微孔材料及其制造方法

文档序号:2430558阅读:600来源:国知局
专利名称:微孔材料及其制造方法
相关申请本申请是2004年12月7日提交的申请号为的待批美国专利申请No.11/006,333的接续申请。
背景技术
1、发明领域本申请公开了一种微孔膜及制造该膜的方法。
2、现有技术说明Larsen的美国专利US3,351,495教导了一种包含很高分子量聚烯烃和惰性填充材料的微孔膜。美国专利US3,351,495的一般原理和方法通过引用并入本文。
Kono等的美国专利US4,600,633教导了一种聚乙烯超薄薄膜以及生产这种薄膜的方法。在该方法中,将超高分子量聚乙烯(本文命名为UHMWPE)溶于溶剂,然后挤压成凝胶薄片。随后使凝胶薄片经历第一次抽提步骤以除去溶剂。在第一次抽提之后,将薄片加热并拉伸。然后,使经过拉伸的薄片经历第二次抽提步骤以除去溶剂。随后,使所得产品在80℃至140℃温度下经受挤压处理。此文献未在其UHMWPE中使用填料。在溶剂抽提之前,没有对凝胶薄片进行压延。所得产品是具有至少2000kg/cm2拉伸模量和至少500kg/cm2断裂强度且基本无孔的薄膜。
Schwarz等的美国专利US4,833,172教导了一种经过拉伸的微孔材料。在该方法中,将UHMWPE和硅质填料溶于增塑剂中,然后,挤成凝胶薄片。在该方法中,可任选在溶剂抽提之前对凝胶薄片进行压延。之后,使凝胶薄片经历溶剂抽提以除去增塑剂。抽提之后,再拉伸薄片。
发明概述一种用于生产微孔材料的方法,其包括下列步骤准备超高分子量聚乙烯(本文命名为UHMWPE);准备粒状填料;以及准备加工增塑剂;其中,加工增塑剂在室温下通常为液体。将填料和UHMWPE以及加工增塑剂混合,以重量计,所得混合物可包含约1∶9至约15∶1的填料比UHMWPE。然后,挤压所得混合物并立即加工(压延、吹制或浇铸)成薄片。随后,使成型的薄片经历抽提步骤,从中将增塑剂部分(或完全)除去。所得薄片是包含UHMWPE、油(如果未完全抽提出去)和填料的基体。抽提步骤使此基体具有微孔。填料遍布此微孔基体,以微孔基体重量计,填料占5%到95%。微孔基体具有贯通微孔基体的连通孔网络。以微孔基体体积计,孔占25%到90%。之后,拉伸此微孔基体。由此制成经过拉伸的微孔基体,这种经过拉伸的微孔基体在升高的温度下在尺寸上不很稳定。随后,对经过拉伸的微孔基体进行压延,以制成尺寸稳定性和物理性能有很大改善的成品微孔材料。
对附图的简要说明为了说明本发明,附图中显示了关于本发明的一些实施方式的信息;但是应当理解,本发明不限于所示的精确信息。


图1是利用水银孔隙仪获得的数据图,该图给出了根据现有技术教导制造的微孔基体在拉伸之前孔直径与孔容的关系;图2是利用水银孔隙仪获得的数据图,该图给出了根据现有技术教导制造的材料的孔直径与孔容的关系,其中拉伸沿加工方向单轴进行;图3是利用水银孔隙仪获得的数据图,该图给出了根据现有技术教导制造的材料的孔直径与孔容的关系,其中拉伸是双轴拉伸;图4是利用水银孔隙仪获得的数据图,该图给出了通过本发明方法制造的膜的孔直径与孔容的关系,其中拉伸之后的压延在中等压力下进行;
图5是利用水银孔隙仪获得的数据图,该图给出了通过本发明方法制造的膜的孔直径与孔容的关系,其中拉伸之后的压延在较高挤压压力下进行。
对本发明的详细说明一种用于生产微孔材料的方法,包括步骤准备超高分子量聚乙烯(本文命名为UHMWPE);准备粒状填料;以及准备加工增塑剂,其中,加工增塑剂在室温下为液体。下文将对UHMWPE、填料和增塑剂作更详细地说明。将UHMWPE、填料和增塑剂混合在一起形成混合物。通过压出板(例如窄缝压出板或吹膜压出板)将混合物挤成薄片。薄片可通过浇铸到激冷轧辊上、或压延、或吹制而被进一步加工。随后,使经过浇铸或压延的薄片经历抽提步骤,以部分(或完全)除去增塑剂并由此形成微孔基体。该基体包含UHMWPE、增塑剂——如果未被完全抽提出去、和遍布基体的粒状填料。以微孔基体重量计,填料占5%到95%。微孔基体具有贯通微孔基体的连通孔网络。以微孔基体体积计,孔占25%到90%。拉伸微孔基体。下文对拉伸过程作更详细地说明。经过拉伸的微孔基体在升高的温度下尺寸不稳定。随后,对经过拉伸的微孔基体进行压延,以制成即使在升高的温度下尺寸也稳定的成品微孔材料。
超高分子量聚乙烯(UHMWPE)可被定义为具有至少约18dl/g本征粘度的聚乙烯。多数情况下,本征粘度为至少约19dl/g。尽管对本征粘度的上限没有特别限制,但本征粘度通常在约18至约39dl/g范围内。在约18至约32dl/g范围内的本征粘度是最常见的。
本文和权利要求书中所用的本征粘度是通过将若干UHMWPE稀溶液的比浓粘度或固有粘度外推到零浓度而确定的,其中,溶剂是新近蒸馏的添加了以重量计0.2%的3,5-二-叔丁基-4-羟基氢化肉桂酸新戊烷四基酯(CAS登记号No.6683-19-8)的十氢萘。除使用若干不同浓度的稀溶液外,按ASTM D 4020-81的通用方法,利用Ubbelohde No.1粘度计,从在135℃下获得的相对粘度确定UHMWPE的比浓粘度或本征粘度。ASTM D 4020-81通过引用全部并入本文。
