液滴喷出装置的制作方法

文档序号:2479427阅读:129来源:国知局
专利名称:液滴喷出装置的制作方法
技术领域
本发明涉及液滴喷出装置。
背景技术
在作为液滴喷出装置之一的喷墨记录装置中,如果装置在不进行打印的状态下长时间放置,则会存在这种情况,即因介入记录喷头喷出孔的墨汁溶剂(例如水溶性墨汁情况下的水分)的蒸发会使墨汁粘度增加(以下也称为“增粘墨汁),或者在墨汁供给系统中因空气混入和原本在墨汁中存在的微细气泡的生长使墨汁中产生比较大的气泡。如果这种墨汁粘度的增加和气泡的产生发生于连通记录喷头喷出孔的墨汁通路中,则即使接入电源再次进行印刷时在记录喷头中也不能正常进行喷出。
对于因这种原因引起的喷出不良,在喷墨记录装置中,例如,进行通过覆盖记录喷头喷出孔面来防止墨汁增粘的加盖处理、通过在加盖状态下用泵等从喷出孔中吸引墨汁来使增粘墨汁排出的泵吸处理、或者将墨汁喷出到由墨汁吸收体等构成的规定墨汁接受体以及排出增粘墨汁的冲洗处理等的恢复处理。
在现有技术喷墨记录装置中,在下次接入电源时,自动地进行组合上述恢复处理的规定恢复操作,或者操作者根据需要指示记录装置进行上述恢复操作。
但是,在自动进行上述恢复操作中,例如,在使用频繁重复电源之开或关那样的装置的情况下,由于放置时间变得比较短,因此在每次电源接入时不一定要进行恢复操作的情况也很多,存在在这种情况下不必要地浪费墨汁之类的问题。
另一方面,当根据操作者的判断来进行恢复操作时,尽管一旦将测试图形喷出到墨汁接受体(例如纸)上,操作者就通过目视来确认有无喷出不良,但存在墨汁接受体变成无用的问题,而且,还存在操作者必需具有涉及喷出不良的知识以及操作麻烦之类的问题。
鉴于这些问题,作为不仅能够减少墨汁无用的浪费又能够防止喷出不良的方法,提出了这种方法(例如特开平6-122206号公报等),其根据在切断喷墨记录装置的电源之后到再次接入电源时刻为止的经过时间,通过改变记录喷头的恢复条件(冲洗,泵吸)来进行恢复操作。
但是,墨汁在低温干燥时容易增粘,相反在高温润湿时难以增粘,因此根据经过时间之恢复处理的需要量就因环境而差异很大,但是,在上述专利文献1所公开的方法中,由于没有用于检测因这种环境所产生影响的装置,因此不得不设定到可确保安全的恢复处理,由此需要过量地喷出墨汁,这是不经济的。
对于通过恢复处理使涉及墨汁喷出的喷嘴是否完全恢复正常,结果,操作者不得不用目视来判断在纸等上的输出结果,因此未必可以说是用户易于操作的。而且,由于需要计时装置,因此增加构成部件,其也成为成本增加的主要原因。

发明内容
本发明的目的是提供一种液滴喷出装置,其在电源接入时之液滴喷头的恢复处理中能够容易且可靠地进行合适的恢复处理。
这种目的通过下述本发明实现。
本发明的液滴喷出装置,具有多个液滴喷头,其包括由驱动电路驱动的调节器以及通过所述调节器的驱动而变位的振动板,由所述驱动电路驱动调节器而将内腔内液体从喷嘴作为液滴喷出,其特征在于,该液滴喷出装置具有喷出异常检测/恢复处理确定装置,其至少在电源接入时检测所述振动板的残余振动,基于该被检测的所述振动板残余振动的振动模式,检测出所述液滴喷头的喷出异常,并且确定消除该喷出异常的恢复处理;恢复装置,其执行由所述喷出异常检测/恢复处理确定装置所确定的恢复处理。
在本发明的液滴喷出装置中,优选,所述喷出异常检测/恢复处理确定装置,基于在通过所述驱动电路以不喷出液滴的程度驱动所述调节器时的所述振动板残余振动的振动模式,检测所述液滴喷头的喷出异常,并且确定消除该喷出异常的恢复处理。
在本发明的液滴喷出装置中,优选,所述喷出异常检测/恢复处理确定装置具有基于所述振动板残余振动的振动模式检测所述液滴喷头的喷出异常之原因的功能。
在本发明的液滴喷出装置中,优选,所述喷出异常检测/恢复处理确定装置在检测到所述液滴喷头的喷出异常时,对于所述液滴喷头,根据该喷出异常的原因,确定消除所述喷出异常原因的恢复处理。
在本发明的液滴喷出装置中,优选,所述恢复装置包括擦拭装置,其通过擦拭器对排列了所述液滴喷头之喷嘴的喷嘴面进行擦拭处理;冲洗装置,其进行通过驱动所述调节器而从所述液滴喷头的喷嘴预备喷出所述液滴的冲洗处理;泵浦装置,其通过与覆盖所述液滴喷头之喷嘴面的盖连接的泵进行泵吸处理。
在本发明的液滴喷出装置中,优选,所述喷出异常检测/恢复处理确定装置在所述液滴喷头的喷出异常的原因被判定为气泡混入到所述内腔内时,选择所述泵吸处理作为消除该喷出异常的恢复处理。
在本发明的液滴喷出装置中,优选,所述喷出异常检测/恢复处理确定装置在所述液滴喷头的喷出异常的原因被判定为纸粉附着在所述喷嘴出口附近时,至少选择所述擦拭处理作为消除该喷出异常的恢复处理。
在本发明的液滴喷出装置中,优选,所述喷出异常检测/恢复处理确定装置在所述液滴喷头的喷出异常的原因被判定为所述喷嘴附近的液体因干燥而增粘时,选择所述冲洗处理和所述泵吸处理作为消除该喷出异常的恢复处理。
在本发明的液滴喷出装置中,优选,所述喷出异常检测/恢复处理确定装置在所述液滴喷头的喷出异常的原因被判定为所述喷嘴附近的液体因干燥而增粘时,选择所述冲洗处理作为消除该喷出异常的恢复处理。
在本发明的液滴喷出装置中,优选,所述喷出异常检测/恢复处理确定装置在即使通过所述冲洗装置进行规定次数的冲洗处理也没有消除所述喷出异常时,选择所述泵吸处理作为消除该喷出异常的恢复处理。
在本发明的液滴喷出装置中,优选,具有告知装置,在即使通过所述泵吸装置进行规定次数的泵吸处理也没有消除所述喷出异常时,告知该信息。
在本发明的液滴喷出装置中,优选,所述振动板残余振动的振动模式包括所述残余振动的周期。
在本发明的液滴喷出装置中,优选,所述喷出异常检测/恢复处理确定装置,在所述振动板残余振动的周期比规定范围的周期还短时,判定气泡混入到所述内腔内;在所述振动板残余振动的周期比规定阈值还长时,判定所述喷嘴附近的液体因干燥而增粘;在所述振动板残余振动的周期比所述规定范围的周期还长并且比所述规定阈值还短时,判定纸粉附着在所述喷嘴的出口附近。
在本发明的液滴喷出装置中,优选,所述喷出异常检测/恢复处理确定装置包括振荡电路,基于通过所述振动板的残余振动而改变的静电电容成分,使该振荡电路振荡。
在本发明的液滴喷出装置中,优选,所述喷出异常检测/恢复处理确定装置包括振荡电路,基于通过所述振动板的残余振动而改变的所述调节器的静电电容成分,使该振荡电路振荡。
在本发明的液滴喷出装置中,优选,所述振荡电路通过所述调节器的静电电容成分和与所述调节器连接的电阻元件的电阻成分而构成CR振荡电路。
在本发明的液滴喷出装置中,优选,所述喷出异常检测/恢复处理确定装置包括F/V变换电路,其通过基于所述振荡电路输出信号中振荡频率的变化所生成的规定信号群,生成所述振动板残余振动的电压波形。
在本发明的液滴喷出装置中,优选,所述喷出异常检测/恢复处理确定装置包括波形整形电路,其将由所述F/V变换电路所生成的所述振动板残余振动的电压波形整形为规定波形。
在本发明的液滴喷出装置中,优选,所述波形整形电路包括DC成分除去装置,其从由所述F/V变换电路生成的所述振动板残余振动的电压波形中除去直流成分;比较器,其将由该DC成分除去装置除去了直流成分的电压波形和规定电压值进行比较;该比较器基于该电压比较,生成矩形波并输出。
在本发明的液滴喷出装置中,优选,所述喷出异常检测/恢复处理确定装置包括测量装置,其从由所述波形整形电路所生成的所述矩形波中测量所述振动板残余振动的周期。
在本发明的液滴喷出装置中,优选,所述测量装置具有计数器,通过该计数器对基准信号的脉冲进行计数,测量所述矩形波的上升沿之间或者上升沿和下降沿之间的时间。
在本发明的液滴喷出装置中,优选,所述调节器是静电式调节器。
在本发明的液滴喷出装置中,优选,所述调节器是利用压电元件之压电效应的压电调节器。
在本发明的液滴喷出装置中,优选,所述调节器是包括通过通电而发热之发热体的膜沸腾式调节器。
在本发明的液滴喷出装置中,优选,所述振动板根据所述内腔内压力的变化而弹性变形。
在本发明的液滴喷出装置中,优选,还包括记忆装置,其将由所述喷出异常检测/恢复处理确定装置所检测的所述喷出异常的原因与检测对象的液滴喷头建立关联而存储。
在本发明的液滴喷出装置中,优选,所述液滴喷出装置包括喷墨打印机。
本发明的上述目的及其他目的、特征和优点通过参考附图进而在本发明优选实施方式之下述详细说明中将变得更为清楚。


图1是表示本发明的液滴喷出装置的一种,即喷墨打印机结构的概略图。
图2是概略表示本发明喷墨打印机主要部分的框图。
图3是图1所示喷头单元(喷墨头)的概略截面图。
图4是表示图3喷头单元结构的分解斜视图。
图5是使用四色墨汁之喷头单元的喷嘴板(plate)之喷嘴配置图案的一个例子。
图6是表示图3的III-III截面在驱动信号输入时的各个状态的状态图。
图7是表示假定图3振动板残余振动之单振动计算模型的电路图。
图8是表示图3振动板残余振动的实验值和计算值之间关系的曲线。
图9是当在图3内腔内混入气泡时喷嘴附近的概念图。
图10是表示在因气泡混入内腔引起墨滴不能喷出的状态下残余振动的计算值和实验值的曲线。
图11是当图3喷嘴附近的墨汁因干燥引起粘固时喷嘴附近的概念图。
图12是表示在喷嘴附近墨汁干燥增粘状态下残余振动的计算值和实验值的曲线。
图13是当在图3喷嘴出口附近附着纸粉时喷嘴附近的概念图。
图14是表示在喷嘴出口附着了纸粉的状态下残余振动的计算值和实验值的曲线。
图15是表示在喷嘴附近附着纸粉前后喷嘴状态的照片。
图16是图3所示喷出异常检测装置的概略框图。
图17是将图3静电调节器假设为平行平板电容器时的概念图。
图18是包含由图3静电调节器构成的电容器之振动电路的电路图。
图19是图16所示喷出异常检测装置之F/V变换电路的电路图。
图20是表示基于从振动电路输出的振动频率之各部分输出信号时序的时序图。
图21是用于说明固定时间tr和t1之设定方法的示意图。
图22是表示图16波形整形电路之电路构成的电路图。
图23是概略表示驱动电路和检测电路之切换装置的框图。
图24是喷出异常检测/判定处理的流程图。
图25是表示残余振动检测处理的流程图。
图26是喷出异常判定处理的流程图。
图27是多个喷墨头的喷出异常检测时序的一个例子(喷出异常检测装置为一个的情况)。
图28是多个喷墨头的喷出异常检测时序的一个例子(喷出异常检测装置的数目与喷墨头数目相同的情况)。
图29是多个喷墨头的喷出异常检测时序的一个例子(喷出异常检测装置的数目与喷墨头数目相同,当有印字数据时进行喷出异常检测的情况)。
图30是多个喷墨头的喷出异常检测时序的一个例子(喷出异常检测装置的数目与喷墨头数目相同,通过循环各个喷墨头来进行喷出异常检测的情况)。
图31是表示在图27所示喷墨打印机的冲洗操作时喷出异常检测的时序的流程图。
图32是表示在图28和图29所示喷墨打印机的冲洗操作时喷出异常检测的时序的流程图。
图33是表示在图30所示喷墨打印机的冲洗操作时喷出异常检测的时序的流程图。
图34是表示在图28和图29所示喷墨打印机的印字操作时喷出异常检测的时序的流程图。
图35是表示在图30所示喷墨打印机的印字操作时喷出异常检测的时序的流程图。
图36是表示从图1所示喷墨打印机上部观察的概略结构(一部分省略)的示意图。
图37是表示图36所示擦拭器(wiper)和喷头单元之间位置关系的示意图。
图38是表示在泵吸处理时喷头单元与盖(cap)和泵之间关系的示意图。
图39是表示图38所示管泵(tube pump)构成的概略图。
图40是表示在本发明喷墨打印机中喷出异常恢复处理的流程图。
图41是表示在本发明喷墨打印机中电源接入时的处理的流程图。
图42是表示在本发明喷墨打印机中喷出异常判定处理的流程图。
图43是表示在本发明喷墨打印机中喷出异常恢复处理的流程图。
图44是概略表示本发明喷墨头其他构成例的截面图。
图45是概略表示本发明喷墨头其他构成例的截面图。
图46是概略表示本发明喷墨头其他构成例的截面图。
图47是概略表示本发明喷墨头其他构成例的截面图。
