钛酸钡粉末、半导体陶瓷和半导体陶瓷电子元件的制作方法

文档序号:1868779阅读:491来源:国知局
专利名称:钛酸钡粉末、半导体陶瓷和半导体陶瓷电子元件的制作方法
技术领域
本发明涉及一种钛酸钡粉末,特别涉及一种用于生产具有正温度系数特性的半导体陶瓷的钛酸钡粉末。
用于在恒温下控制温度、限制电流、产生热和类似应用的电子元件已经使用了具有正温度系数特性(下文中称之为PTC特性)的半导体陶瓷,其中当温度升高到超过居里温度时,其电阻急剧增加。目前已广泛使用钛酸钡陶瓷作为这种半导体陶瓷。
在最近几年中,越来越需要用于上述应用中具有高耐电压(即高绝缘强度)和由此可以在高电压下使用的半导体陶瓷电子元件。特别地,在电路过流保护元件中使用的半导体陶瓷元件必须具有高的耐电压。
一种对获得具有高绝缘强度的半导体陶瓷行之有效的已知方法是减小用作原料的钛酸钡粉末的颗粒大小。因此,研究已经集中在减小颗粒大小上。例如,日本专利公开号(kokoku)60-25004公开了一种颗粒大小为1-5μm和最大绝缘强度为500v/mm的半导体陶瓷通过粉碎和混合钛酸钡和半导性剂氧化锑粉碎和混合、在控制条件下煅烧、在控制条件下压实、和在1350℃下煅烧来获得。然而,传统的钛酸钡及其不导电陶瓷存在下列缺点1和2。
1.为了有效地减小室温下的电阻率,优选将钛酸钡粉末在大约1300℃下煅烧。然而,当粉末在此温度下煅烧时,钛酸钡晶粒长大到约1-5μm的大小,因此不能获得所期望的耐电压;和2.当钛酸钡粉末的颗粒大小减小到0.1μm或更小时,室温下陶瓷的电阻率易于使产品与产品之间发生变化,并且在某些情况下随着时间的延长而增加(即随着时间而变化)。
本发明提供一种绝缘强度为800v/mm或以上的和室温下电阻率为100Ω·cm或更低,在室温下电阻率基本上不随时间而变化的钛酸钡粉末。本发明也提供一种由钛酸钡粉末生产的半导体陶瓷。本发明还提供了一种由该陶瓷生产的半导体陶瓷电子元件。
本发明提供一种绝缘强度为800v/mm或以上的和室温下电阻率为100Ω·cm或更低,在室温下电阻率基本上不随时间而变化的钛酸钡粉末。本发明也提供了一种由钛酸钡粉末生产的半导体陶瓷。本发明还提供一种由该陶瓷生产的半导体陶瓷电子元件。
本发明的第一方面提供一种立方晶系和平均颗粒大小为0.1μm或更小的钛酸钡粉末,其中通过X射线光电子能谱法(“XPS”)获得的由BaCO3/BaO表示的比率为0.42或更小;晶格常数为0.4020nm或更大;和由Ba/Ti表示的比率为0.988-0.995。
本发明的第二方面提供了一种通过烧结含有钛酸钡粉末和半导性产生剂的半导体材料形成的半导体陶瓷。由于这种组成,即使在大约1300℃下烧结之后,钛酸钡的颗粒大小仍然较小,以便半导体陶瓷具有高的绝缘强度和可以降低室温下的电阻率,室温下的电阻率基本上不随时间而变化。
本发明的第三方面提供了一种包括本发明第二方面所指的半导体陶瓷和在其上形成电极的半导体陶瓷电子元件。由于这种组成,半导体陶瓷电子元件可以用作具有PTC特性的热敏电阻,特别适合用作电路的过流保护的元件。
本发明的钛酸钡粉末除了BaTiO3粉末外,也可以包括基于钛酸钡类的粉末,其中Ba由Sr、Ca、Pb、Y、稀土元素等部分取代,或Ti由Sn、Zr、Nb、W、Sb等部分取代。
可以向含有生产本发明半导体陶瓷用的钛酸钡半导体材料中加入适当量的MnO2、SiO2、TiO2、Al2O3等。
在本发明中,术语“基本上不随时间而变化”是指煅烧结束后,在室温下1000小时的电阻率与煅烧后当时的电阻率之比为1.05或更小。
下面将通过实施例更详细地描述本发明。
实施例1下面是本发明钛酸钡粉末生产方法的一个实施例。
首先,制备具有各种Ba含量的氢氧化钡水溶液和Ti含量为2.655摩尔由Ti(O-iPr)4表示的醇钛的异丙醇(下面称之为IPA)溶液。其次,将溶解在乙醇中的由LaCl3·6.3H2O(2.385g)表示的氯化镧溶液(所得到的溶液体积100cc,La含量0.00664摩尔)均匀地混合在醇钛的IPA溶液中。
接着,将每种氢氧化钡的水溶液与氯化镧的乙醇溶液和醇钛的IPA溶液的混合物混合,使所得到的混合物反应形成料浆。将该料浆倒入罐中老化。接着,将老化的料浆脱水形成脱水饼,将之在110℃下干燥3小时。粉碎此干燥饼由此获得含镧的钛酸钡粉末。
进行测量以便获得含镧的钛酸钡粉末的颗粒大小、BaCO3/BaO比、Ba/Ti比、晶系和晶格常数。通过SEM、XPS、荧光X射线分析和XRD分别测量颗粒大小、BaCO3/BaO比、Ba/Ti比、晶系和晶格常数。颗粒大小是指通过SEM方法测量至少10种颗粒直径而获得的平均颗粒大小。
为了形成粒化粉末,将粘结剂如乙酸乙烯酯加入到由此获得的含镧钛酸钡粉末中或加入到在800-1000℃下煅烧上述粉末2小时获得的粉末中。通过单轴加压方法模制粒化粉末,由此形成直径为10mm和厚度为1mm的圆盘形的压制品。接着在空气中于1200-1300℃下煅烧该压制品两小时,形成半导体陶瓷。将用于生产铟一镓电极的料浆施加到半导体陶瓷的两个主要表面上,对其整体进行煅烧,由此形成半导体陶瓷电子元件。