为将其性能提供给微孔材料,在基体中,应当有足够量的UHMWPE。只要它们的存在不对微孔材料的性能有显著不利的影响,基体中还可以存在其它热塑性有机聚合物。可存在的其它热塑性聚合物的量取决于这类聚合物的性质。通常,如果其它热塑性有机聚合物的分子结构中包含很少支链、几乎没有长侧链和几乎没有大侧基团时,可使用比有大量支链、很多长侧链和很多大侧基团时更多量的其它热塑性有机聚合物。因此,可与UHMWPE混合的示例性热塑性有机聚合物为低密度聚乙烯、高密度聚乙烯、聚(四氟乙烯)、聚丙烯、乙烯共聚物如乙烯-丁烯或乙烯-己烯、丙烯共聚物、乙烯和丙烯酸共聚物以及乙烯和甲基丙烯酸共聚物。如果需要,可用钠、锌等中和含羧基的共聚物中的全部或部分羧基。通常,基于基体重量,至少约70%的UHMWPE(或70%的UHMWPE和其它热塑性有机聚合物)能提供给微孔材料所需的性能。
粒状填料可以呈基本颗粒、基本颗粒的聚集体或两者结合的形式。大多数情况下,以重量计,至少约90%的填料具有在约5到约40微米范围内的总粒径。如果所用填料为氧化钛(TiO2),总粒径可在0.005至45微米间变化。在另一个用氧化钛(TiO2)作填料的实施方式中,总粒径在0.1至5微米间变化。在另一种情况下,以重量计,至少约90%的填料具有在约10到约30微米范围内的总粒径。可以预期的是,在配料加工期间填料聚集体的大小会减少。因此,微孔材料中的总粒径分布可能会比原始填料本身中的小。按照ASTM C 690-80,通过利用TAII型库尔特悬浮物测定仪(Coulter Electronics,Inc.)来测定粒径,但是,改用四桨叶、4.445厘米直径的旋桨式搅拌器将填料在Isoton II电解液(Curtin Matheson Scientific,Inc.)中搅拌10分钟外。ASTM C 690-80通过引用全部并入本文。
粒状填料平均具有由透射电子显微镜测定的小于约30微米的基本粒径(不论基本颗粒是否团聚)。常见的,平均基本粒径小于约0.05微米。在一个实施方式中,填料的平均基本粒径为约20微米(当使用沉淀二氧化硅时)。
在聚合物基体中使用填料已有充分记载。通常,合适填料的例子包括硅质填料,如二氧化硅、云母、蒙脱石、高岭土、石棉、滑石、硅藻土、蛭石、天然和合成沸石、水泥、硅酸钙、粘土、硅酸铝、硅铝酸钠、多硅酸铝、氧化铝二氧化硅凝胶和玻璃颗粒。除硅质填料外,还可以使用其它粒状的基本不溶于水的填料。这些可选填料的例子包括炭黑、活性炭、碳纤维、炭、石墨、氧化钛、氧化铁、氧化铜、氧化锌、氧化铅、钨、氧化锑、氧化锆、氧化镁、氧化铝、二硫化钼、硫化锌、硫酸钡、硫酸锶、碳酸钙和碳酸镁。
二氧化硅和粘土是最有用的硅质填料。在二氧化硅中,沉淀二氧化硅、硅胶或煅制二氧化硅是最常用的。
已经发现,适用的粒状填料是沉淀二氧化硅。由于这些不同材料具有不同的性质,区分沉淀二氧化硅和硅胶是重要的。与此有关的文献见R.K.Iler,The Chemistry of Silica,John Wiley & Sons,NewYork(1979),国会图书馆目录号No.QD 181.S6144,通过引用将其公开的全部内容并入本文。尤其注意第15-29、172-176、218-233、364-365、462-465、554-564和578-579页。通常在低pH下通过用酸去酸化可溶性金属硅酸盐一般是硅酸钠的水溶液而在商业上制备硅胶。尽管有时也使用二氧化碳,但所用酸通常为强矿物酸如硫酸或盐酸。在低粘度下,由于凝胶相和周围液相之间在密度上基本没有差别,因此,凝胶相不会沉淀出来,也就是说,其不会沉淀。因而,硅胶可被描述为胶态无定形二氧化硅相连颗粒的非沉淀的、粘结的、硬的、三维网络。细分态从大的固体团块到亚显微颗粒变化,且水合度从几乎无水的氧化硅到以重量计每份二氧化硅包含100份左右水的软凝胶体,虽然高水合形式很少用于本发明。
另一方面,通常通过使可溶性金属硅酸盐通常为碱金属硅酸盐如硅酸钠的水溶液与酸化合以使胶体颗粒在弱碱性溶液中生长并通过可溶性碱金属盐的碱金属离子凝结而在商业上生产沉淀二氧化硅。可使用各种酸,包括矿物酸,但优选的材料是二氧化碳。在没有凝结剂时,二氧化硅在任何pH下也不会从溶液中沉淀出来。用于影响沉淀的凝结剂可以是在胶态二氧化硅颗粒形成期间产生的可溶性碱金属盐,也可以是加入的电解质如可溶性无机或有机盐,或者可以是两者的结合。因而,沉淀二氧化硅可被描述为在制备期间的任何一点没有肉眼可见的凝胶存在的胶态无定形二氧化硅基本粒子的沉淀聚集体。聚集体的粒径和水合度可宽泛地变化。
沉淀二氧化硅粉末与硅胶的不同之处在于,其已经被粉碎过,通常具有更开放的结构,也就是更高的比孔容。但是,由使用氮气作吸附物的Brunauer、Emmett、Teller(BET)法测定的沉淀二氧化硅的比表面积通常比硅胶的低。
本发明可使用多种不同的沉淀二氧化硅,但优选的沉淀二氧化硅是通过使用合适的酸如硫酸或盐酸从硅酸钠水溶液中沉淀而获得的那些。也可用二氧化碳来沉淀二氧化硅。这些沉淀二氧化硅是已知的并且美国专利US2,940,830中详细记载了其制造方法,通过引用将其全部公开内容并入本文,包括制造沉淀二氧化硅的方法以及产品的性质。
在前述用于生产微孔基体的方法中,当基本不溶于水的填料负载了很多加工增塑剂时,挤出和压延变得容易。填料颗粒吸收和保留加工增塑剂的负载量是填料表面积的函数。因此,填料具有高表面积是优选的。高表面积填料是粒径非常小的材料、具有高孔隙度的材料或是表现出上述两种特征的材料。除改为在130℃下将体系和样品脱气1小时外,用氮气作吸附物,按照ASTM C 819-77,通过Brunauer、Emmett、Teller(BET)法测定的填料本身的表面积通常在约20至约400平方米每克范围内。优选地,表面积在约25至约350平方米每克范围内。ASTM C 819-77通过引用全部并入本文。由于需要将填料基本保持在微孔基体薄片中,因此,优选的是当用上述方法生产微孔基体薄片时,基本不溶于水的填料基本不溶于加工增塑剂且基本不溶于有机抽提液。