图48是表示本发明喷头单元其他构成例的斜视图。
图49是图48所示喷头单元的概略截面图。
图50是使用四色墨汁之喷头单元的喷嘴板(plate)之喷嘴配置图案的一个例子的平面图。
具体实施例方式
下面,参考图1~图50详细说明本发明液滴喷出装置的优选实施方式。这些实施方式是作为例子举出的,不应该由此限定解释本发明的内容。而且,下面,在本实施方式中,作为本发明液滴喷出装置的一个例子,使用通过喷出墨汁(液态材料)而将图像打印在记录用纸上的喷墨打印机来进行说明。
<第一实施方式>
图1是表示本发明第一实施方式的一种液滴喷出装置即喷墨打印机1结构的概略图。根据下面的说明,图1中,上侧称为“上部”,下侧称为“下部”。
这里,尽管本发明的主要部分(特征)是在电源接入(电源接通)时的处理,但为了容易理解本发明,首先,大概说明喷墨打印机1的结构和操作(作用),然后,说明电源接入时的处理。
图1所示喷墨打印机1包括装置机体2,其在上部后侧设置了用于设置记录用纸P的托架21,在下部前侧设置了用于排出记录用纸P的出纸口22以及在上部面上设置了操作面板7。
操作面板7例如由液晶显示器、有机EL显示器、LED灯等构成,包括用于显示出错消息等的显示部(显示装置)M以及由各种开关等构成的操作部(没有图示)。操作面板7的显示部M其通知装置的功能。
在装置机体2的内部,主要具有印刷装置(印刷单元)4,其安装了往复运动的印字装置(移动体)3;供纸装置(液滴接受体传送单元)5,其将记录用纸P相对于印刷装置4进行供给/排出;控制部(控制单元)6,其控制印刷装置4和供纸装置5。
通过控制部6的控制,供纸装置5每次1张间歇地传送记录用纸P。该记录用纸P通过印字装置3的下部附近。此时,印字装置3通过在与记录用纸P传送方向几乎正交的方向上往复移动来进行向记录用纸P的印刷。即,通过将印字装置3的往复运动和记录用纸P的间歇发送变成印刷中的主扫描和副扫描来实现喷墨方式的印刷。
印刷装置4包括印字装置3;滑架(carriage)电机41,其成为使印字装置3在主扫描方向移动(往复运动)的驱动源;往复运动机构42,其通过接受滑架电机41的旋转来使印字装置3往复运动。
印字装置3具有多个喷头单元35;将墨汁供给各个喷头单元35的多个墨盒(I/C)31;安装了各个喷头单元35和墨盒31的滑架32。
而且,作为墨盒31,通过使用填充了黄色、篮绿色、品红色、黑色等4色墨汁的墨盒,能够进行全色印刷。这种情况下,在印字装置3中设置了分别与各色对应的喷头单元35(后面详细描述其构成)。这里,在图1中,尽管示出了与4色墨汁对应的4个墨盒31,但喷头单元35可以被构成为使得还包括其他颜色例如淡篮绿色、淡品红色、深黄色等颜色的墨盒31。
往复运动机构42具有使其两端支持在框架(frame)(没有图示)上的滑架引导轴422和与滑架引导轴422平行延伸的同步带421。
滑架32在被往复自由运动地支持在往复运动机构42的滑架引导轴422上的同时还被固定在同步带421的一部分上。
通过滑架电机41的操作,当通过介入滑轮(pulley)使同步带421正反向运行时,由滑架引导轴422引导,使印字装置3往复运动。然后,在该往复运动时,与被印刷的图像数据(印刷数据)对应,从喷头单元35的各个喷墨头100中喷出合适的墨滴来进行向记录用纸P的印刷。
供纸装置5具有成为其驱动源的供纸电机51;以及通过供纸电机51的操作而引起旋转的供纸滚轴(roller)52。
供纸滚轴52由夹着记录用纸P之传送通路(记录用纸P)并且上下相对的从动滚轴52a和驱动滚轴52b构成,驱动滚轴52b连接到供纸电机51。由此,供纸滚轴52将托架21上所设置的多张记录用纸P向着印刷装置4每次送入1张或者从印刷装置4每次排出1张。而且,代替托架21,也可以是能够自由装卸安装用于容纳记录用纸P之供纸盒的结构。
控制部6通过基于例如从个人计算机(PC)和数字摄像机(DC)等的主机8中所输入的印刷数据来控制印刷装置4和供纸装置5等从而在记录用纸P上进行印刷处理。控制部6将出错消息等显示在操作面板7的显示部M上或者点亮/熄灭LED灯等,同时,基于从操作部输入的各种开关按压信号来在各个部分上执行对应的处理。
图2是概略表示本发明喷墨打印机主要部分的框图。图2中,本发明的喷墨打印机1包括接口部(IFinterface)9,其接收从主计算机8所输入的印刷数据等;控制部6;滑架电机41;滑架电机驱动器43,用于驱动控制滑架电机41;供纸电机51;供纸电机驱动器53,用于驱动控制供纸电机51;喷头单元35;喷头驱动器33,用于驱动控制喷头单元35;喷出异常检测装置10;恢复装置24;操作面板7。通过上述控制部6和上述喷出异常检测装置10构成喷出异常检测/恢复处理确定装置。而且,喷出异常检测装置10、恢复装置24以及喷头驱动器33在后面详细说明。
图2中,控制部6包括CPU(中央处理装置)61,其执行印刷处理和喷出异常检测处理等各种处理;EEPROM(电可擦除可编程只读存储器)(存储装置)62,其是一种非易失性半导体存储器,其将通过介入IF9从主计算机8所输入的印刷数据存储于未图示的数据存储区域中;RAM(随机存取存储器)63,其在执行后述喷出异常检测处理等时临时存储各种数据或者临时展开印刷处理等的应用程序;PROM64,其是一种非易失性半导体存储器,存储用于控制各个部分的控制程序等。控制部6的各个构成元素通过未图示的总线电连接。
如上述,印字装置3包括与各色墨汁相对应的多个喷头单元35。各个喷头单元35包括多个喷嘴110和与各个喷嘴110相对应的静电调节器120。即,喷头单元35成为这种结构,其多个安装了具有1组喷嘴110和静电调节器120所构成的喷墨头(液滴喷头)100。喷头驱动器33驱动各个喷墨头100的静电调节器120并且由用于控制墨汁喷出时刻的驱动电路18和切换装置23构成(参考图16)。对于静电调节器120的构成将在后面说明。
在控制部6中,尽管没有图示,但分别电连接了能够检测例如墨盒31的墨残余量、喷头单元35的位置、温度、湿度等印刷环境的各种传感器。
当控制部6通过介入IF9从主计算机8取得印刷数据时,将该印刷数据存储在EEPROM62中。CPU61对该印刷数据实行规定的处理并基于该处理数据和来自各种传感器的输入数据将驱动信号输出到各个驱动器33,43,53。当通过介入各个驱动器33,43,53输入这些驱动信号时,分别操作喷头单元35的多个静电调节器120、印刷装置4的滑架电机41以及供纸装置5。由此,在记录用纸P上进行印刷处理。
下面,说明印字装置3内各个喷头单元35的结构。图3是图1所示喷头单元35(喷墨头100)的概略截面图,图4是表示与1色墨汁对应的喷头单元35的概略构成的分解斜视图,图5是表示应用图3和图4所示喷头单元35之印字装置3的喷嘴面的一个例子的平面图。图3和图4是与通常使用状态上下相反表示的。
如图3所示,喷头单元35通过介入墨汁进入口131、减震器(damper)室130和墨汁供给管311被连接到墨盒31。这里,减震器室130安装了由橡胶(gom)构成的减震器132。通过该减震器室130,能够吸收滑架32往复运行时墨汁的摇摆和墨压的变化,由此,能够将规定量的墨汁稳定地供给喷头单元35。
喷头单元35形成夹有硅基板140、分别在上侧层叠相同的硅制造的喷嘴板150和在下侧层叠与硅的热膨胀率相近的硼硅酸玻璃基板(玻璃基板)160的3层结构。在中央的硅基板140上形成了分别用作为独立的多个内腔(压力室)141(图4中示出了7个内腔)、一个容器(通用墨室)143、使该容器143被连通到各个内腔141的墨汁供给口(节流孔)142之功能的槽。各个槽例如能够通过从硅基板140的表面实施刻蚀处理形成。按该喷嘴板150、硅基板140以及玻璃基板160的顺序依次粘结,区分形成各个内腔141、容器143、各个墨汁供给口142。
这些内腔141分别被形成为长方形状(长方体状),其被构成为通过后述振动板121的振动(变位)其容积是可变的,通过该容积变化从喷嘴110中喷出墨汁(液态材料)。在喷嘴板150上,在对应于各内腔141前端侧部分的位置上形成喷嘴110,其被连通到各内腔141。在容器143所处的玻璃基板160的部分上,形成了连通于容器143的墨汁进入口131。墨汁从墨盒31经墨汁供给管311、减震器室130和通过墨汁进入口131被供给到容器143。容器143所供给的墨汁通过各墨汁供给口142被供给独立的各内腔141。各内腔141由喷嘴板150、侧壁(隔壁)144和底壁121而区分形成。
对于独立的各内腔141,其底壁121被形成为薄壁,底壁121被构成为使得在其面外方向(厚度方向)即图3中的上下方向上起作为能够弹性变形(弹性变位)之振动板(diaphragm)的作用。因此,该底壁121的部分在以后的说明中也被称作为振动板121来进行说明(即,以后,“底壁”和“振动板”都使用标记121)。
在玻璃基板160之硅基板140侧的表面上,在与硅基板140各个内腔141对应的位置上分别形成浅的凹部161。因此,各内腔141的底壁121通过介入规定的间隙对着形成凹部161之玻璃基板160的对面壁162的表面。即,在内腔141的底壁121和后述段(segment)电极122之间存在规定厚度(例如0.2微米)的空隙。上述凹部161例如能够通过刻蚀等形成。
这里,各内腔141的底壁(振动板)121构成了用于通过从喷头驱动器33供给的驱动信号来分别存储电荷的各个内腔141侧之公共电极124的一部分。即,各内腔141的振动板121分别兼作后述所对应静电调节器120之对置电极(电容器的对置电极)的一个。在玻璃基板160凹部161的表面上形成分别与公共电极124相对的电极即段电极122,使得对着各内腔141的底壁121。如图3所示,各内腔141底壁121的表面通过由氧化硅膜(SiO2)构成的绝缘膜123覆盖。这样,各内腔141的底壁121即振动板121和与其对应的各段电极122之间介入了内腔141的底壁121在图3中下侧表面上所形成的绝缘层123和凹部161内的空隙,形成(构成)对置电极(电容器的对置电极)。因此,通过振动板121、段电极122和它们之间的绝缘层123及空隙,构成了静电调节器120的主要部分。
如图3所示,包含用于在这些对置电极之间施加驱动电压之驱动电路18的喷头驱动器33根据从控制部6输入的印字信号(印字数据)来进行这些对置电极之间的充放电。喷头驱动器(电压施加装置)33的一个输出端子被连接到各个段电极122,另一个输出端子被连接到硅基板140上所形成的公共电极124的输入端子124a。而且,由于在硅基板140上注入了杂质而使其自身具有导电性,因此能够从该公共电极124的输入端子124a将电压供给底壁121的公共电极124上。例如,在硅基板140的一个面上可以形成金或者铜等导电性材料的薄膜。由此,能够将电压(电荷)以低电阻(高效率)供给公共电极124。该薄膜例如可以通过蒸镀或者溅射等形成。这里,在本实施方式中,例如,由于将硅基板140和玻璃基板160通过阳极粘结而粘结,因此能够将在该阳极粘结中用作为电极的导电膜形成在硅基板140的通路形成面侧(图3所示硅基板140的上部侧)上。然后,该导电膜直接用作为公共电极124的输入端子124a。而且,在本发明中,例如,可以省略公共电极124的输入端子124a,并且硅基板140和玻璃基板160之间的粘结方法不局限于阳极粘结。
如图4所示,喷头单元35包括喷嘴板150,其形成了多个喷嘴110;硅基板(墨室基板)140,其形成有多个内腔141、多个墨汁供给口142和一个容器143;绝缘层123。这些都被容纳在包含玻璃基板160的基体170上。基体170例如由各种树脂材料、各种金属材料等构成,硅基板140被固定、支撑在该基体170上。
而且,喷嘴板150上所形成的喷嘴110尽管在图4中为了简洁所示而相对于容器143被大约平行直线地排列,但喷嘴110的排列图案不局限于该结构。通常例如被分段错开,配置成为图5所示那样的喷嘴配置图案。该喷嘴110之间的节距是根据印刷分辨率(dpi)而适当设定的。而且,在图5示出了当使用四色墨汁(墨盒31)时的喷嘴110的配置图案。
