽功能的复合涂层纤维制备方法,按照下列各步骤实施:一、将碳纤维放在700℃温度管式炉中保温10min;二、将步骤一处理后的碳纤维放入丙酮中超声清洗15min;三、将步骤二处理后的碳纤维在表面采用射频磁控溅射法制备FeCo合金涂层,即下层磁性层;四、将步骤三处理后的纤维在表面采用直流磁控溅射法制备氧化铝涂层;五、将步骤四处理后的碳纤维在表面采用射频磁控溅射法制备FeCo合金涂层,即上层磁性层,即完成碳纤维表面FeCo-Al2O3-FeCo复合涂层的制备;其中步骤三、五中的FeCo靶的成分比例为Fe:Co=50:50,纯度为99.999﹪、溅射前真空度为8.0×10-4Pa、射频溅射功率为900W、沉积时间为60min、靶和纤维之间的距离为60mm、氩气流量为40sccm;步骤四中Al2O3靶纯度为99.999﹪、溅射前真空度为8.0×10-4Pa、直流溅射电流率为20mA、沉积时间为60min、靶和纤维之间的距离为60mm、氩气流量为40sccm。

经过检测,通过此方法制备得到的FeCo-Al2O3-FeCo复合涂层碳纤维,其矫顽力128Oe,饱和磁化强度为48emu/g,具有较好的软磁性能;同时通过对2.6-18GHz频率范围内电磁参数的检测,在未制备该涂层时,纯碳纤维的磁导率实部均在0.8以下,虚部均在0.2以下,说明碳纤维的阻抗匹配性能不好,电磁屏蔽性能很差,在制备涂层后,磁导率的实部普遍提高到1以上,在3.8GHz处有最大值1.6,磁导率的虚部也有明显提高,在5.7GHz处有最大值0.59,其电磁参数得到了改善。图1为该涂层纤维的表面形貌图。

实施例2

本实施方式的一种具有电磁屏蔽功能的复合涂层纤维制备方法,按照下列各步骤实施:一、将碳纤维放在700℃温度管式炉中保温10min;二、将步骤一处理后的碳纤维放入丙酮中超声清洗15min;三、将步骤二处理后的碳纤维在表面采用射频磁控溅射法制备FeNi合金涂层,即下层磁性层;四、将步骤三处理后的纤维在表面采用直流磁控溅射法制备氧化铝涂层;五、将步骤四处理后的碳纤维在表面采用射频磁控溅射法制备FeNi合金涂层,即上层磁性层,即完成碳纤维表面FeNi-Al2O3-FeNi复合涂层的制备;其中步骤三、五中的FeNi靶的成分比例为Fe:Ni=10:90,纯度为99.999﹪、溅射前真空度为8.0×10-4Pa、射频溅射功率为900W、沉积时间为60min、靶和纤维之间的距离为60mm、氩气流量为40sccm;步骤四中Al2O3靶纯度为99.999﹪、溅射前真空度为8.0×10-4Pa、直流溅射电流率为20mA、沉积时间为60min、靶和纤维之间的距离为60mm、氩气流量为40sccm。

经过检测,通过此方法制备得到的FeNi-Al2O3-FeNi复合涂层碳纤维,其矫顽力13.96Oe,饱和磁化强度为29.1emu/g,具有较好的软磁性能;同时检测了2.6-18GHz频率范围内的电磁参数,并由此计算得到其反射率数据,反射率在-5dB以下的合格带宽达到12GHz,其中在5-8GHz范围内其反射率均在-8dB以下,在8-12GHz范围内其反射率均在-10dB以下,最大吸收峰位于9.6GHz处,反射率约为-14.3dB,具有较好的电磁屏蔽效果。图2为该涂层纤维的表面形貌图。

实施例3

本实施方式的一种具有电磁屏蔽功能的复合涂层纤维制备方法,按照下列各步骤实施:一、将碳纤维放在700℃温度管式炉中保温10min;二、将步骤一处理后的碳纤维放入丙酮中超声清洗15min;三、将步骤二处理后的碳纤维在表面采用射频磁控溅射法制备NiCo合金涂层,即下层磁性层;四、将步骤三处理后的纤维在表面采用直流磁控溅射法制备氧化铝涂层;五、将步骤四处理后的碳纤维在表面采用射频磁控溅射法制备NiCo合金涂层,即上层磁性层,即完成碳纤维表面NiCo-Al2O3-NiCo复合涂层的制备;其中步骤三、五中的NiCo靶的成分比例为Ni:Co=75:25,纯度为99.999﹪、溅射前真空度为8.0×10-4Pa、射频溅射功率为900W、沉积时间为60min、靶和纤维之间的距离为60mm、氩气流量为40sccm;步骤四中Al2O3靶纯度为99.999﹪、溅射前真空度为8.0×10-4Pa、直流溅射电流率为20mA、沉积时间为60min、靶和纤维之间的距离为60mm、氩气流量为40sccm。