加工增塑剂在室温下一般为液体,并且通常其为工艺用油如石蜡油、环烷油或芳烃油。合适的工艺用油包括满足ASTM D 2226-82之103和104类要求的那些。已发现具有根据ASTM D 97-66(1978重新审定)的低于22℃倾点的油是适用的。具有低于10℃倾点的油也是适用的。合适的油的例子包括但不限于,Shellfiex412和Shellflex371(Shell OilCo.),其为衍生自环烷基原油的精制溶剂和氢化处理的油。ASTM D2226-82和ASTM D 97-66(1978重新审定)通过引用全部并入本文。可以预期的是,其它材料,包括邻苯二甲酸酯增塑剂如邻苯二甲酸二丁酯、二(2-乙基己基)邻苯二甲酸酯、邻苯二甲酸二异癸酯、邻苯二甲酸二环己酯、邻苯二甲酸丁基苄酯、邻苯二甲酸双十三烷酯和蜡能令人满意地作为加工增塑剂。加工增塑剂对热塑性有机聚合物在60℃下几乎没有溶剂化效应,在100℃左右的高温下仅有中度的溶剂化效应,而在200℃左右的高温下有显著的溶剂化效应。
还可任选存在少量,通常以重量计小于约5%的加工中用的其它材料如润滑剂、有机抽提液、表面活性剂、水等等。在微孔材料中任选存在的为特别目的而引入的其它材料以少量存在,以重量计通常小于约15%。这些材料的例子包括抗氧化剂、紫外线吸收剂、阻燃剂、增强纤维如碳纤维或切碎的玻璃纤维束、染料、颜料等。除填料和用于一种或多种特殊目的的内容物外,微孔材料的余料基本是热塑性有机聚合物和增塑剂(如果未被完全抽提出去)。
然后,将填料、热塑性有机聚合物粉末、加工增塑剂及其它添加剂混合,直至得到基本均匀的混合物。此均匀混合物还可包含其它添加剂如微量的润滑剂和抗氧化剂。形成混合物时所采用的填料与聚合物粉末的重量比与准备生产的经过拉伸的微孔材料基本相同。以重量计,此混合物中填料与UHMWPE的比在约1∶9至约15∶1的填料比UHMWPE范围内。以微孔材料重量计,粒状填料占约5%到约95%。通常,以微孔材料重量计,这种填料占约45%到约90%。在发明的一个实施方式中用了以重量计约55%到约80%。以重量计,UHMWPE与加工增塑剂的比为1∶30至3∶2。以重量计,填料与加工增塑剂的比为1∶15至3∶1。
在抽提和压延处理中,将混合物和另外的加工增塑剂一起引入螺旋挤压机的加热筒中。挤压机配有薄片压出板。通过压出板形成的连续薄片不需要拉而向前运动至一对协同作用的热压延辊,以形成比从压出板出来的连续薄片厚度薄的连续薄片。
使连续薄片经历抽提步骤,从中将加工增塑剂部分或完全除去。抽提步骤可包括一步或多步。例如,将来自压延机的连续薄片随后传至第一抽提区,在那里通过用有机液体抽提而将加工增塑剂基本除去,所述有机液体是加工增塑剂的良溶剂,是有机聚合物的不良溶剂,且比加工增塑剂易挥发。通常,但并非必须,加工增塑剂和有机抽提液都基本和水不混溶。有多种有机抽提液可供使用。合适的有机抽提液的例子包括但不限于己烷、链长度变化的烷烃、1,1,2-三氯乙烯、四氯乙烯、1,2-二氯乙烷、1,1,1-三氯乙烷、1,1,2-三氯乙烷、二氯甲烷、氯仿、异丙醇、二乙醚和丙酮。随后,将连续薄片传至第二抽提区,在那里通过加热、蒸汽和/或水将残留的有机抽提液基本除去。之后,使连续薄片通过一加压气流干燥机以基本除去残留的水和剩余的残留有机抽提液。将来自干燥机的连续薄片即微孔基体传送至卷片辗滚。
就经过拉伸的微孔基体而言,微孔基体包含基本与上面讨论的重量比例相同的填料、UHMWPE和任选材料。如果未被完全抽提出去,基体还可能有一些增塑剂。以微孔基体重量计,残留的加工增塑剂的含量通常小于20%,并且可通过使用相同或不同的有机抽提液的额外的抽提而使其进一步降低。
在微孔基体中,以体积计,孔占约25%到约90%。多数情况下,以微孔基体体积计,孔占约30%到约80%。一个实施方式中,微孔基体体积的50%到75%是孔。微孔基体的孔隙度表示为以体积计的百分数。除非被浸渗,经过拉伸的微孔基体的孔隙度大于拉伸前的微孔基体的孔隙度。
本文及权利要求书中所用的表示为以体积计的百分数的微孔材料的孔隙度(也称空隙率)是根据下式确定的孔隙度=100[1-d1/d2]其中,d1是样品密度,由样品重量和通过测量样品尺寸而确定的样品体积来确定;d2是样品实心部分的密度,由样品重量和样品实心部分的体积来确定。可用Quantachrome stereopycnometer(QuantachromeCorp.),按照所附操作说明书来测定样品实心部分的体积。
可通过水银孔隙法用Autoscan水银孔隙仪(Quantachrome Corp)测定微孔薄片的孔的体积平均直径。水银的浸入/挤出是基于在严格控制的压力下迫使水银(一种非润湿液体)进入多孔结构内。由于水银不湿润大部分物质并且不会通过毛细作用自发地渗透孔,因此,必须通过施加外部压力而迫使其进入样品空隙内。填满空隙所需的压力与孔的大小成反比。填满大空隙仅需要少量的力或压力,而填满非常细小的孔则需要大得多的压力。
在操作孔隙仪时,在高压范围(从约138千帕绝对压力到约227兆帕绝对压力)内进行扫描。如果约2%或更少的总侵入体积发生在高压范围的低端(从约138到约250千帕绝对压力),则体积平均孔直径被视为由孔隙仪测定的体积平均孔半径的两倍。否则,在低压范围(从约7到约165千帕绝对压力)进行额外扫描,并根据下式计算体积平均孔直径d=2[v1r1w1+v2r2w2]/[v1w1+v2w2]]]>其中,d是体积平均孔直径,v1是高压范围内侵入的水银的总体积,v2是低压范围内侵入的水银的总体积,r1是由高压扫描测定的体积平均孔半径,r2是由低压扫描测定的体积平均孔半径,w1是经受高压扫描样品的重量,而w2是经受低压扫描样品的重量。