图6表示图3的III-III截面在驱动信号输入时的各个状态。当从喷头驱动器33向对置电极间施加驱动电压时,在对置电极间就产生库仑力,底壁(振动板)121相对于初始状态(图6(a))向段电极122侧弯曲,内腔141的容积增大(图6(b))。在该状态中,通过喷头驱动器33的控制,当使对置电极间的电荷急剧放电时,振动板121通过该弹性恢复力恢复到图中的上方,越过初始状态中振动板121的位置而移动到上部,内腔141的容积急剧收缩(图6(c))。通过此时在内腔141内产生的压缩压力,充满内腔141的墨汁(液态材料)的一部分从与该内腔141连通的喷嘴110作为墨滴喷出。
各内腔141的振动板121通过一系列操作(由喷头驱动器33的驱动信号引起的墨汁喷出操作)在下一个驱动信号(驱动电压)输入后到再次喷出墨滴之间进行衰减振动。下面,也将该衰减振动称为残余振动。振动板121的残余振动被假定为具有由喷嘴110和墨汁供给口142的形状或者墨汁粘度等引起的声阻r、由通路内墨汁重量引起的惯量(inertance)m、以及由振动板121的柔量(compliance)Cm所决定的固有振动频率的振动。
基于上述假定说明振动板121的残余振动的计算模型。图7是表示假定振动板121的残余振动之单振动的计算模型的回路图。这样,振动板121的残余振动的计算模型就由声压P、上述惯量m、柔量Cm和声阻r表示。对于体积速度u,如果计算当将声压P施加到图7回路上时的阶跃响应,则得到下式[数学式1]u=Pω·me-ωt·sinωt...(1)]]>ω=1m·Cm-α2...(2)]]>α=r2m...(3)]]>将从该式所得的计算结果和用其他方法进行的墨汁喷出后振动板121的残余振动实验中的实验结果进行比较。图8是表示振动板121的残余振动的实验值和计算值之间关系的曲线。从该图8所示曲线可以知道,实验值和计算值的2个波形大概一致。
在喷头单元35的各个喷墨头100中,尽管如上述进行喷出操作,但也有发生不能从喷嘴110正常喷出墨滴的现象即发生液滴喷出异常的情况。作为发生该喷出异常的原因,如后述,可以举出(1)气泡混入内腔141内;(2)在喷嘴110附近墨汁干燥/增粘(粘合);(3)纸粉附着到喷嘴110出口附近等。
当发生喷出异常时,作为其结果,典型地是从喷嘴110不喷出液滴即出现液滴不喷出现象,这种情况下,在记录用纸P上所印刷(描画)的图像中将发生象素的点遗漏。当喷出异常时,即使从喷嘴110喷出液滴,由于液滴的量过少或者液滴飞行方向(轨道)偏离而不能合适地击中,仍然出现象素点遗漏。从这种情况可知,在下面的说明中,也有将液滴喷出异常的情况仅称为“点遗漏”的情况。
在喷墨头100的喷出异常(喷头异常)中,不仅包括下述情况即尽管如上述进行喷出操作但也发生不能从喷嘴110正常喷出墨滴的现象,而且还包含这种情况,即具有这种状态当喷墨头100进行如上述那样的喷出操作时,能够发生不从喷嘴110正常喷出墨滴的现象。
下面,基于图8所示比较结果,除了喷墨头100的喷嘴110上所发生的在印刷处理时的点遗漏(喷出异常)现象(液滴不喷出现象)的原因之外,调整声阻r和/或者惯量m的值,使得振动板121的残余振动的计算值和实验值匹配(大概一致)。
首先,讨论点遗漏的一个原因即气泡混入内腔141内。图9是当气泡B混入图3内腔141内时喷嘴110附近的概念图。如图9所示,假定所产生的气泡B产生附着在内腔141的壁面上(图9中,作为气泡B附着位置的一个例子,示出了气泡B附着在喷嘴110附近的情况)。
这样,当气泡B混入内腔141内时,可以认为充满内腔141内的墨汁总重量减少,惯量m降低。气泡B由于附着在内腔141的壁面上,因此,成为喷嘴110的直径仅仅增大了气泡B的直径大小的状态,可以认为是声阻r降低的情况。
因此,对于墨汁正常喷出的图8的情况,通过将声阻r、惯量m都设定变小和与气泡混入时残余振动的实验值匹配,获得图10那样的结果(曲线)。从图8和图10的曲线可知,当内腔141内混入气泡时,与正常喷出时相比,获得了频率变高的特征的残余振动波形。而且,通过声阻r的降低等,残余振动的振幅衰减率也变小,还能够确认残余振动其振幅缓慢地下降。
接着,讨论点遗漏的又一个原因即在喷嘴110附近墨汁的干燥(粘合,增粘)。图11是当图3喷嘴110附近的墨汁因干燥粘合时喷嘴110附近的概念图。如图11所示,当喷嘴110附近的墨汁干燥粘合时,内腔141内的墨汁成为被关闭在内腔141内的状态。这样,当喷嘴110附近的墨汁干燥、增粘时,可以认为声阻r增加。
因此,对于墨汁正常喷出的图8的情况,通过将声阻r设定变大,与喷嘴110附近墨汁干燥粘合(增粘)时残余振动的实验值匹配,获得图12那样的结果(曲线)。图12所示的实验值是在数日内没有安装未图示盖的状态下放置喷头单元35以及因喷嘴110附近的墨汁干燥、增粘导致不能够喷出墨汁(墨汁粘合)的状态下测量振动板121的残余振动的值。从图8和图12的曲线可知,当喷嘴110附近的墨汁因干燥粘合时,与正常喷出时相比,获得了频率极其变低的同时残余振动变成过衰减的特征的残余振动波形。这是因为,在通过用于喷出墨滴的振动板121被拉到图3中下方使墨汁从容器143流入内腔141内之后,当振动板121移动到图3中上方时,由于内腔141内没有墨汁退路,因此振动板121变成不能急剧振动(变为过衰减)。
下面,说明点遗漏的又一个原因即纸粉附着到喷嘴110出口附近。这里,在本发明中,所谓“纸粉”,不局限于仅仅由记录用纸等产生的纸粉,其可以为包含例如送纸滚轴(供纸滚轴)等的橡胶碎片以及空气中悬浮的灰尘等在喷嘴附近附着而妨碍墨滴(液滴)喷出的全部。
图13是当纸粉附着在图3喷嘴110出口附近时喷嘴110附近的概念图。如图13所示,当纸粉附着在喷嘴110的出口附近时,通过介入纸粉,墨汁从内腔141内渗出,同时,墨汁不能够从喷嘴110喷出。这样,当纸粉附着在喷嘴110出口附近以及墨汁从喷嘴110中渗出时,从振动板121来看,由于内腔141内以及渗出部分的墨汁比正常时增加,因此可以认为惯量m增加。而且还可以认为因在喷嘴110出口附近所附着纸粉的纤维引起声阻r增大。
因此,对于墨汁正常喷出的图8的情况,通过将惯量m、声阻r都设定变大,与纸粉向喷嘴110出口附近附着时残余振动的实验值匹配,获得图14那样的结果(曲线)。从图8和图14的曲线可知,当纸粉附着到喷嘴110出口附近时,与正常喷出时相比,获得了频率变低的特征的残余振动波形(这里,纸粉附着时比墨汁干燥时其残余振动的频率高的情况也可从图12和图14的曲线看出)。而且,图15是表示纸粉附着前后喷嘴110状态的照片。当纸粉附着在喷嘴110出口附近时,能够从图15(b)发现墨汁沿着纸粉渗出的状态。
这里,在喷嘴110附近的墨汁干燥增粘时以及纸粉附着在喷嘴110出口附近时,与墨滴正常喷出时相比,它们的衰减振动频率都变低。为了从振动板121的残余振动的波形中确定出这两个点遗漏(不喷出墨汁喷出异常)的原因,例如,能够在衰减振动的频率或者周期、相位中通过具有规定的阈值来进行比较,或者能够从残余振动(衰减振动)的周期变化或者振幅变化的衰减率中确定。
这样,通过在各个喷墨头100中当墨滴从喷嘴110喷出时振动板121的残余振动的变化(振动模式)特别是其频率(振动模式)的变化,能够检测出各个喷墨头100的喷出异常(喷头异常)。通过将此时残余振动的频率与正常喷出时残余振动的频率比较,也能够确定出喷出异常(喷头异常)的原因。
通过喷头驱动器33的驱动电路18,即使在输入了不喷出墨滴(液滴)之程度的驱动信号(电压信号)的情况下,尽管振幅变小,也能够获得同样的振动板的残余振动波形。为此,通过将表示残余振动之振幅的曲线的纵轴方向放大,获得了与各个喷出异常的原因相对应的与图10、图12和图14的曲线同样的计算值和实验值。因此,通过以不喷出墨滴的程度来驱动静电调节器120以及检测此时振动板121的残余振动,也能够检测喷墨头100的喷出异常。下面,尽管是不喷出液滴而能够检测的喷墨头100的异常,但也将这种检测情况的异常仅称为“喷出异常”。
下面,说明喷出异常检测装置10。图16是图2所示喷出异常检测装置10的概括框图。如图16所示,喷出异常检测装置10包括由振荡电路11、F/V变换电路12和波形整形电路15构成的残余振动检测装置16;从通过该残余振动检测装置16所检测的残余振动波形数据中测量周期和振幅等的测量装置17;基于由该测量装置17测量的周期等判定喷墨头100喷出异常(喷头异常)的判定装置20。在喷出异常检测装置10中,残余振动检测装置16基于静电调节器120之振动板121的残余振动,使振荡电路11振荡,并根据其振荡频率在F/V变换电路12和波形整形电路15中形成振动波形并进行检测。然后,测量装置17基于所检测振动波形来测量残余振动的周期等,判定装置20基于所测量的残余振动的周期等检测判定印字装置3内的各个喷头单元35所包括的各个喷墨头100的喷出异常。下面,说明喷出异常检测装置10的各个构成部件。
首先,为了检测静电调节器120振动板121的残余振动的频率(振动数),说明使用振荡电路11的方法。图17是将图3静电调节器120假设为平行平板电容器时的概念图,图18是包含由图3的静电调节器120构成的电容器之振荡电路11的电路图。尽管图18所示的振荡电路11是利用施密特触发器之迟滞特性的CR振荡电路,但本发明不限定于这种CR振荡电路,只要是使用调节器(包含振动板)之静电电容成分(电容器C)的振荡电路,则可以是任何种类的振荡电路。振荡电路11例如可以假设是利用LC振荡电路的结构。在本实施方式中,尽管示出使用施密特触发反相器(inverter)的例子进行说明,但也可以构成使用3级反相器的CR振荡电路。
在图3所示喷墨头100中,如上述,构成静电调节器120,其中振动板121和与其隔着非常微小间隔(空隙)的段电极122形成对置电极。静电调节器120能够考虑图17所示那样的平行平板电容器。如果假设该电容器的静电电容为C、振动板121和段电极122的各自表面积为S、2个电极121,122的距离(间隙长度)为g、两电极所夹空间(空隙)的介电常数为ε(假设真空介电常数为ε0,空隙的相对介电常数为εr,则ε=εr·ε0),则图17所示电容器(静电调节器120)的静电电容C(x)由下式表示。
C(x)=ϵ0·ϵrSg-x...(F)]]>如图17所示,式(4)的x表示由振动板121的残余振动产生的距振动板121基准位置的位移量。
从式(4)可知,如果间隙长度g(间隙长度g-位移量x)变小,则静电电容C(x)变大,相反,如果间隙长度g(间隙长度g-位移量x)变大,则静电电容C(x)变小。这样,静电电容C(x)与(间隙长度g-位移量x)(x为0时为间隙长度g)成反比。在图3所示静电调节器120中,由于空隙由空气填充,因此相对介电常数εr=1。
通常,随着液滴喷出装置(本实施方式为喷墨打印机1)的分辨率增加,由于所喷出墨滴(墨点)微小化,因此静电调节器120被高密度化和小型化。由此,使喷墨头100振动板121的表面积S变小,并构成小的静电调节器120。而且,由于因墨滴喷出导致通过残余振动所改变的静电调节器120的间隙长度g变成初始间隙长度g0的百分之十,因此从式(4)可知,静电调节器120静电电容的变化量变成非常小的值。
为了检测静电调节器120之静电电容的变化量(因残余振动的振动模式导致不同),使用如下的方法,即,构成基于静电调节器120之静电电容的如图18的振荡电路以及基于所振荡的信号分析残余振动的频率(周期)的方法。图18所示振荡电路11由电容器(C)、施密特触发反相器111和电阻元件(R)112构成,电容器(C)由静电调节器120构成。
当施密特触发反相器111的输出信号为高电平时,通过介入电阻元件112给电容器C充电。电容器C的充电电压(振动板121和段电极122之间的电位差)如果达到施密特触发反相器111的输入门限电压VT+,则施密特触发反相器111的输出信号翻转为低电平。当施密特触发反相器111的输出信号变为低电平时,通过介入电阻元件112,电容器C上所充电的电荷放电。通过该放电,如果电容器C的电压达到施密特触发反相器111的输入门限电压VT-,则施密特触发反相器111的输出信号再次翻转到高电平。以后,重复这个振荡操作。