实施例4

本实施方式的一种具有电磁屏蔽功能的复合涂层纤维制备方法,按照下列各步骤实施:一、将碳纤维放在700℃温度管式炉中保温10min;二、将步骤一处理后的碳纤维放入丙酮中超声清洗15min;三、将步骤二处理后的碳纤维在表面采用射频磁控溅射法制备FeCo合金涂层,即下层磁性层;四、将步骤三处理后的纤维在表面采用直流磁控溅射法制备氧化铝涂层;五、将步骤四处理后的碳纤维在表面采用射频磁控溅射法制备FeNi合金涂层,即上层磁性层,即完成碳纤维表面FeCo-Al2O3-FeNi复合涂层的制备;其中步骤三中的FeCo靶的成分比例为Fe:Co=50:50,纯度为99.999﹪、溅射前真空度为8.0×10-4Pa、射频溅射功率为900W、沉积时间为60min、靶和纤维之间的距离为60mm、氩气流量为40sccm;步骤四中Al2O3靶纯度为99.999﹪、溅射前真空度为8.0×10-4Pa、直流溅射电流率为20mA、沉积时间为60min、靶和纤维之间的距离为60mm、氩气流量为40sccm;其中步骤五中的FeNi靶的成分比例为Fe:Ni=50:50,纯度为99.999﹪、溅射前真空度为8.0×10-4Pa、射频溅射功率为900W、沉积时间为60min、靶和纤维之间的距离为60mm、氩气流量为40sccm。

对比例1

对比例1为未经高温预处理的复合涂层碳纤维,其制备方法按照下列各步骤实施:一、将碳纤维放入丙酮中超声清洗15min;二、将步骤一处理后的碳纤维在表面采用射频磁控溅射法制备FeCo合金涂层,即下层磁性层;三、将步骤二处理后的纤维在表面采用直流磁控溅射法制备氧化铝涂层;四、将步骤三处理后的碳纤维在表面采用射频磁控溅射法制备FeCo合金涂层,即上层磁性层,即完成碳纤维表面未经高温处理的FeCo-Al2O3-FeCo复合涂层的制备;其中步骤二、四中的FeCo靶的成分比例为Fe:Co=50:50,纯度为99.999﹪、溅射前真空度为8.0×10-4Pa、射频溅射功率为900W、沉积时间为60min、靶和纤维之间的距离为60mm、氩气流量为40sccm;步骤三中Al2O3靶纯度为99.999﹪、溅射前真空度为8.0×10-4Pa、直流溅射电流率为20mA、沉积时间为60min、靶和纤维之间的距离为60mm、氩气流量为40sccm。

图3为未经高温处理的FeCo-Al2O3-FeCo复合涂层碳纤维的形貌图,与实施例1中制备的涂层碳纤维相比,未经高温处理的碳纤维表面光滑,涂层与纤维表面结合不紧密,留有缝隙存在,涂层容易剥落。

对比例2

对比例2为FeNi磁性涂层碳纤维,其制备方法按照下列各步骤实施:一、将碳纤维放在700℃温度管式炉中保温10min;二、将步骤一处理后的碳纤维放入丙酮中超声清洗15min;三、将步骤二处理后的碳纤维在表面采用射频磁控溅射法制备FeNi磁性合金涂层,即完成碳纤维表面FeNi磁性合金涂层的制备;其中步骤三中的FeNi靶的成分比例为Fe:Ni=10:90,纯度为99.999﹪、溅射前真空度为8.0×10-4Pa、射频溅射功率为900W、沉积时间为60min、靶和纤维之间的距离为60mm、氩气流量为40sccm。

经过检测,通过此方法制备得到的FeNi合金磁性涂层碳纤维,其矫顽力29Oe,饱和磁化强度为10.3emu/g,与FeNi-Al2O3-FeNi复合涂层碳纤维相比,其矫顽力高于后者,饱和磁化强度低于后者,由此可知,FeNi-Al2O3-FeNi复合涂层碳纤维的软磁性能优于FeNi合金磁性涂层碳纤维;同时检测了2.6-18GHz频率范围内的电磁参数,并由此计算得到其反射率数据,反射率在-5dB以下的合格带宽只有7GHz,且非常分散,其电磁屏蔽性能次于FeNi-Al2O3-FeNi复合涂层碳纤维,且宽频特性较差。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1