对水银侵入孔隙空间来说,大孔需要较低压力;而对侵入孔隙空间来说,较小的孔需要较高压力。图1中,大约20%的孔小于0.02微米。DV/log d表示孔容随孔直径对数变化的变化。因此,如可从图1中看出的,有大量直径为0.016微米左右的孔,并且其峰高比任何其它峰高出几倍。在此图中,峰面积和高度代表在相应孔直径对数处的孔的相对数量。
如图1所示,微孔基体前体的孔的体积平均直径通常为约0.01至约1.0微米的分布。通过拉伸该前体材料,可获得大小超过1微米的孔。在图2和3中可以看到这种经过拉伸的材料所得的孔分布。取决于拉伸量,可获得大于20至30微米的孔。然后,经过后续的压延步骤,可将孔大小从扩大的孔分布有选择地降低。对所得到的经过拉伸和压延的微孔材料来说,这种改变的孔平均直径分布的一个实施例是在约0.01至约0.8微米范围内。在另一个实施方式中,如图4所示,所得微孔材料具有约0.01至约0.6微米的孔平均直径分布。通过水银孔隙法测定微孔基体的孔体积平均直径。
可通过在至少一个拉伸方向上将微孔基体拉伸至拉伸比为至少约1.5来生产经过拉伸的微孔基体。多数情况下,拉伸比为至少约1.7。在另一个实施方式中,其为至少约2。常见地,拉伸比在约1.5至约15范围内。通常拉伸比在从约1.7至约10范围内。在另一个实施方式中,拉伸比在约2至约6范围内。本文和权利要求书中所用的拉伸比由下式确定S=L2/L1其中,S是拉伸比,L1是位于微孔基体上且在与拉伸方向平行的直线上的两个参考点之间的距离,而L2是位于经过拉伸的微孔材料上的相同的两个参考点之间的距离。当在两个方向上进行拉伸时,两个方向上的拉伸可先后或同时进行。
完成拉伸的温度可宽泛地变化。在约环境室温下可完成拉伸,但通常采用升高的温度。在拉伸之前、期间和/或之后可通过多种方法中的任一种加热微孔基体。这些方法的例子包括辐射加热如通过电加热或燃烧煤气的红外加热器提供、对流加热如通过再循环热空气提供,和传导加热如通过与热辊接触提供。为控温而测量的温度可根据所用设备和个人偏好而变化。例如,测温装置可放置得能探测红外加热器表面的、红外加热器内部的温度,红外加热器和微孔基体之间若干点的气温,设备内部若干点上循环热空气的温度,进入或离开设备的热空气的温度,拉伸过程中所用辊表面的温度,进入或离开这些辊的热传导流体的温度,或者薄膜表面的温度。通常,这样控制一点温度或多点温度,即,使微孔基体大体均匀地被拉伸以便经过拉伸的微孔基体的薄膜厚度偏差——如果有的话——在可接受的限度内并使得落在那些限度以外的经过拉伸的微孔基体的量低至可以接受。由于温度取决于所用设备的性质、测温装置的位置以及被测温物质或对象的一致性,显然,用于控制目的的温度可以或可以不接近于微孔基体本身的温度。
考虑到加热装置的位置以及拉伸期间通常采用的线速度,沿微孔基体厚度可存在或不存在变化温度梯度。同样由于此线速度,测量这些温度梯度是不现实的。当存在时,变化温度梯度的存在使提及单一薄膜温度是不合理的。因此,薄膜的表面温度,其可被测量,最适合用来表征微孔基体的热状态。尽管温度可能被人为改变,例如,对具有横跨薄片的楔形横截面的微孔基体进行补偿,在拉伸期间,其在整个微孔基体宽度上通常大体相同。沿薄片长度的薄膜的表面温度在拉伸期间可大体相同或不同。
在其下完成拉伸的薄膜表面的温度可宽泛地变化,但如上文所解释的,它们通常是这样的,即,使微孔基体能被大体均匀地拉伸。大多数情况下,拉伸期间薄膜表面的温度在约20℃至约220℃范围内。通常,这些温度在约50℃至约200℃范围内。在这种实施方式中,约75℃至约180℃是另一个范围。
可根据需要使拉伸在一步或多步中完成。例如,当想在单一方向上拉伸(单轴拉伸)微孔基体时,可通过单一拉伸步骤或序列拉伸步骤至得到所需最终拉伸比而完成拉伸。类似地,当想在两个方向上(双轴拉伸)拉伸微孔基体时,可通过单个双轴拉伸步骤或序列双轴拉伸步骤至得到所需最终拉伸比而进行拉伸。也可通过在一个方向上的一步或多步单轴拉伸步骤和另一个方向上的一步或多步单轴拉伸步骤序列来完成双轴拉伸。在其中使微孔基体同时在两个方向上拉伸的双轴拉伸步骤和单轴拉伸步骤可按任何顺序进行。应当慎重考虑在超过两个方向上的拉伸。可以看出,步骤的不同排列是相当多的。整个加工过程中可根据需要包括其它步骤,如冷却、加热、烧结、退火、卷绕、拆卷等。
各种类型的拉伸设备为已为人熟知,并可用来完成根据本发明的微孔基体的拉伸。通常通过在两个辊之间的拉伸来完成单轴拉伸,其中第二个或下行的辊以比第一个或上行的辊大的圆周速度转动。也可在标准拉幅机中完成单轴拉伸。可通过在拉幅机上同时在两个不同方向拉伸而完成双轴拉伸。不过更常见的是,通过首先在如上所述的在两个不同步转动的辊之间的单轴拉伸、以及随后用或是拉幅机在不同方向上单轴拉伸或是通过用拉幅机双轴拉伸而完成双轴拉伸。最常见的双轴拉伸类型是其中两个拉伸方向彼此成近似直角。在连续薄片被拉伸的多数情况下,一个拉伸方向至少大体平行于薄片的长轴(加工方向),另一个拉伸方向至少大体垂直于加工方向并在薄片平面内(横向)。
在微孔基体被单轴或双轴拉伸后,随后再对经过拉伸的微孔基体进行压延。使经过拉伸的微孔基体前进至一对协同动作的热压延辊,以制成比从拉伸设备出来的微孔基体厚度薄的膜。通过随温度调整这些压延辊所施加的压力,可根据需要控制成品膜的孔径。这使制造商能以迄今未见的控制度来调整平均孔径。最终孔径会影响其它性质如膜的Gurley值,并且能改善膜在高于20℃至25℃室温的温度下的尺寸稳定性。