这里,为了在上述各个现象(气泡混入、干燥、纸粉附着、以及正常喷出)中检测电容器C之静电电容的时间变化,由该振荡电路11产生的振荡频率有必要被设定成能够检测残余振动频率为最高的气泡混入时(参考图10)之频率的振荡频率。为此,振荡电路11的振荡频率为例如所检测残余振动频率的数倍到数十倍以上,即必须变成比气泡混入时频率大约高出1个数量级以上的频率。这种情况下,优选地,为了表示出气泡混入时残余振动的频率与正常喷出时相比较为高的频率,可以将气泡混入时残余振动频率设定成能够检测的振荡频率。如果不这样的话,对于喷出异常现象,就不能检测出正确的残余振动频率。因此,在本实施方式中,根据振荡频率,设定振荡电路11的CR时间常数。这样,通过高设定振荡电路11的振荡频率,基于该振荡频率的微小变化,能够检测出比较正确的残余振动波形。
而且,在从振荡电路11所输出振荡信号之振荡频率的每个周期(脉冲)上,使用测量用计数脉冲(计数器)来计数该脉冲,通过从所测量计数量中减去在初始间隙g0之电容器C的静电电容下发生振荡时之振荡频率脉冲的计数量,获得有关残余振动波形之每个振动频率的数字信息。基于这些数字信息,通过进行数字/模拟(D/A)变换,能够生成概略的残余振动波形。尽管可以使用这种方法,但在测量用计数脉冲(计数器)中,能够测量振荡频率微小变化的高频(高分辨率)计数器变成必需。由于这种计数脉冲(计数器)使成本上升,因此在喷出异常检测装置10中,使用图19所示的F/V变换电路12。
图19是图16所示喷出异常检测装置10之F/V变换电路12的电路图。如图19所示,F/V变换电路12由3个开关SW1,SW2,SW3、2个电容器C1,C2、电阻元件R1、输出恒定电流Is的恒流源13以及缓冲器14构成。使用图20的时序图和图21的曲线说明该F/V变换电路12的操作。
首先,说明图20时序图所示的充电信号、保持(hold)信号和清零(clear)信号的生成方法。充电信号被生成为从振荡电路11振荡脉冲的上升沿开始设定固定时间tr以及在该固定时间tr的期间变成高电平。保持信号被生成为与充电信号的上升沿同步上升,仅仅在规定的固定时间保持为高电平后下降为低电平。清零信号被生成为与保持信号的下降沿同步上升,仅仅在规定的固定时间保持为高电平后下降为低电平。而且,如后述,由于电荷从电容器C1向电容器C2的移动以及电容器C1的放电是瞬时完成的,因此保持信号和清零信号的脉冲在振荡电路11输出信号下一个上升沿之前可以分别包括一个脉冲,而不局限于上述那样的上升沿或者下降沿。
为了获得清晰的残余振动的波形(电压波形),参考图21,说明固定时间tr和t1的设定方法。固定时间tr由当静电调节器120为初始间隙长度g0时在静电电容C下振荡的振荡脉冲的周期所调整,其被设定为使得根据充电时间t1的充电电位变为C1充电范围的大约1/2附近。在从间隙长度g为最大(Max)位置的充电时间t2到为最小(Min)位置的充电时间t3之间,设定充电电位的斜率使得不超过电容器C1的充电范围。即,由于充电电位的斜率由dV/dt=Is/C1决定,因此可以将恒流源13的输出恒定电流Is设定为合适的值。通过将该恒流源13的恒定电流Is在其范围内尽可能高的设定,能够高灵敏度地检测由静电调节器120构成的电容器的微小静电电容的变化,能够检测静电调节器120振动板121的微小变化。
接着,参考图22,说明图16所示波形整形电路15的构成。图22是表示图16波形整形电路15之电路构成的电路图。该波形整形电路15将残余振动波形作为矩形波输出到判定装置20。如图22所示,波形整形电路15由2个电容器C3(DC成分除去装置),C4、2个电阻元件R2,R3、2个直流电压源Vref1,Vref2、放大器(运算放大器)151、比较器152构成。而且,在残余振动波形的波形整形处理中,可以构成为使得将所检测的峰值直接输出后测量残余振动波形的振幅。
在F/V变换电路12的缓冲器14的输出上包含基于静电调节器120初始间隙g0之DC成分(直流成分)的静电电容成分。该直流成分由于具有各喷墨头100引起的零散偏差,因此电容器C3用于除去该静电电容之直流成分。电容器C3除去缓冲器14输出信号中的DC成分,仅仅将残余振动的AC成分输出到运算放大器151的反相输入端子。
运算放大器151反相放大被除去直流成分的F/V变换电路12的缓冲器14的输出信号,同时构成用于除去输出信号高频的低通滤波器。运算放大器151假定为单电源电路。运算放大器151通过2个电阻元件R2,R3构成反相放大器,将输入的残余振动(交流成分)放大-R3/R2倍。
由于运算放大器151单电源操作,其输出将由非反相输入端子连接的直流电压源Vref1所设定的电位为中心振动的、被放大的振动板121的残余振动波形。这里,直流电压源Vref1被设定成在运算放大151为单电源时可操作之电压范围的1/2。而且,运算放大器151通过2个电容器C3,C4构成截止频率为1/(2π×C4×R3)的低通滤波器。如图20时序图所示,除去直流成分后被放大的振动板121的残余振动波形在下一级比较器152中与另一个直流电压源Vref2的电位进行比较,比较结果作为矩形波从波形整形电路15输出。而且,直流电压源Vref2可以共用另一个直流电压源Vref1。
下面,参考图20所示时序图,说明图19之F/V变换电路12和波形整形电路15的操作。基于如上述生成的充电信号、清零信号和保持信号,图19所示F/V变换电路12操作。在图20的时序图中,当静电调节器120的驱动信号通过介入喷头驱动器33被输入到喷墨头100中时,如图6(b)所示,静电调节器120的振动板121被拉到段电极122侧,与该驱动信号下降沿同步,向图6中上方急剧收缩(参考图6(c))。
与该驱动信号的下降沿同步,用于切换驱动电路18和喷出异常检测装置10的驱动/检测切换信号变为高电平。该驱动/检测切换信号在所对应的喷墨头100驱动暂停期间,保持在高电平,在下一个驱动信号输入之前变为低电平。在该驱动/检测切换信号为高电平期间,图18的振荡电路11与静电调节器120的振动板121的残余振动对应,一边改变振荡频率一边振荡。
如上述,从驱动信号的下降沿即振荡电路11输出信号的上升沿到仅仅经过固定时间tr为止,充电信号保持在高电平,该固定时间tr被预先设定为使得不超过残余振动波形能够向电容器C1充电的范围。在充电信号为高电平期间,开关SW1为断开(off)状态。
当经过固定时间tr而充电信号变为低电平时,与该充电信号下降沿同步,开关SW1接通(on)(参考图19)。然后,恒流源13和电容器C1相连,如上述,电容器C1以斜率Is/C1被充电。在充电信号为低电平期间,即与振荡电路11输出信号下一个脉冲上升沿同步变为高电平之前的期间,电容器C1被充电。
当充电信号变为高电平时,开关SW1变为断开(打开),恒流源13和电容器C1切断。此时,在电容器C1上,保存了在充电信号为低电平期间t1所充电的电位(即理想为Is×t1/C1(V))。在该状态,当保持信号变为高电平时,开关SW2接通(参考图19),电容器C1和电容器C2通过介入电阻元件R1连接。开关SW2连接后,通过2个电容器C1,C2的充电电位差相互进行充放电,电荷从电容器C1移动到电容器C2,使得2个电容器C1,C2的电位差变得大概相等。
这里,电容器C2的静电电容对电容器C1的静电电容被设定为大约1/10以下。为此,通过由2个电容器C1,C2之间的电位差产生的充放电所移动(使用)的电荷量变为电容器C1所充电电荷的1/10以下。因此,即使在电荷从电容器C1向电容器C2移动之后,电容器C1的电位差也不会有太大变化(不会有太大下降)。而且,在图19的F/V变换电路12中,当给电容器C2充电时,为了使得因F/V变换电路12的布线电感等引起的充电电位不急剧地跃升,通过电阻元件R1和电容器C2构成一阶低通滤波器。
当使与电容器C1充电电位大概相等的充电电位保持在电容器C2上之后,保持信号变为低电平,电容器C1从电容器C2断开。通过清零信号变为高电平以及开关SW3接通,电容器C1被连接到地GND并进行放电操作使得电容器C1所充的电荷变为0。电容器C1放电后,通过清零信号变为低电平和开关SW3断开,电容器C1在图19中上部的电极与地GND断开,在下一个充电信号输入之前即在充电信号变为低电平之前处于待机。
电容器C2所保持的电位在充电信号的每个上升时刻即在向电容器C2的每次充电结束时刻被更新,并通过介入缓冲器14作为振动板121的残余振动波形被输出到图22的波形整形电路15中。因此,如果设定静电调节器120的静电电容(这种情况下还必须考虑由残余振动引起的静电电容的变动幅度)和电阻元件112的电阻值使得振荡电路11的振荡频率变高,则由于图20时序图所示电容器C2的电位(缓冲器14的输出)的各个台阶(级差)变得更详细,因此能够更详细地检测因振动板121的残余振动引起的静电电容的时间变化。
以下同样,充电信号重复低电平→高电平→低电平…,在上述规定时刻,电容器C2所保持的电位通过介入缓冲器14输出到波形整形电路15。在波形整形电路15中,从缓冲器14输入的电压信号(在图20的时序图中为电容器C2的电位)的直流成分通过电容器C3去除,通过介入电阻元件R2被输入到运算放大器151的反相输入端子。被输入的残余振动的交流(AC)成分通过该运算放大器151反相放大,并被输出到比较器152的一个输入端子。比较器152将通过直流电压源Vref2预先设定的电位(基准电位)和残余振动波形(交流成分)的电位进行比较,并输出矩形波(图20时序图中的比较电路的输出)。
下面,说明喷墨头100的墨滴喷出操作(驱动)和喷出异常检测操作(驱动暂停)之间的切换时刻。图23是概略表示驱动电路18和喷出异常检测装置10之切换装置23的框图。图23中,将图16所示喷头驱动器33内的驱动电路18作为喷墨头100的驱动电路进行说明。如图20时序图中所示,在喷墨头100的驱动信号和驱动信号之间即在驱动暂停期间执行喷出异常检测处理。
图23中,为了驱动静电调节器120,切换装置23开始被连接到驱动电路18侧。如上述,当驱动信号(电压信号)从驱动电路18输入到振动板121时,驱动静电调节器120,振动板122被吸引到段电极122侧,当施加电压变为0时,其在离开段电极122的方向上急剧位移和开始振动(残余振动)。此时,墨滴从喷墨头100的喷嘴110中喷出。
当驱动信号脉冲下降时,与该下降沿同步,驱动/检测切换信号(参考图20时序图)被输入到切换装置23,切换装置23从驱动电路18被切换到喷出异常检测装置(检测电路)10侧,使静电调节器120(作为振荡电路11的电容器使用)与喷出异常检测装置10连接。
喷出异常检测装置10如上述进行喷出异常(点遗漏)的检测处理,并将从波形整形电路15的比较器152所输出的振动板121的残余振动波形数据(矩形波数据)通过测量装置17而数值化为残余振动波形的周期和振幅等。在本实施方式中,测量装置17从残余振动波形数据中测量特定的振动周期,将该测量结果(数值)输出到判定装置20。
具体地,测量置17为了测量从比较器152输出信号的波形(矩形波)的最初上升沿开始到下一个上升沿为止的时间(残余振动的周期),通过使用未图示的计数器来计数基准信号(规定频率)的脉冲,并从该计数值中测量残余振动周期(特定的振动周期)。而且,测量装置17测量从最初的上升沿到下一个下降沿为止的时间,并将所测量时间的2倍时间作为残余振动周期输出到判定装置20。下面,将这样获得的残余振动的周期假设为Tw。