在具有各种钡含量的氢氧化钡溶液的半导体陶瓷测量室温下的电阻率、绝缘强度、半导体陶瓷表面上用BaCO3/BaO表示的比率、以及在室温下电阻率与时间的比率中的时程变化,所述的半导体陶瓷按上述方式用来生产半导体陶瓷电子元件。在25℃下,通过使用数字电压表的四点探针方法测量室温下的电阻率。通过在破碎样品之前立即测量最大外施加电压和将该电压除以附着在样品上的两电极之间的距离获得绝缘强度。室温下电阻率的时程变化比表示烧结终止后室温下1000小时的电阻率与烧结后当时的电阻率之比。
对比实施例以硝酸镧溶液形式将镧加入到用作钛酸钡粉末的每种水热合成的粉末BT-01和BT-02(Sakai化学工业股份有限公司的产品)中。通过蒸发将所得到的混合物干燥,由此获得含镧钛酸钡粉末。接着按照与实施例1相同的方式进行各步骤和测量。
在实施例1和对比实施例中测量的结果示于表1中。用*标记的样品落在本发明的范围之外。在栏目“陶瓷晶粒大小”中,对比实施例1和2的记录“1,几十(μm)”是指具有几十μm晶粒大小的陶瓷晶粒在具有1μm晶粒大小的陶瓷晶粒中的分散。
表1(1)样品序号
(2)钛酸钡粉末的物理特性(3)半导体陶瓷的物理特性(4)颗粒大小(μm)(5)BaCO3/BaO比率(6)晶格常数(nm)(7)Ba/Ti比率(8)陶瓷晶粒大小(μm)(9)在室温下的电阻率(Ω·cm)(10)绝缘强度(V/mm)(11)时程变化比(12)对比实施例1(13)对比实施例2(14)1,几十(15)用*标记的样品落在本发明的范围之外。
如表1所示,已经证实钛酸钡粉末的颗粒大小为0.1μm或更小的;通过XPS获得的BaCO3/BaO之比为0.42或更小;晶格常数为0.4020nm或更小;和Ba/Ti之比为0.988-0.995可以生产绝缘强度为800V/mm或更多;室温下电阻率为100Ω·cm或更小及其时程变化比为1.05或更小的半导体陶瓷。
下面将描述在本发明中限制钛酸钡粉末颗粒大小、通过XPS获得的BaCO3/BaO之比、晶格常数和Ba/Ti之比的原因。
在对比实施例2的情况下,当钛酸钡粉末的颗粒大小超过0.1μm时,缺点是在室温下电阻率超过100Ω·cm和绝缘强度小于800v/mm。因此,钛酸钡粉末的颗粒大小被限制到0.1μm或更小。
在样品4的情况下,当通过XPS获得的BaCO3/BaO之比超过0.42时,缺点是时程变化比大于1.05。因此,BaCO3/BaO之比限制为0.42或更小。
在对比实施例1和2中,当晶格常数少于0.4020mm时,缺点是在室温下电阻率大于100Ω·cm和绝缘强度低于800v/mm。因此,晶格常数限制为0.4020mm或更少。
在样品6的情况下,当Ba/Ti之比低于0.988时,缺点是绝缘强度低于800v/mm,而当Ba/Ti之比超过0.995时,缺点是时程变化比超过1.05。因此,Ba/Ti之比限制为0.988-0.955。
虽然本发明实施例中镧被用作半导性产生剂,但是对半导性产生剂没有特殊的限制。例如,可以使用稀土元素如Y、Sm、Ce或Dy;或过渡金属元素如Nb、Ta或W。
如上所述,本发明的钛酸钡粉末有立方晶系和颗粒大小为0.1μm或更小,其中通过XPS获得的以BaCO3/BaO表示的比率为0.42或更小、晶格常数为0.4020nm或更多和以Ba/Ti表示的比率为0.988-0.995。
本发明的半导体陶瓷是由上述的钛酸钡粉末和半导性产生剂形成的,因此提供的绝缘强度为800v/mm或更多和室温下的电阻率为100Ω·cm或更小,室温下电阻率基本上不会随时间而变化。
权利要求
1.一种平均颗粒大小为0.1μm或更小的立方晶系钛酸钡粉末,其中通过XPS获得的以BaCO3/BaO表示的比率为0.42或更小、晶格常数为0.4020nm或更多和以Ba/Ti表示的比率为0.988-0.995。
2.一种半导体陶瓷,是通过烧结含有权利要求1所述的钛酸钡粉末和半导性产生剂的半导体材料而形成的。
3.一种半导体陶瓷电子元件,包括权利要求2所述的半导体陶瓷和在其上形成的电极。
全文摘要
本发明提供一种具有800V/mm或更多的绝缘强度和室温下电阻率为100Ω·cm或更小,在室温下电阻率基本上不随时间而变化的钛酸钡粉末。本发明的钛酸钡粉末假定为立方晶系。该粉末颗粒大小为0.1μm或更小,通过XPS获得的以BaCO
文档编号C04B35/46GK1236760SQ9910802
公开日1999年12月1日 申请日期1999年5月12日 优先权日1998年5月12日
发明者川本光俊, 新见秀明 申请人:株式会社村田制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1