附图是采集自水银孔隙法的数据曲线。图1是显示前体膜的以微米计的孔直径的图,该前体膜通过窄缝压出板挤出,并经过压延,然后部分抽提出增塑剂。所得微孔基体未经拉伸或后续的压延。图2是显示在加工方向上被单轴拉伸400%的膜的以微米计的孔直径的图。图3是显示被双轴拉伸的膜的以微米计的孔直径的图。图4是显示被双轴拉伸并随后通过25微米间隙压延的膜的以微米计的孔直径的图。图5是显示被双轴拉伸并随后通过极小间隙在高挤压压力下压延的膜的以微米计的孔直径的图。这些图表明,挤压显著改变了存在于材料中的孔径分布。并且,通过调节挤压条件而调节孔径分布是可能的。
成品膜是将前体材料拉伸并随后将其挤压至具有比上文定义为微孔基体的经过拉伸的前体材料在厚度上减少至少5%的产物。此微孔材料基本由下述物质组成(或者包含下述物质)超高分子量聚乙烯(UHMWPE)和遍布微孔材料的粒状填料,其中以微孔材料重量计,填料占约5%到95%。微孔材料具有贯通微孔材料的连通孔网络,以微孔材料体积计,孔占至少25%。微孔材料在加工方向(MD)上具有大于20N/mm2的拉伸强度;当用二氧化硅作填料时,微孔材料还具有小于180秒的润湿时间。已经观察到,此微孔材料具有小于130mΩ/mm2的电阻。
一种微孔材料,其中微孔材料基本由下述物质组成(或者包含下述物质)超高分子量聚乙烯(UHMWPE)和遍布微孔材料的粒状填料,其中以微孔材料重量计,填料占约5%到95%。该微孔材料具有贯通微孔材料的连通孔网络,以微孔材料体积计,孔占至少25%。此微孔材料没有大小超过1.0微米的孔;并且其中,微孔材料的孔的体积变化除以log d小于2cc/g。
所得到的既经过拉伸又经过压延的微孔材料在加工方向上表现出小于10%的收缩,并在加工方向(MD)上具有大于25N/mm2的拉伸强度。
上文所述的微孔材料还可以包含第二聚合物。将UHMWPE与高密度(HD)聚乙烯混合,产生聚烯烃混合物,其中以重量计,该聚烯烃混合物具有至少50%的UHMWPE。以重量计,与此聚烯烃一起使用的填料,在填料比聚烯烃混合物为约1∶9至约15∶1范围内。所得基体基本由下列物质组成(或包含下列物质)UHMWPE和HD聚乙烯以及遍布基体的粒状填料。此微孔材料具有大于25N/mm2的加工方向(MD)拉伸强度。
拉伸之后经过较高压力挤压所得到的微孔材料基本由下列物质组成(或包含下列物质)超高分子量聚乙烯(UHMWPE)和遍布微孔材料的粒状填料,其中以微孔材料重量计,填料占约5%到95%。该微孔材料具有贯通微孔材料的连通孔网络,以微孔材料体积计,孔占至少25%。由于挤压压力决定所得到的孔径分布,因此,多孔结构是高度可调的。例如,图4中的这种微孔材料没有大小超过0.50微米的孔。平均孔径在0.01和0.3微米之间,并且孔的大小在加减0.2微米间变化。
所得到的既经过拉伸又经过压延的微孔材料在加工方向上表现出小于10%的收缩,并且在加工方向(MD)上具有大于25N/mm2的拉伸强度。
上文所述的微孔材料还可以包含第二聚合物。将UHMWPE与高密度(HD)聚乙烯混合,产生聚烯烃混合物,其中以重量计,该聚烯烃混合物具有至少50%的UHMWPE。以重量计,与此聚烯烃一起使用的填料,在填料比聚烯烃混合物为约1∶9至约15∶1的范围内。所得基体基本由下列物质组成(或包含下列物质)UHMWPE和HD聚乙烯以及遍布基体的粒状填料。此微孔材料具有大于25N/mm2的加工方向(MD)拉伸强度。
开发了一种用于改进未涂覆微孔膜的润湿时间的方法,包括步骤准备超高分子量聚乙烯(UHMWPE);准备粒状二氧化硅填料;准备加工增塑剂,其中所述加工增塑剂在室温下可为液体。然后,将UHMWPE、填料和加工增塑剂混合在一起,形成混合物,以重量计,混合物具有填料比UHMWPE为1∶9至15∶1的重量比。然后,将混合物挤压成薄片。之后,对薄片进行加工,其中加工选自压延、浇铸或吹制。然后使经过加工的薄片经历抽提步骤,从中将全部或部分加工增塑剂从薄片中抽提出来,以制成包含UHMWPE和粒状填料的微孔基体薄片。在此基体中,填料遍布整个基体。随后,对微孔基体薄片进行压延,以制成厚度降低至少5%的微孔膜。在未用任何化学表面涂覆处理的情况下,所得微孔膜比所述微孔基体薄片在润湿时间上一般表现出50%或更多的降低。
此外,开发了一种用于改进未涂覆微孔膜的润湿时间的方法,其包括步骤准备超高分子量聚乙烯(UHMWPE);准备粒状二氧化硅填料;准备加工增塑剂,其中,所述加工增塑剂在室温下可为液体。然后,将UHMWPE、填料和加工增塑剂混合在一起,形成混合物,以重量计,混合物的填料比UHMWPE为1∶9至15∶1重量比。然后,将混合物挤压成薄片。之后,对薄片进行加工,其中加工选自压延、浇铸或吹制。随后,使经过加工的薄片经历抽提步骤,从中将全部或部分加工增塑剂从薄片中抽提出来,以制成包含UHMWPE和粒状填料的微孔基体薄片。在此基体中,填料遍布整个基体。随后在至少一个拉伸方向上将微孔基体薄片拉伸至拉伸比为至少约1.5,以制成经过拉伸的微孔基团薄片。然后,对经过拉伸的微孔基团薄片进行压延,以制成厚度降低至少5%的微孔膜。在未用任何化学表面涂覆处理的情况下,所得微孔膜比微孔基体薄片在润湿时间上一般表现出50%或更多的降低。