判定装置20基于通过测量装置17所测量的残余振动波形的特定振动周期等(测量结果)来判定有无喷嘴喷出异常(喷头异常)、喷出异常(喷头异常)的原因、比较偏差量等,并将该判定结果输出到控制部6。控制部6将判定结果保存在EEPROM(记忆装置)62的规定存储区中。然后,在驱动电路18输入下一个驱动信号时刻,驱动/检测切换信号再次被输入到切换装置23中,将驱动电路18和静电调节器120连接。驱动电路18由于当一旦施加驱动电压就维持在地(GND)电平,因此通过切换装置23进行如上述的切换(参考图20时序图)。由此,驱动电路18不会产生干扰,能够正确地检测静电调节器120的驱动板121的残余振动波形。
根据本发明,残余振动波形数据不局限于通过比较器152被矩形波化的数据。例如,可以构成为使从运算放大器151输出的残余振动振幅数据不进行通过比较器152实现的比较处理,而构成为通过用于进行A/D变换的测量装置17被随时数值化,基于该被数值化的数据,由判定装置20判定有无喷出异常等,并将该判定结果存储到记忆装置62中。
喷嘴110的弯液面(meniscus)(喷嘴110内的墨汁与大气接触的面)由于与振动板121的残余振动同步振动,喷墨头100在墨滴喷出操作后,等待该弯液面的残余振动在由声阻r大概确定的时间上进行衰减之后(待机规定的时间之后),进行下一个喷出操作。根据本发明,由于通过有效利用该待机时间来检测振动板121的残余振动,因此能够进行对喷墨头100的驱动没有影响的喷出异常检测。即,不会使喷墨打印机1(液滴喷出装置)的喷出量降低而能够进行喷墨头100的喷嘴110的喷出异常检测处理。
如上述,当气泡混入喷墨头100的内腔141内时,与正常喷出时振动板121的残余振动波形相比,由于频率变高,其周期相反变得比正常喷出时的残余振动的周期更短。当喷嘴110附近的墨汁因干燥增粘、粘固时,残余振动变成过衰减,与正常喷出时的残余振动波形相比,由于频率变得相当低,因此其周期变得比正常喷出时残余振动的周期更长。当纸粉粘着在喷嘴110出口附近时,残余振动的频率比正常喷出时残余振动的频率更低,但是,由于变得比墨汁干燥时残余振动的频率更高,因此其周期变得比正常喷出时残余振动的周期更长,比墨汁干燥时残余振动的周期更短。
因此,作为正常喷出时残余振动的周期,设置规定的范围Tr,而且,为了区别纸粉粘着在喷嘴110出口上时的残余振动周期和墨汁在喷嘴110出口附近干燥时的残余振动周期,通过设定规定的阈值T1,能够确定这种喷墨头100喷出异常的原因。判定装置20判定由上述喷出异常检测处理所检测残余振动波形的周期Tw是否为规定范围的周期或者是否比规定的阈值还长,由此判定喷出异常(喷头异常)的原因。
下面,基于上述喷墨打印机1的构成,说明本发明液滴喷出装置的操作。首先,说明对于一个喷墨头100之喷嘴110的喷出异常检测处理(包含驱动/检测切换处理)。图24是表示喷出异常检测/判定处理的流程图。当被印刷的印字数据(可以是冲洗操作中的喷出数据)通过介入接口(IF)9从主计算机8输入到控制部6时,在规定的时刻进行该喷出异常检测处理。而且,为了说明方便,在图24所示流程图中,表示了与一个喷墨头100即一个喷嘴110喷出操作相对应的喷出异常检测处理。
首先,从喷头驱动器33的驱动电路18输入与印字数据(喷出数据)相对应的驱动信号,由此,基于图20时序图所示驱动信号的时序,将驱动信号(电压信号)施加到静电调节器120的两电极间(步骤S101)。然后,控制部6基于驱动/检测切换信号,判断进行了喷出的喷墨头100是否是驱动暂停期间(步骤S102)。这里,驱动/检测切换信号与驱动信号下降沿同步变为高电平(参考图20),并从控制部6输入到切换装置23。
当驱动/检测切换信号被输入到切换装置23时,通过切换装置23,静电调节器120即构成振荡电路11的电容器从驱动电路18断开,而被连接到喷出异常检测装置10(检测电路)侧即残余振动检测装置16的振荡电路11上(步骤S103)。然后,进行后述的残余振动检测处理(步骤S104),并且测量装置17从该残余振动检测处理所检测的残余振动波形数据中测量规定的数值(步骤S105)。这里,如上述,测量装置17从残余振动波形数据中测量该残余振动的周期。
下面,通过判定装置20,基于测量装置17的测量结果,进行后述的喷出异常判定处理(步骤S106)。将该判定结果保存到控制部6的EEPROM(记忆装置)62的规定存储区中。然后,在步骤S108,判定喷墨头100是否是驱动期间。即,在驱动暂停期间结束后,判断是否输入下一个驱动信号,在输入下一个驱动信号之前,在该步骤S108待机。
在下一个驱动信号脉冲被输入的时刻,与驱动信号上升沿同步,当驱动/检测切换信号变为低电平时(在步骤S108为“是”),切换装置23将与静电调节器120的连接从喷出异常检测装置(检测电路)10切换到驱动电路18(步骤S109),并结束该喷出异常检测处理。
而且,在图24所示流程图中,尽管示出了测量装置17从由残余振动检测处理(残余振动检测装置16)所检测的残余振动波形中测量周期的情况,但本发明不限定于这种情况,例如,测量装置17可以从残余振动检测处理所检测的残余振动波形数据中进行残余振动波形的相位差和振幅等的测量。
下面,说明图24所示流程图的步骤S104中的残余振动检测处理(子程序)。图25是表示残余振动检测处理的流程图。如上述,当通过切换装置23连接了静电调节器120和振荡电路11时(图24的步骤S103),振荡电路11构成CR振荡电路,基于静电调节器120静电电容的变化(静电调节器120振动板121的残余振动)进行振荡(步骤S201)。
如上述时序图等所示,基于振荡电路11的输出信号(脉冲信号),在F/V变换电路12中,生成充电信号、保持信号和清零信号,基于这些信号通过F/V变换电路12进行将振荡电路11的输出信号的频率变换到电压的F/V变换处理(步骤S202),并从F/V变换电路12输出振动板121的残余振动波形数据。从F/V变换电路12所输出的残余振动波形数据通过波形整形电路15的电容器C3被除去DC成分(直流成分)(步骤S203),通过运算放大器151放大被除去DC成分后的残余振动波形(AC成分)(步骤S204)。
放大后的残余振动波形数据通过规定的处理被波形整形和脉冲化(步骤S205)。即,在本实施方式中,在比较器152中,将通过直流电压源Vref2设定的电压值(规定电压值)和运算放大器151的输出电压进行比较。比较器152基于该比较结果输出被二值化的波形(矩形波)。比较器152的输出信号是残余振动检测装置16的输出信号,为了进行喷出异常判定处理,其被输出到测量装置17,并结束残余振动检测处理。
下面,说明图24所示流程图的步骤S106中的喷出异常判定处理(子程序)。图26是表示通过控制部6和判定装置20所执行的喷出异常判定处理的流程图。判定装置20基于由上述测量装置17所测量的周期等测量数据(测量结果),判定来自该喷墨头100的墨滴是否为正常喷出,当为不正常喷出时,即为喷出异常时,判定其原因是什么。
首先,控制部6将EEPROM 62所保存的残余振动周期的规定范围Tr和残余振动周期的规定阈值T1输出到判定装置20。残余振动周期的规定范围Tr相对于正常喷出时的残余振动周期,为具有能够判定为正常之容许范围的范围。这些数据被存储在判定装置20的没有图示的存储器中,并执行下面的处理。
将图24步骤S105中由测量装置17测量的测量结果输入到判定装置20(步骤S301)。这里,在本实施方式中,测量结果是振动板121之残余振动的周期Tw。
在步骤S302中,判定装置20判定残余振动的周期Tw是否存在即是否通过喷出异常检测装置10没有获得残余振动波形数据。当判定不存在残余振动周期Tw时,判定装置20判定该喷墨头100的喷嘴110在喷出异常检测处理中是不喷出墨滴的非喷出喷嘴(步骤S306)。当判定存在残余振动波形数据时,接着,在步骤S303,判定装置20判定该周期Tw是否在正常喷出时的周期所确认的规定范围Tr内。
当判定残余振动的周期Tw处于规定范围Tr内时,意味着墨滴从所对应喷墨头100中正常喷出,判定装置20判定该喷墨头100的喷嘴110正常喷出墨滴(正常喷出)(步骤S307)。当判定残余振动的周期Tw不处于规定范围Tr内时,接着,在步骤S304,判定装置20判定残余振动的周期是否比规定范围Tr短。
当判定残余振动的周期Tw比规定范围Tr更短时,意味着残余振动的频率高,如上述,可以认为气泡混入到喷墨头100的内腔141内,判定装置20判定气泡混入到该喷墨头100的内腔141内(气泡混入)(步骤S308)。
当判定残余振动的周期Tw比规定范围Tr还长时,接着,判定装置20判定残余振动的周期Tw是否比规定的阈值T1还长(步骤S305),当判定残余振动的周期Tw比规定的阈值T1还长时,可以认为残余振动是过衰减,判定装置20判定该喷墨头100喷嘴110附近的墨汁因干燥而曾粘(干燥)(步骤S309)。
在步骤S305,当判定残余振动的周期Tw比规定阈值T1还短时,该残余振动的周期Tw为满足Tr<Tw<T1之范围的值,如上述,比干燥的频率更高,可以认为是纸粉附着在喷嘴110出口附近,判定装置20判定纸粉附着在该喷墨头100的喷嘴110出口附近(纸粉附着)(步骤S310)。
这样,如果通过判定装置20判定成为对象的喷墨头100的正常喷出或者喷出异常的原因等时(步骤S306~S310),该判定结果被输出到控制部6,结束该喷出异常判定处理。
与各个喷墨头100相对应的判定结果在后述图24的步骤S107中与作为处理对象的喷墨头100相关联而被记忆在控制部6之EEPROM(记忆装置)62的规定存储区域中。
下面,假定包括多个喷墨头(液滴喷头)100,即多个喷嘴110之喷墨打印机1,说明该喷墨打印机1中的喷出选择装置(喷嘴选择器)182以及各个喷墨头100的喷出异常检测/判定的时序。
而且,在下面,为了清楚说明,说明印字装置3所包括多个喷头单元35当中的一个喷头单元35,尽管假设该喷头单元35包括5个喷墨头100a~100e(即包括5个喷嘴110),但在本发明中,印字装置3所包括喷头单元35的数量以及各个喷头单元35所包括喷墨头100(喷嘴110)的数量可以分别为若干。
图27~图30是表示在包括喷出选择装置182的喷墨打印机1中喷出异常检测/判定时序之若干例子的框图。下面,顺次说明各图的构成例。
图27是多个(5个)喷墨头100a~100e喷出异常检测时序的一个例子(喷出异常检测装置10为一个时)。如图27所示,具有多个喷墨头100a~100e的喷墨打印机1包括驱动波形生成装置181,用于生成驱动波形;喷出选择装置182,其能够选择从任何一个喷嘴110喷出墨滴;多个喷墨头100a~100e,其由喷出选择装置182选择、由驱动波形生成装置181驱动。而且,在图27的构成中,上述以外的构成由于是与图2、图16和图23所示的相同,因此省略其说明。
在本实施方式中,驱动波形生成装置181和喷出选择装置182尽管作为喷头驱动器33的驱动电路18所包含的装置进行说明(图27中,尽管它们通过切换装置23作为2个方框示出,但一般地,它们都被构成于喷头驱动器33内),但是,本发明不局限于这个构成,例如,驱动波形生成装置181可以构成为独立于喷头驱动器33。
如图27所示,喷出选择装置182包括移位寄存器182a;锁存电路182b和驱动器182c。从图2所示主计算机8输出的、在控制部6中被进行规定处理的印字数据(喷出数据)和时钟信号(CLK)被顺次输入到移位寄存器182a。该印字数据根据时钟信号(CLK)的输入脉冲(时钟信号输入时)而从移位寄存器182a的初级顺次移位输入到后级,并作为与各个喷墨头100a~100e相对应的印字数据被输出到锁存电路182b。而且,在后述的喷出异常检测处理中,尽管不是印字数据而是输入冲洗(预备喷出)时的喷出数据,但该喷出数据意味着相对于全部喷墨头100a~100e的印字数据。
锁存电路182b在使与喷头单元35之喷嘴110数目即喷墨头100数目相对应的印字数据存储于移位寄存器182a之后,通过被输入的锁存信号来锁存移位寄存器182a的各个输出信号。这里,当输入了清零信号时,锁存状态被解除,被锁存的移位寄存器182a的输出信号变为0(锁存输出停止),印字操作停止。当没有输入清零信号时,被锁存的移位寄存器182a的印字数据被输出到驱动器182c。在从移位寄存器182a输出的印字数据通过锁存电路182b锁存后,将下一个印字数据输入到移位寄存器182a,并与印字时序一致来顺次更新锁存电路182b的锁存信号。
驱动器182c是将驱动波形生成装置181和各个喷墨头100的静电调节器120连接起来的装置,其将驱动波形生成装置181的输出信号(驱动信号)输入到由锁存电路182b输出的锁存信号所指定(特定)的各个静电调节器120(喷墨头100a~100e的任何一个或者全部静电调节器120)上,由此,驱动信号(电压信号)被施加在静电调节器120的两电极之间。
图27所示喷墨打印机1包括一个驱动波形生成装置181,用于驱动多个喷墨头100a~100e;喷出异常检测装置10,对各个喷墨头100a~100e的任何一个喷墨头100,用于检测喷出异常(不喷出墨滴);记忆装置62,其保存(存储)通过该喷出异常检测装置10所获得的喷出异常的原因等判定结果;一个切换装置23,用于切换驱动波形生成装置181和喷出异常检测装置10。因此,该喷墨打印机1通过基于从驱动波形生成装置181所输入的驱动信号来驱动由驱动器182c所选择的喷墨头100a~100e当中的一个或者多个以及使驱动/检测切换信号在喷出驱动操作之后输入到切换装置23,在切换装置23将与喷墨头100的静电调节器120的连接从驱动波形生成装置181切换到喷出异常检测装置10之后,基于振动板121的残余振动波形,通过喷出异常检测装置10来检测该喷墨头100的喷嘴110中的喷出异常(墨滴不喷出)以及在喷出异常时判定其原因。
喷墨打印机1如果检测/判定有关一个喷墨头100的喷嘴110的喷出异常,则基于驱动波形生成装置181所输入的驱动信号,检测/判定有关接着所指定喷墨头100之喷嘴110的喷出异常,以下相同,对于由驱动波形生成装置181的输出信号所驱动的喷墨头100的喷嘴110,顺次检测/判定其喷出异常。然后,如上述,如果残余振动检测装置16检测振动板121的残余振动波形,则测量装置17基于其波形数据来测量残余振动波形的周期等,判定装置20基于测量装置17的测量结果,在判定了为正常喷出还是喷出异常以及当为喷出异常(喷头异常)时判定了其喷出异常的原因之后,将该判定结果输出到记忆装置62。
这样,在图27所示喷墨打印机1中,由于构成为对于多个喷墨头100a~100e的各个喷嘴,当在墨滴喷出驱动操作时顺次检测/判定喷出异常,因此只要各安装一个喷出异常检测装置10和切换装置23就可以了,在能够按比例缩小(scale down)能够检测/判定喷出异常的喷墨打印机1的电路构成的同时,还能够防止制造成本的增加。
图28是多个喷墨头100喷出异常检测时序的一个例子(喷出异常检测装置10的数量与喷墨头100的数量相同的情况)。图28所示喷墨打印机1包括一个喷出选择装置182;5个喷出异常检测装置10a~10e;5个切换装置23a~23e;5个喷墨头100a~100e共用的一个驱动波形生成装置181;一个记忆装置62。而且,各个构成部件由于在图27的说明中已经描述,因此省略其说明,只说明其连接。
与图27所示情况相同,喷出选择装置182基于从主计算机8所输入的印字数据(喷出数据)和时钟信号CLK,将与各个喷墨头100a~100e相对应的印字数据锁存到锁存电路182b,并且根据驱动波形生成装置181输入到驱动器182c的驱动信号(电压信号),驱动与印字数据相对应的喷墨头100a~100e的静电调节器120。驱动/检测切换信号分别被输入到与全部喷墨头100a~100e相对应的切换装置23a~23e,切换装置23a~23e不管有无对应的印字数据(喷出数据),在基于驱动/检测切换信号将驱动信号输入到喷墨头100的静电调节器120上之后,将与喷墨头100的连接从驱动波形生成装置181切换到喷出异常检测装置10a~10e。
在通过全部喷出异常检测装置10a~10e检测/判定了各个喷墨头100a~100e的喷出异常之后,将由该检测处理所获得的全部喷墨头100a~100e的判定结果输出到记忆装置62,记忆装置62将各个喷墨头100a~100e有无喷出异常和喷出异常的原因存储在规定的保存区中。
这样,在图28所示喷墨打印机1中,由于与多个喷墨头100a~100e的各个喷嘴110对应而设置多个喷出异常检测装置10a~10e以及通过与其相对应的多个切换装置23a~23e进行切换操作来进行喷出异常检测和其原因判定,因此对于全部的喷嘴,能够在短时间内一齐进行喷出异常检测和其原因判定。
图29是多个喷墨头100喷出异常检测时序的一个例子(喷出异常检测装置10的数量与喷墨头100的数量是相同的,当具有印字数据时进行喷出异常检测的情况)。图29所示喷墨打印机1在图28所示喷墨打印机1的构成上附加了切换控制装置19。在本实施方式中,该切换控制装置19由多个AND电路(逻辑与电路)ANDa~ANDe构成,当输入了各个喷墨头100a~100e所输入的印字数据和驱动/检测切换信号时,将高电平的输出信号输出到对应的切换装置23a~23e上。
各个切换装置23a~23e基于与切换控制装置19的分别对应的AND电路ANDa~ANDe的输出信号来将与所对应的喷墨头100a~100e的静电调节器120的连接从驱动波形生成装置181分别切换到对应的喷出异常检测装置10a~10e。具体地,当对应的AND电路ANDa~ANDe的输出信号为高电平时,即在驱动/检测切换信号为高电平的状态下在所对应的喷墨头100a~100e所输入的印字数据从锁存电路182b被输出到驱动器182c时,与该AND电路对应的切换装置23a~23e将与所对应喷墨头100a~100e的连接从驱动波形生成装置181切换到喷出异常检测装置10a~10e。
在通过与输入了印字数据的喷墨头100相对应的喷出异常检测装置10a~10e检测到各个喷墨头100有无喷出异常以及当有喷出异常时检测出其原因之后,该喷出异常检测装置10将在该检测处理中所获得的判定结果输出到记忆装置62。记忆装置62将这样输入的(所获得的)一个或者多个判定结果存储到规定的保存区中。
这样,在图29所示喷墨打印机1中,与多个喷墨头100a~100e的各个喷嘴110对应来设置多个喷出异常检测装置10a~10e,当与各个喷墨头100a~100e相对应的印字数据通过介入控制部6从主计算机8被输入到喷出选择装置182时,由于仅仅由切换控制装置19所指定的切换装置23a~23e进行规定的切换操作来进行喷墨头100的喷出异常检测和其原因判定,因此对于不进行喷出驱动操作的喷墨头100不进行该检测/判定处理。因此,根据该喷墨打印机1,能够避免无功检测和判定处理。
图30是多个喷墨头100喷出异常检测时序的一个例子(喷出异常检测装置10的数量与喷墨头100的数量是相同的,通过循环各个喷墨头100来进行喷出异常检测的情况)。图30所示喷墨打印机1是在图29所示喷墨打印机1的构成中采用一个喷出异常检测装置10,并附加了用于扫描驱动/检测切换信号(各确定一个用于实行检测/判定处理的喷墨头100)之切换控制装置19a的构成。
该切换选择装置19a是将选择器191附加到图29所示切换控制装置19上的装置,该选择器191是基于从控制部6所输入的扫描信号(选择信号)扫描(选择切换)输入到与多个喷墨头100a~100e相对应的AND电路ANDa~ANDe的驱动/检测切换信号的选择器。该切换选择装置19a的扫描(选择)顺序可以是移位寄存器182a所输入的印字数据的顺序即多个喷墨头100的喷出顺序,但也可以单纯是多个喷墨头100a~100e的顺序。
当扫描顺序是移位寄存器182a所输入印字数据的顺序时,如果印字数据被输入到喷出选择装置182的移位寄存器182a中,则该印字数据被锁存到锁存电路182b中,通过锁存信号的输入而被输出到驱动器182c中。与印字数据向移位寄存器182a的输入或者锁存信号向锁存电路182b的输入同步,用于确定与印字数据相对应的喷墨头100的扫描信号被输入到切换选择装置19a的选择器191上,驱动/检测切换信号被输出到对应的AND电路。
该对应的AND电路通过将由锁存电路182b所输入的印字数据和由选择器191所输入的驱动/检测切换信号进行逻辑与运算而将高电平的输出信号输出到对应的切换装置23。然后,从切换选择装置19a输入高电平的输出信号的切换装置23将与所对应喷墨头100之静电调节器120的连接从驱动波形生成装置181切换到喷出异常检测装置10。
喷出异常检测装置10检测输入了印字数据的喷墨头100的喷出异常,当存在喷出异常时,在判定出其原因之后,将其判定结果输出到记忆装置62。然后,记忆装置62将这样输入的(获得的)判定结果存储到规定的保存区域中。
当扫描顺序是单纯的喷墨头100a~100e的顺序时,如果印字数据被输入到喷出选择装置182的移位寄存器182a,则该印字数据被锁存到锁存电路182b上,并通过锁存信号的输入而输出到驱动器182c。通过与印字数据输入到移位寄存器182a或者锁存信号输入到锁存电路182b同步,用于确定与印字数据相对应的喷墨头100的扫描(选择)信号被输入到切换选择装置19a的选择器191上,驱动/检测切换信号被输出到所对应的AND电路上。
这里,对于由输入到切换选择装置19a的选择器191的扫描信号所确定的喷墨头100,当印字数据被输入到移位寄存器182a时,与其对应的AND电路的输出信号变为高电平,切换装置23将与所对应喷墨头100的连接从驱动波形生成装置181切换到喷出异常检测装置10。但是,当上述印字数据没有被输入到移位寄存器182a时,AND电路的输出信号为低电平,对应的切换装置23不进行规定的切换操作。
当通过切换装置23进行切换操作时,与上述同样,喷出异常检测装置10检测输入了印字数据的喷墨头100的喷出异常,当存在喷出异常时,在判定其原因之后,将其判定结果输出到记忆装置62。然后,记忆装置62将这样输入的(获得的)判定结果存储到规定的保存区域中。
而且,对于由切换选择装置19a确定的喷墨头100,当没有印字数据时,如上述,由于对应的切换装置23不进行切换操作,因此不必要通过喷出异常检测装置10进行喷出异常检测处理,但是,也可以进行这样的处理。当执行不进行切换操作的喷出异常检测处理时,如图26的流程图所示,喷出异常检测装置10的判定装置20将对应喷墨头100的喷嘴110判定为不喷出喷嘴(步骤S306),并将该判定结果存储在记忆装置62的规定保存区域中。
这样,在图30所示喷墨打印机1中,与图28或者图29所示喷墨打印机1不同,对多个喷墨头100a~100e的各个喷嘴110,仅仅设置了一个喷出异常检测装置10,与各个喷墨头100a~100e对应的印字数据通过介入控制部6从主计算机8被输入到喷出选择装置182,并与此同时由扫描(选择)信号进行识别,由于仅仅通过与根据印字数据来进行喷出驱动操作的喷墨头100相对应的切换装置23来进行切换操作而进行对应喷墨头100的喷出异常检测和其原因判定,因此能够更有效地进行喷头单元35各个喷墨头100的喷出异常检测和其原因判定。
与图28或者图29所示喷墨打印机1不同,图30所示喷墨打印机1由于可以仅仅包括一个喷出异常检测装置10,与图28和图29所示喷墨打印机1相比,在能够按比例缩减喷墨打印机1的电路构成的同时,还能够防止制造成本的增加。
下面,说明图27~图30所示打印机1的操作即在包括多个喷墨头100的喷墨打印机1中的喷出异常检测处理(主要为检测时序)。喷出异常检测/判定处理(多个喷嘴中的处理)检测当各个喷墨头100的静电调节器120进行了墨滴喷出操作时的振动板121的残余振动,并且基于该残余振动的周期判定对该喷墨头100是否产生了喷出异常(点遗漏,墨滴不喷出)以及当产生了点遗漏(墨滴不喷出)时判定其原因是什么。这样,根据本发明,如果通过喷墨头100进行墨滴(液滴)的喷出操作,则能够进行这些检测/判定处理,但是,对于喷墨头100喷出墨滴,不仅具有实际上印刷到记录用纸上的情况,还具有进行冲洗操作(准备喷出或者预备地喷出)的情况。下面,针对这两个情况,说明喷出异常检测/判定处理(多喷嘴)。