本发明的微孔膜适合用作电化学电池用的隔板。电化学电池是emf(电动势)的化学发生器。电化学电池通常包括阳极、阴极、隔板、电解质和有时有的壳体。电化学电池可分为两类电池和燃料电池。电池是电荷存储装置。电池可以是一次的或二次的。一次电池不能被容易地再充电,而二次电池在放电至其原始状态后可被用电再次充电。本发明可被用于的电池的一些例子包括但不限于铅酸、Edison、镍-镉、锌、镍金属氢化物、氧化银、勒克兰瑟、镁、碱、汞、mercad、锂一次电池、锂二次电池、镍氢、钠硫和氯化镍钠。
除了一种或两种反应物都不是永久包含于电化学电池中之外,燃料电池在操作方面与电池类似。对于燃料电池,当需要动力时,一种或两种反应物从外源输入。用于燃料电池的燃料通常为气态或液态并且氧或空气为氧化剂。用于燃料电池的重要燃料包括氢和甲醇。在燃料电池应用中,在电池中被称为微孔膜的材料可能被称为“质子交换膜”(PEM)或“聚合物电解质膜”(PEM)或润湿膜或多孔间隔膜。应当注意,为简单起见,在本申请中,燃料电池应用中的PEM或润湿膜或多孔间隔膜将被称为微孔膜。
本文所用的电池隔板是指放置在电池电极之间的薄的微孔膜。一般地,其将电极物理分隔以避免它们接触,在放电和充电期间允许离子通过电极之间的孔,作为电解质的储存器,并且可具有“断路”功能。
这里所说的锂电池可包括锂一次电池,它们以锂金属或锂合金电池为人所知。锂电池还可包括锂二次电池。有各种种类的锂二次电池,可包括液态有机电解质电池、聚合物电解质电池、锂-离子电池、无机电解质电池和锂合金电池。液态有机电解质电池是使用作为阴极的插入化合物、液态有机电解质和金属阳极的固体阴极电池。液态有机电解质电池的一些例子包括Li/MoS2、Li/MnO2、Li/TiS2、Li/NbSe3、Li/V2O5、Li/LiCoO2、Li/LiNiO2。聚合物电解质电池是使用聚合物电解质、作为阴极的插入化合物和作为阳极的锂金属的电池。聚合物电解质电池的一些例子包括Li/PEO-LiClO4/V6O13。锂-离子电池是使用插入化合物作阳极和阴极以及液态有机或聚合物电解质的电池。锂-离子电池的一些例子包括LixC/LiCoO2、LixC/LiNiO2、LixC/LiMn2O4。无机电解质电池是使用其同时起电解质溶剂作用的无机阴极材料的液体阴极电池。无机电解质电池的一些例子是Li/SO2、Li/CuCl2。锂合金电池是具有锂-合金阳极、液态有机电解质和各种阴极的电池。锂合金电池的一些例子是LiAl/MnO2、LiAl/V2O5、LiAl/C、LiC/V2O5、LiAl/聚合物。
据信,一种具有高电势的能受益于本发明的电池是可再充电的锂电池,例如具有锂金属(Li)、锂合金(LiSix、LiSnx、LiAlx等)、或者碳锂材料(LixC6,其中x<1)、或插入化合物(或过渡金属化合物)作为阴极(阳极)。这些插入化合物可包括但不限于LixWO2、LixMoO2、LixTiS2和LixTiyOz。这些可再充电的锂电池也被称为锂离子电池或锂聚合物电池。用于这些电池的阴极、电解质和壳体为人所熟知并且是常规的。上文已详细讨论了隔板,通过该隔板获得了本文讨论的改进。
另一种据信具有高电势的能受益于本发明的电池是铅酸电池。在对铅酸电池的综述中,确信这些隔板适用于密封铅酸(SLA)电池,或具有调节阀的铅酸(VRLA)电池,其中,电池的电解质通过吸收或胶凝而固定。
测试方法厚度——膜厚以单位微米(μm)报告,用ASTM D374测量。
击穿力——击穿力的单位是牛顿,测试方法为ASTM D3763。
拉伸强度——拉伸强度按ASTM D882测量,单位是N/mm2。
电阻——电阻的单位是Ω-cm2。
收缩测试——按ASTM D4802的修正版测量MD和TD的收缩值。将样品分割成5英寸(12.7cm)的正方形并放入100℃的炉中10分钟。单位是从原始大小改变的百分数。
基重——按ASTM D3776测定基重,单位为克每平方米。
水银孔隙度——用水银侵入孔隙度法测量。
Gurley——单位是sec/10cc,根据TAPPI T536法测量。
润湿时间——目视方法,将样品轻轻放置(不浸入)在水表面上,膜颜色开始加深所花费的时间(以秒计)称为浸润时间。
设备——这些测试中使用的压延辊是具有8英寸或20.3厘米直径的堆辗。
如从下列实施例中可看出的,所得到的在拉伸后又经过压延的微孔材料比仅经过拉伸的膜表现出改善的尺寸稳定性。
实施例实施例A是包含下列组分的膜
取来自实施例A的材料,用拉幅机设备制备另外的样品。该设备同时允许单轴和双轴拉伸。使用下列参数制备这些样品
表1经过拉伸的膜的特征
样品A-18和A-19是经过双轴拉伸且用连续拉伸装置制备的。其它样品是仅在MD方向上(单轴)经过拉伸的膜。
表2经过拉伸的膜的特征(续)
表3拉伸/挤压膜的条件和特征
表4拉伸/挤压膜的条件和特征(续)
没有得到未经过压延的A-16、A-17、A-18和A-19的润湿时间并发现其远高于10分钟。
从这些表中的数据可以看出本方法与现有技术相比所具有的若干优势。首先,经过拉伸然后再经过压延的薄膜即使在升高的温度下也具有大幅改善的尺寸稳定性。通过单独拉伸处理能得到的厚度是有限的而通过在拉伸之后对膜进行压延可获得更薄的膜。对经过拉伸的微孔材料进行压延后,机械强度得到大幅改善。最后,压延处理减小了孔径并且可用不同程度的压延来调整至所需孔径。
在不背离其精神和实质特征的情况下,本发明可以其它形式体现,因此,当指明本发明的范围时,应当依据所附的权利要求书,而非上述说明书。
权利要求