这里,冲洗(预备喷出)处理是在图1中安装了没有图示的盖时或者在墨滴(液滴)没有施加到记录用纸P(介质)上时从喷头单元35的全部或者成为对象的喷嘴110中喷出墨滴的喷头清洗操作。该冲洗处理(冲洗操作)例如为了将喷嘴110内的墨汁粘度保持在合适范围的值,定期在排出内腔141内的墨汁时实施或者在墨汁增粘时作为恢复操作实施。而且,冲洗处理也在将墨盒31安装到印字装置3上之后在将墨汁初步填充到内腔141中的情况下实施。
尽管有进行用于清洗喷嘴板(喷嘴面)150的擦洗处理(用图1中未图示的擦拭器擦取附着在印字装置3喷头面上的附着物(纸粉和尘土等)的行动)的情况,但此时喷嘴110内变为负压,拉入其他颜色墨汁(其他种类的液滴)也有可能性。因此,在擦拭处理之后,为了从喷头单元35的全部喷嘴110中喷出一定量的墨滴也要实施冲洗处理。而且,为了正常保持喷嘴110的弯液面状态和确保良好的印字也应当合适地实施冲洗处理。
首先,参考图31~图33所示的流程图,说明冲洗处理时的喷出异常检测/判定处理。而且,一边参考图27~图30的框图一边说明这些流程图(下面,即使在印字操作时也同样)。图31是表示图27所示喷墨打印机1在冲洗操作时喷出异常检测的时序的流程图。
在规定的时序中,当进行喷墨打印机1的冲洗处理时,进行图31所示的喷出异常检测/判定处理。控制部6通过将1个喷嘴量的喷出数据输入到喷出选择装置182的移位寄存器182a(步骤S401)以及使锁存信号输入到锁存电路182b(步骤S402),锁存该喷出数据。此时,切换装置23将作为该喷出数据之对象的喷墨头100的静电调节器120和驱动波形生成装置181连接(步骤S403)。
这样,通过喷出异常检测装置10,对于进行了墨汁喷出操作的喷墨头100,进行图24流程图所示的喷出异常检测/判定处理(步骤S404)。在步骤S405,控制部6基于输出到喷出选择装置182的喷出数据,判断对于图27所示喷墨打印机1的全部喷墨头100a~100e的喷嘴110是否结束了喷出异常检测/判定处理。当对于全部喷嘴110判断出这些处理没有结束时,控制部6将下一个喷墨头100的喷嘴110所对应的喷出数据输入到移位寄存器182a(步骤S406),转移到步骤S402后重复同样的处理。
在步骤S405,对于全部喷嘴110,当判断出上述喷出异常检测和判定处理结束时,控制部6通过将清零信号输入到锁存电路182b以及解除锁存电路182b的锁存状态,结束图27所示喷墨打印机1中的喷出异常检测/判定处理。
如上述,在图27所示打印机1的喷出异常检测/判定处理中,由于由一个喷出异常检测装置10和一个切换装置23构成检测电路,因此喷出异常检测处理和判定处理尽管仅仅重复喷墨头100的数量,但具有使构成喷出异常检测装置10的电路不会太增大的效果。
接着,图32是表示图28和图29所示喷墨打印机1在冲洗操作时喷出异常检测之时序的流程图。图28所示喷墨打印机1和图29所示喷墨打印机1之间其电路构成有一些不同,但是,在喷出异常检测装置10和切换装置23的数量是与喷墨头100的数量相对应(相同)方面是一致的。因此,冲洗操作时的喷出异常检测/判定处理由同样的步骤构成。
当在规定的时序中进行喷墨打印机1的冲洗处理时,控制部6通过将全部喷嘴量的喷出数据输入到喷出选择装置182的移位寄存器182a(步骤S501)以及使锁存信号输入到锁存电路182b(步骤S502),锁存该喷出数据。此时,切换装置23a~23e分别连接全部的喷墨头100a~100e和驱动波形生成装置181(步骤S503)。
然后,通过与各个喷墨头100a~100e相对应的喷出异常检测装置10a~10e,对于进行了墨汁喷出操作的全部喷墨头100,并列地进行图24流程图所示的喷出异常检测/判定处理(步骤S504)。这种情况下,通过将与全部喷墨头100a~100e相对应的判定结果与成为处理对象的喷墨头100附加关联而被保存于记忆装置62的规定存储区域中(图24的步骤S107)。
然后,为了清零喷出选择装置182的锁存电路182b锁存的喷出数据,控制部6在通过将清零信号输入到锁存电路182b(步骤S505)而解除锁存电路182b的锁存状态之后,结束图28和图29所示喷墨打印机1中的喷出异常检测处理和判定处理。
如上述,在图28和图29所示打印机1的处理中,由于检测和判定电路由与喷墨头100a~100e相对应的多个(本实施方式为5个)喷出异常检测装置10和多个切换装置23构成,因此具有对于全部喷嘴110在短时间上能够进行喷出异常检测/判定处理之类的效果。
下面,图33是表示图30所示喷墨打印机1在冲洗操作时喷出异常检测时序的流程图。下面同样,通过使用图30所示喷墨打印机1的电路构成,说明在冲洗操作时的喷出异常检测处理和原因判定处理。
当在规定的时序中进行喷墨打印机1的冲洗处理时,首先,控制部6将扫描信号输出到切换选择装置19a的选择器191,通过该切换选择装置19a,设定(确定)最初的切换装置23a和喷墨打印机100a(步骤S601)。然后,将全部喷嘴量的喷出数据输入到喷出选择装置182的移位寄存器182a上(步骤S602),通过使锁存信号输入到锁存电路182b(步骤S603),锁存喷出数据。此时,切换装置23a连接喷墨头100a的静电调节器120和驱动波形生成装置181(步骤S604)。
然后,对于进行了墨汁喷出操作的喷墨头100a,进行图24流程图所示的喷出异常检测/判定处理(步骤S605)。这种情况下,在图24的步骤S103中,作为选择器191输出信号的驱动/检测切换信号和喷出数据被输入到AND电路ANDa,通过AND电路ANDa的输出信号变为高电平,切换装置23a连接喷墨头100a的静电调节器120和喷出异常检测装置10。然后,在图24步骤S106中执行的喷出异常判定处理的判定结果通过与成为处理对象的喷墨头100(这里为100a)带有关联而被保存到记忆装置62的规定存储区域中(图24的步骤S107)。
在步骤S606中,控制部6判断喷出异常检测/判定处理对全部喷嘴是否结束。当判断对于全部喷嘴110其喷出异常检测/判定处理没有结束时,控制部6将扫描信号输出到切换选择装置19a的选择器191,通过该切换选择装置19a设定(确定)下一个切换装置23b和喷墨头100a(步骤S607),并转移到步骤S603,之后重复同样的处理。接着,在对于全部喷墨头100其喷出异常检测/判定处理结束之前,重复该循环。
在步骤S606,当判断对于全部喷嘴110其喷出异常检测处理和判定处理结束时,为了清零喷出选择装置182的锁存电路182b所锁存的喷出数据,控制部6将清零信号输入到锁存电路182b(步骤S609),解除锁存电路182b的锁存状态,结束图30所示喷墨打印机1中的喷出异常检测处理和判定处理。
如上述,在图30所示喷墨打印机1的处理中,检测电路由多个切换装置23和一个喷出异常检测装置10构成,由于通过仅仅由切换选择装置19a的选择器191的扫描信号特定的、与根据喷出数据进行喷出驱动的喷墨头100相对应的切换装置23来进行切换操作,进而进行所对应的喷墨头100的喷出异常检测和原因判定,因此能够更有效地进行各个喷墨头100的喷出异常检测和原因判定。
在该流程图的步骤S602中,尽管将与全部喷嘴110相对应的喷出数据输入到移位寄存器182a,但如图31所示流程图,通过切换选择装置19a使喷墨头100的扫描顺序一致,将输入到移位寄存器182a的喷出数据输入到对应的一个喷墨头100中,以及可以进行一个一个喷嘴110的喷出异常检测/判定处理。
下面,参考图34和图35所示流程图,说明在印字操作时喷墨打印机1的喷出异常检测/判定处理。图27所示喷墨打印机1由于主要适用于在冲洗操作时的喷出异常检测处理和判定处理,因此省略其印字操作时的流程图和操作说明,在图27所示喷墨打印机1中,在印字操作时也可以进行喷出异常检测/判定处理。
图34是表示图28和图29所示喷墨打印机1在印字操作时喷出异常检测之时序的流程图。通过来自主计算机8的印刷(印字)指令来进行(开始)该流程图的处理。当通过介入控制部6使印字数据从主计算机8输入到喷出选择装置182的移位寄存器182a时(步骤S701),通过将锁存信号输入到锁存电路182b(步骤S702)来锁存该印字数据。此时,切换装置23a~23e将全部的喷墨头100a~100e和驱动波形生成装置181连接(步骤S703)。
与进行了墨汁喷出操作的喷墨头100相对应的喷出异常检测装置10进行图24流程图所示的喷出异常检测/判定处理(步骤S704)。这种情况下,与各个喷墨头100相对应的各个判定结果通过与成为处理对象的喷墨头100带有关联而被保存于记忆装置62的规定存储区域中。
这里,在图28所示喷墨打印机1的情况下,切换装置23a~23e基于从控制部6输出的驱动/检测切换信号,将喷墨头100a~100e连接到喷出异常检测装置10a~10e(图24的步骤S103)。由此,在没有印字数据的喷墨头100中,由于不驱动静电调节器120,喷出异常检测装置10的残余振动检测装置16不检测振动板121的残余振动波形。另一方面,在图29所示喷墨打印机1的情况下,切换装置23a~23e基于输入了从控制部6所输出的驱动/检测切换信号和从锁存电路182b所输出的印字数据的AND电路的输出信号,将具有印字数据的喷墨头100连接到喷出异常检测装置10(图24的步骤S103)。
在步骤S705,控制部6判断喷墨打印机1的印字操作是否结束。当判断印字操作没有结束时,控制部6通过转移到步骤S701而将下一个印字数据输入到移位寄存器182a以及重复同样的处理。当判断印字操作结束时,为了清零喷出选择装置182的锁存电路182b所锁存的喷出数据,控制部6将清零信号输入到锁存电路182b(步骤S706),解除锁存电路182b的锁存状态,结束图28和图29所示喷墨打印机1中的喷出异常检测处理和判定处理。
如上述,图28和图29所示喷墨打印机1包括多个切换装置23a~23e和多个喷出异常检测装置10a~10e,由于对全部的喷墨头100一齐进行喷出异常检测/判定处理,因此能够短时间内进行这些处理。图29所示喷墨打印机1由于还包括切换控制装置19即用于将驱动/检测切换信号和印字数据进行逻辑与运算的AND电路ANDa~ANDe、从而仅仅对进行印字操作的喷墨头100通过切换装置23进行切换操作,因此能够不进行无用的检测而进行喷出异常检测处理和判定处理。
下面,图35是表示图30所示喷墨打印机1在印字操作时喷出异常检测的时序的流程图。通过来自主计算机8的印刷指令,在图30所示喷墨打印机1中进行该流程图的处理。首先,切换选择装置19a预先设定(特定)最初的切换装置23a和喷墨头100a(步骤S801)。
当通过介入控制部6将印字数据从主计算机8输入到喷出选择装置182的移位寄存器182a时(步骤S802),锁存信号被输入到锁存电路182b(步骤S803),锁存该印字数据。这里,切换装置23a~23e在该阶段中将全部的喷墨头100a~100e和驱动波形生成装置181(喷出选择装置182的驱动器182c)进行连接(步骤S804)。
控制部6在喷墨头100a上具有印字数据时,通过切换选择装置19a将喷出操作后的静电调节器120连接到喷出异常检测装置10(图24的步骤S 103),并进行图24(图25)流程图所示的喷出异常检测/判定处理(步骤S805)。然后,将图24步骤S106中所执行的喷出异常判定处理的判定结果通过与成为对象的喷墨头100(这里为100a)带有关联而保存于记忆装置62的规定存储区域中(图24步骤S107)。
在步骤S806,控制部6对于全部喷嘴110(全部喷墨头100)判断是否结束了上述喷出异常检测/判定处理。当对于全部喷嘴110判断上述处理结束时,控制部6基于扫描信号设定与最初的喷嘴110相对应的切换装置23a(步骤S808),当对于全部喷嘴110判断上述处理没有结束时,设定与下一个喷嘴110相对应的切换装置23b(步骤S807)。