1.一种用于生产微孔材料的方法,其包括下列步骤准备超高分子量聚乙烯(UHMWPE);准备粒状填料;准备加工增塑剂;将UHMWPE、填料和加工增塑剂混合在一起,形成混合物,以重量计,该混合物具有1∶9至15∶1的填料比UHMWPE的重量比;将所述混合物挤压成薄片;加工所述薄片,其中加工选自压延、浇铸或吹制;从所述薄片中将全部或部分所述加工增塑剂抽提出来,以制成包含UHMWPE和所述粒状填料的基体,该填料遍布所述基体,制成微孔基体薄片;将所述微孔基体薄片在至少一个拉伸方向上拉伸至拉伸比为至少约1.5,以制成经过拉伸的微孔基体薄片;和对所述经过拉伸的微孔基体薄片进行压延。
2.根据权利要求1所述的用于生产微孔材料的方法,该微孔材料具有改善的物理和尺寸稳定性,其中,在抽提步骤中,用有机抽提液将所述加工增塑剂从所述薄片中基本除去,有机抽提液是所述加工增塑剂的良溶剂,聚合物的不良溶剂,且比所述加工增塑剂易挥发;通过加热、蒸汽和/或水将任何残留的有机抽提液基本除去;并且通过在拉伸所述微孔基体之前干燥,而将任何残留的水和剩余的残留有机抽提液基本除去。
3.根据权利要求1所述的用于生产微孔材料的方法,其中,所述填料选自如下集合,该集合本质上包括二氧化硅、云母、蒙脱石、高岭土、石棉、滑石、硅藻土、蛭石、天然和合成沸石、水泥、硅酸钙、粘土、硅酸铝、硅铝酸钠、多硅酸铝、氧化铝二氧化硅凝胶、玻璃颗粒、炭黑、活性炭、碳纤维、炭、石墨、二氧化钛、氧化铁、氧化铜、氧化锌、氧化铅、钨、氧化锑、氧化锆、氧化镁、氧化铝、二硫化钼、硫化锌、硫酸钡、硫酸锶、碳酸钙和碳酸镁。
4.根据权利要求3所述的用于生产微孔材料的方法,其中,所述填料选自如下集合,该集合本质上包括二氧化硅、沉淀二氧化硅、硅胶、煅制二氧化硅、云母、滑石、硅藻土、炭黑、活性炭、碳纤维、二氧化钛和碳酸钙。
5.根据权利要求1所述的用于生产微孔材料的方法,其中,对所述微孔基体薄片进行双向拉伸,该拉伸在两个拉伸方向上均具有至少约1.5的拉伸比。
6.根据权利要求5所述的用于生产微孔材料的方法,其中,在抽提步骤中,用有机抽提液将所述加工增塑剂从所述薄片中基本除去,该有机抽提液是所述加工增塑剂良溶剂,是聚合物的不良溶剂,且比所述加工增塑剂易挥发;通过加热、蒸汽和/或水将任何残留的有机抽提液基本除去;并且通过在拉伸所述微孔基体之前干燥,而将任何残留的水和剩余的残留有机抽提液基本除去。
7.根据权利要求1所述的用于生产微孔材料的方法,其中,将所述UHMWPE与高密度(HD)聚乙烯混合,生成聚烯烃混合物,以所述聚烯烃混合物的重量计,所述聚烯烃混合物具有至少50%的UHMWPE;以重量计,所述填料与所述聚烯烃混合物的比在1∶9至15∶1的填料比聚烯烃混合物的范围内,并且所述基体包含UHMWPE和HD聚乙烯,且所述粒状填料遍布所述基体。
8.由权利要求1的方法生产的产品。
9.由权利要求5的方法生产的产品。
10.由权利要求7的方法生产的产品。
11.一种由前体材料制造的微孔材料,其中,从所述前体材料,所述微孔材料具有5%或更多的厚度减少;所述微孔材料包含超高分子量聚乙烯(UHMWPE)和遍布所述微孔材料的粒状二氧化硅填料;以所述微孔材料重量计,所述填料占约5%到95%;所述微孔材料具有贯通所述微孔材料的连通孔网络,以所述微孔材料的体积计,所述孔占至少45%;所述微孔材料具有大于25N/mm2的加工方向(MD)拉伸强度;和所述微孔材料具有小于180秒的润湿时间。
12.根据权利要求11所述的微孔材料,其中,所述微孔材料具有大于35N/mm2的加工方向(MD)拉伸强度。
13.根据权利要求11所述的微孔材料,其中,所述微孔材料具有大于50N/mm2的加工方向(MD)拉伸强度。
14.一种微孔材料,其中,所述微孔材料包含超高分子量聚乙烯(UHMWPE)和遍布所述微孔材料的粒状填料;以所述微孔材料重量计,所述填料占约5%到95%;所述微孔材料具有贯通所述微孔材料的连通孔网络,以所述微孔材料体积计,所述孔占至少25%;这些孔形成一孔分布;所述微孔材料没有大小超过1.0微米的孔;和对总孔分布来说,此微孔材料的孔的体积变化除以log d小于2cc/g。
15.根据权利要求14所述的微孔材料,其中,在加工方向上的收缩小于10%。
16.根据权利要求14所述的微孔材料,其中,所述微孔材料具有大于25N/mm2的加工方向(MD)拉伸强度。
17.根据权利要求14所述的微孔材料,其中,所述填料选自如下集合,该集合本质上包括二氧化硅、云母、蒙脱石、高岭土、石棉、滑石、硅藻土、蛭石、天然和合成沸石、水泥、硅酸钙、粘土、硅酸铝、硅铝酸钠、多硅酸铝、氧化铝二氧化硅凝胶、玻璃颗粒、炭黑、活性炭、碳纤维、炭、石墨、氧化钛、氧化铅、钨、氧化铁、氧化铜、氧化锌、氧化锑、氧化锆、氧化镁、氧化铝、二硫化钼、硫化锌、硫酸钡、硫酸锶、碳酸钙和碳酸镁。
18.根据权利要求17所述的微孔材料,其中,所述填料选自如下集合,该集合本质上包括二氧化硅、沉淀二氧化硅、硅胶、煅制二氧化硅、云母、滑石、硅藻土、炭黑、活性炭、碳纤维、氧化钛和碳酸钙。
19.根据权利要求14所述的微孔材料,其中,所述UHMWPE与高密度(HD)聚乙烯混合生成聚烯烃混合物,以所述聚烯烃混合物的重量计,所述聚烯烃混合物具有至少50%的UHMWPE;以重量计,所述填料比所述聚烯烃混合物是在1∶9至15∶1的填料比聚烯烃混合物范围内,并且所述基体包含UHMWPE和HD聚乙烯,且所述粒状填料遍布所述基体。
20.根据权利要求19所述的微孔材料,其中,所述微孔材料具有大于25N/mm2的加工方向(MD)拉伸强度。
21.一种微孔材料,其中,所述微孔材料包括超高分子量聚乙烯(UHMWPE)和遍布所述微孔材料的粒状填料;以所述微孔材料重量计,所述填料占约5%到95%;所述微孔材料具有贯通所述微孔材料的连通孔网络,以所述微孔材料体积计,所述孔占至少25%;所述微孔材料没有大小超过0.50微米的孔;和平均孔径在0.01和0.3微米之间,且孔大小在加减0.2微米间变化。
22.根据权利要求21所述的微孔材料,其中,在加工方向上的收缩小于10%。
23.根据权利要求21所述的微孔材料,其中,所述微孔材料具有大于25N/mm2的加工方向(MD)拉伸强度。
24.根据权利要求21所述的微孔材料,其中所述填料选自如下集合,该集合本质上包括二氧化硅、云母、蒙脱石、高岭土、石棉、滑石、硅藻土、蛭石、天然和合成沸石、水泥、硅酸钙、粘土、硅酸铝、硅铝酸钠、多硅酸铝、氧化铝二氧化硅凝胶、玻璃颗粒、炭黑、活性炭、碳纤维、炭、石墨、氧化钛、氧化铁、氧化铜、氧化锌、氧化铅、钨、氧化锑、氧化锆、氧化镁、氧化铝、二硫化钼、硫化锌、硫酸钡、硫酸锶、碳酸钙和碳酸镁。
25.根据权利要求24所述的微孔材料,其中,所述填料选自如下集合,该集合本质上包括二氧化硅、沉淀二氧化硅、硅胶、煅制二氧化硅、云母、滑石、硅藻土、炭黑、活性炭、碳纤维、氧化钛和碳酸钙。
26.根据权利要求21所述的微孔材料,其中,所述UHMWPE与高密度(HD)聚乙烯混合生成聚烯烃混合物,以所述聚烯烃混合物的量计,所述聚烯烃混合物具有至少50%的UHMWPE;以重量计,所述填料比所述聚烯烃混合物是在1∶9至15∶1填料比聚烯烃混合物的范围内,并且所述基体包含UHMWPE和HD聚乙烯,且所述粒状填料遍布所述基体。
27.根据权利要求26所述的微孔材料,其中,所述微孔材料具有大于25N/mm2的加工方向(MD)拉伸强度。
28.一种用于改善未涂覆微孔膜的润湿时间的方法,其包括如下步骤准备超高分子量聚乙烯(UHMWPE);准备粒状二氧化硅填料;准备加工增塑剂;将UHMWPE、填料和加工增塑剂混合在一起形成混合物,以重量计,该混合物具有1∶9到15∶1的填料比UHMWPE的重量比;将所述混合物挤压成薄片;加工所述薄片,其中加工选自压延、浇铸或吹制;从所述薄片中将所述加工增塑剂全部或部分抽提出,以制成包含UHMWPE和所述粒状填料的基体,从而制成微孔基体薄片,填料遍布所述基体;和对所述微孔基体薄片进行压延以制成微孔膜;所述微孔膜在润湿时间上比所述微孔基体薄片表现出50%或更多的减少。
29.根据权利要求28所述的用于生产未涂覆微孔膜的方法,还包括步骤在压延步骤前,在至少一个拉伸方向上对所述微孔基体薄片进行拉伸至拉伸比至少为约1.5,以制成经过拉伸的微孔基体薄片;对所述经过拉伸的微孔基体薄片进行压延以制成微孔膜;其中,所述微孔膜比所述微孔基体薄片在润湿时间上表现出50%更多的减少。
30.一种电化学电池,其包括阳极;阴极;电解质;壳体;隔板,其中,所述隔板是由前体材料制成的微孔材料,所述微孔材料比所述前体材料具有5%或更多的厚度减少;所述微孔材料包含超高分子量聚乙烯(UHMWPE)和遍布所述微孔材料的粒状二氧化硅填料;以所述微孔材料的重量计,所述填料占约5%到95%;所述微孔材料具有贯通所述微孔材料的连通孔网络,以所述微孔材料体积计,所述孔占至少45%;所述微孔材料具有大于25N/mm2的加工方向(MD)拉伸强度;和所述微孔材料具有低于180秒的润湿时间。
31.根据权利要求30所述的电化学电池,其中,所述电化学电池选自铅酸电池、Edison电池、镍-镉电池、锌电池、镍金属氢化物电池、氧化银电池、勒克兰瑟电池、镁电池、碱电池、汞电池、mercad电池、锂一次和锂二次电池、镍氢电池、钠硫电池、氯化钠镍电池和燃料电池。
32.根据权利要求31所述的锂电池,其中,所述锂电池选自锂一次电池、锂二次电池、液态有机电解质电池、聚合物电解质电池、锂-离子电池、无机电解质电池、锂合金电池。
33.根据权利要求31所述的铅酸电池,其中,所述铅酸电池包括阀调节铅酸电池和密封铅酸电池。
34.根据权利要求21所述的微孔材料,其中,所述微孔材料是用于电化学电池的隔板。
35.根据权利要求34所述的隔板,其中,所述电化学电池选自铅酸电池、Edison电池、镍-镉电池、锌电池、镍金属氢化物电池、氧化银电池、勒克兰瑟电池、镁电池、碱电池、汞电池、mercad电池、锂一次和锂二次电池、镍氢电池、钠硫电池、氯化钠镍电池和燃料电池。
36.根据权利要求35所述的隔板,用于所述锂电池,其中,所述锂电池选自液态有机电解质电池、聚合物电解质电池、锂-离子电池、无机电解质电池、锂合金电池。
37.根据权利要求35所述的隔板,用于包括密封铅酸电池和阀调节铅酸电池的铅酸电池。
全文摘要
一种用于生产微孔材料的方法,其包括步骤准备超高分子量聚乙烯(UHMWPE);准备填料;准备加工增塑剂;向UHMWPE中加入填料使混合物中以重量计填料比UHMWPE在1∶9至15∶1的范围内;向混合物中加入加工增塑剂;由混合物将混合物挤压成薄片;对薄片进行压延;从薄片中将加工增塑剂抽提出来,制成包含UHMWPE和遍布基体的填料的基体;将微孔材料在至少一个方向上拉伸至拉伸比为至少约1.5,制成经过拉伸的微孔基体,随后对经过拉伸的微孔基体薄片进行压延,制成比经过拉伸的微孔基体表现出改善物理和尺寸稳定性的微孔材料。
文档编号B32B5/22GK101072671SQ200580042007
公开日2007年11月14日 申请日期2005年11月22日 优先权日2004年12月7日
发明者埃里克·H·米勒, 约瑟夫·G·亚瑞茨, 马克·T·迪麦尤斯, J·凯文·威尔 申请人:达拉米克有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1