在步骤S809,控制部6判断由主计算机8所指示的规定的印字操作是否结束。然后,当判断印字操作没有结束时,下一个印字数据被输入到移位寄存器182a(步骤S802),并重复同样的处理。当判断印字操作结束时,为了清零喷出选择装置182的锁存电路182b所锁存的喷出数据,控制部6将清零信号输入到锁存电路182b(步骤S810),解除锁存电路182b的锁存状态,结束图30所示喷墨打印机1中的喷出异常检测处理/判定处理。
如上述,本发明的液滴喷出装置(喷墨打印机1)包括多个喷墨头(液滴喷头)100,喷墨头100具有振动板121;使振动板121变位的静电调节器120;以及内部填充液体并通过振动板121的变位使其内部的压力变化(增减)的内腔141;连通内腔141和通过内腔141内压力变化(增减)使液体作为液滴喷出的喷嘴110。该液滴喷出装置还包括驱动波形生成装置181,其用于驱动这些静电调节器120;喷出选择装置182,其在多个喷嘴110当中选择从任何一个喷嘴110喷出液滴;一个或者多个喷出异常检测装置10,其检测振动板121的残余振动,以及基于所检测的振动板121的残余振动检测液滴的喷出异常;一个或者多个切换装置23,其在因静电调节器120的驱动引起液滴的喷出操作之后,基于驱动/检测切换信号和印字数据或者扫描信号,将静电调节器120从驱动波形生成装置181切换到喷出异常检测装置10。该液滴喷出装置一次(并行)或者顺次检测多个喷嘴110的喷出异常。
因此,通过本发明液滴喷出装置和液滴喷头的喷出异常检测/判定方法,能够在短时间上进行喷出异常检测和其原因判定,同时,能够按比例缩减包含喷出异常检测装置10的检测电路的电路构成,能够防止液滴喷出装置的制造成本的增加。由于在驱动静电调节器120后通过切换到喷出异常检测装置10来进行喷出异常检测和原因判定,因此对静电调节器的驱动不施加影响,由此,不会降低或者恶化本发明液滴喷出装置的喷出量。也能够将喷出异常检测装置10装备到包括规定构成部件的现有液滴喷出装置(喷墨打印机)中。
再有,本发明的液滴喷出装置与上述构成不同,其包括多个切换装置23;切换控制装置19;一个或者与喷嘴110数量相对应的多个喷出异常检测装置10,通过基于驱动/检测切换信号和喷出数据(印字数据)或者扫描信号、驱动/检测切换信号和喷出数据(印字数据),将对应的静电调节器120从驱动波形生成装置181或者喷出选择装置182切换到喷出异常检测装置10,从而进行喷出异常检测和原因判定。
因此,根据本发明的液滴喷出装置,由于与没有输入喷出数据(印字数据)即不进行喷出驱动操作的静电调节器120相对应的切换装置不进行切换操作,因此能够避免无用的检测/判定处理。当利用切换选择装置19a时,由于液滴喷出装置可以仅仅包括一个喷出异常检测装置10,因此在能够按比例缩减液滴喷出装置的电路构成的同时,还能够防止液滴喷出装置制造成本的增加。
下面,说明在本发明液滴喷出装置中对喷墨头100(喷头单元35)用于消除喷出异常(喷头异常)原因之恢复处理的构成(恢复装置24)。图36是表示从图1所示喷墨打印机1上部观察所得的概略结构(一部分省略)的示意图。图36所示喷墨打印机1除了图1斜视图中所示的构成以外,还包括用于执行本发明墨滴不喷出(喷头异常)之恢复处理的擦拭器300和盖310。
作为恢复装置24所执行的恢复处理,包括从各个喷墨头100的喷嘴110中预备喷出液滴的冲洗处理;通过后述擦拭器300(参考图37)进行的擦拭处理;通过后述管泵320进行的泵浦处理(泵吸处理)。即,恢复装置24包括管泵320和驱动它的脉冲电机;擦拭器300和擦拭器300的上下驱动结构;盖310的上下驱动结构(未图示),在冲洗处理中喷头驱动器33和喷头单元35等起恢复装置24一部分的作用,在擦拭处理中滑架电机41等起恢复装置24一部分的作用。由于对冲洗处理已在上面说明,下面说明擦拭处理和泵浦处理。
这里,所谓擦拭处理,指通过擦拭器300擦取附着在喷头单元35之喷嘴板150(喷嘴面)上的纸粉等异物的处理。所谓泵浦处理(泵吸处理),指通过驱动后述的管泵320从喷头单元35的各个喷嘴110中吸引和排出内腔141内墨汁的处理。这样,擦拭处理是如上述那样作为喷墨头100液滴喷出异常原因之一即纸粉附着状态中作为恢复处理的合适处理。泵吸处理是作为除去在上述冲洗处理中没有去除的内腔141内的气泡或者在喷嘴110附近的墨汁因干燥或者内腔141内的墨汁因时效劣化引起增粘时除去增粘的墨汁的恢复处理的合适处理。而且,当增粘程度不大,粘度不大时,也能够通过上述冲洗处理来进行恢复处理。这种情况下,由于排出的墨汁量少,不会降低喷出量和运行成本而能够进行合适的恢复处理。
具有多个喷头单元35的印字装置3被安装在滑架32上并被2根滑架引导轴422引导,通过滑架电机41以及通过介入图中在其上端安装的连接器34连接到同步带421而移动。滑架32所安装的印字装置3通过介入由滑架电机41的驱动而移动的同步带421(通过与同步带421联动)而能够在主扫描方向上移动。而且,滑架电机41实现了用于使同步带421连续旋转的滑轮作用,即使在另一端,也同样安装了滑轮44。
盖310是用于进行喷头单元35之喷嘴板150(参考图5)加盖的东西。在盖310上,在其底部侧面形成了孔,如后述,连接了作为管泵320之构成部件的可弯曲的管321。在图39中后述管泵320。
在记录(印字)操作时,在驱动规定喷墨头(液滴喷头)100的静电调节器120的同时,通过喷头单元35(印字装置3)在主扫描方向即图36中左右移动或者记录用纸P在副扫描方向即图36中下方移动,喷墨打印机(液滴喷出装置)1基于从主计算机8输入的印刷数据(印字数据)将规定的图像等印刷(记录)在记录用纸P上。
图37是表示图36所示擦拭器300和喷头单元35之间的位置关系的示意图。在图37中,喷头单元35和擦拭器300被表示作为当从图36所示喷墨打印机1图中的下侧观察上侧时的一部分侧面图。如图37(a)所示,擦拭器300被配置为可上下移动,使得能够与印字装置3的喷嘴面即喷头单元35的喷嘴板150挡接。
这里,说明利用擦拭器300的恢复处理即擦拭处理。当进行擦拭处理时,如图37(a)所示,擦拭器300通过未图示的驱动装置被移动到上方,使得与喷嘴面(喷嘴板150)相比,擦拭器300的前端更位于上侧。在这种情况下,当通过驱动滑架电机41使喷头单元35移动到图中左方向(箭头方向)时,擦拭部件301变为挡接于喷嘴板150(喷嘴面)上。
由于擦拭部件301由可弯曲的橡胶部件等构成,如图37(b)所示,因此与擦拭部件301的喷嘴板150挡接的前端部分弯曲,通过该前端部清扫(擦拭扫除)喷嘴板150(喷嘴面)的表面。由此,能够除去喷嘴板150(喷嘴面)上附着的纸粉等异物(例如,纸粉,在空气中漂浮的尘土,橡胶碎片等)。根据这种异物的附着状态(异物附着很多时),通过使擦拭器300的上方在喷头单元35上往复移动,能够多次实施擦拭处理。
图38是表示在泵吸处理时喷头单元35与盖310和泵320之间关系的示意图。管321在泵浦处理(泵吸处理)中形成墨汁排出通路,如上述,其一端连接到盖310的底部,另一端通过介入管泵320被连接到排墨盒340。
在盖310的内部底面配置了墨汁吸收体330。墨汁吸收体330在泵吸处理和冲洗处理中吸收从喷墨头100的喷嘴110喷出的墨汁并临时储存。通过墨汁吸收体330,在向盖310内进行冲洗操作时,能够防止因喷出的液滴回跳而污染喷嘴板150。
图39是表示图38所示管泵320结构的概略图。如图39(B)所示,管泵320是旋转泵,包括旋转体322;在该旋转体322圆周部配置的4个滚子(roller)323;以及引导部件350。滚子323由旋转体322支撑,沿着引导部件350的引导351,其加压圆弧状装载的可弯曲的管321。
管泵320通过以轴322a为中心使旋转体322在图39所示箭头X方向旋转,与管321挡接的一个或者二个滚子323在Y方向旋转,同时顺次加压在引导部件350的圆弧状引导351上所装载的管321。由此,管321变形,通过该管321内产生的负压,各个喷墨头100之内腔141内的墨汁(液态材料)通过介入盖310被吸引,气泡混入,或者由干燥引起增粘的不需要的墨汁通过介入喷嘴110被排出到墨汁吸收体330,该墨汁吸收体330所吸收的排出墨汁通过介入管泵320被排出到排墨盒340(参考图38)。
该管泵320通过未图示的脉冲电机等电机驱动。脉冲电机通过控制部6控制。有关管泵320之旋转控制的驱动信息,例如记述旋转速度、旋转数的一览表以及记述顺序控制的控制程序等被存储于控制部6的PROM64等中,基于这些驱动信息,通过控制部6的CPU61进行管泵320的控制。
下面,说明恢复装置24的操作(喷出异常恢复处理)。图40是表示本发明喷墨打印机1(液滴喷出装置)的喷出异常恢复处理的流程图。当在上述喷出异常检测/判定处理(参考图24的流程图)中检测喷出异常的喷嘴110并判定其原因时,在没有进行印刷操作(印字操作)等的规定时刻,通过使喷头单元35移动到规定的待机区(例如,在图36中,为将喷头单元35的喷嘴板150用盖310覆盖的位置或者能够通过擦拭器300实施擦拭处理的位置)来进行喷出异常恢复处理。
首先,控制部6在图24步骤S107中读出在控制部6的EEPROM62所保存的与各个喷嘴110相对应的判定结果(步骤S901)。在步骤S902,控制部6判定在该读出的判定结果中是否具有喷出异常的喷嘴110。当判定没有喷出异常的喷嘴110时,即当液滴从全部喷嘴110中正常喷出时,直接结束该喷出异常恢复处理。
另一方面,当判断任何一个喷嘴110是喷出异常时,在步骤S903,控制部6判断被判定喷出异常的喷嘴110是否是纸粉附着。当判断纸粉没有附着在该喷嘴110出口附近时,移动到步骤S905,当判定纸粉附着时,通过上述擦拭器300进行喷嘴板150的擦拭处理(步骤S904)。
接着,在步骤S905,控制部6判断被判定上述喷出异常的喷嘴110是否是气泡混入。当判断是气泡混入时,控制部6对全部喷嘴110通过管泵320进行泵吸处理(步骤S906)并结束该喷出异常恢复处理。
另一方面,当判断不是气泡混入时,控制部6基于由上述测量装置17测量的振动板121的残余振动的周期的长短来执行通过管泵320进行的泵吸处理或者仅仅对被判定喷出异常的喷嘴或者全部喷嘴110进行冲洗处理(步骤S907),并结束该喷出异常恢复处理。
下面,说明作为本发明喷墨打印机(液滴喷出装置)1主要部分(特征)的在电源接入(电源ON)时的操作(作用)即电源接入时的处理。
在该喷墨打印机1中,当电源接入时,检测振动板121的残余振动,并基于所检测振动板121的残余振动的周期(振动模式)来检测喷墨头100有无喷出异常(喷头异常)和该喷出异常的原因,以及选择(确定)使该喷出异常消除的恢复处理。然后,执行该被选择的恢复处理。
振动板121的残余振动的检测是通过空喷也就是不喷出墨滴(液滴)的程度来驱动(空驱动)静电调节器120而进行。由此,能够不耗费墨汁来进行振动板121的残余振动的检测。即,与实际上通过喷出墨滴来进行振动板121的残余振动检测的情况相比,能够降低在电源接入时处理(还包含喷出异常恢复处理)中的墨汁消耗量。由于不喷出墨滴,即使喷墨头100位于何种位置,也能够进行上述检测。
除了通过以不喷出墨滴的程度驱动静电调节器120来进行振动板121的残余振动的检测之外,基本的构成如同上述。
而且,根据本发明,在电源接入时的处理中,例如,如冲洗等,可以通过进行喷出墨滴的操作(墨汁喷出操作)来检测振动板121的残余振动。
根据本发明,可以通过以不喷出墨滴的程度驱动静电调节器120来进行在电源接入时之处理后(例如印字中等)的振动板121的残余振动检测。
下面,基于流程图说明具体例子。
图41是表示本发明喷墨打印机1(液滴喷出装置)中电源接入时之处理的流程图,图42是表示喷出异常(喷头异常)判定处理(图41所示流程图步骤ST102中子程序的子程序)的流程图,图43是表示喷出异常恢复处理(图41所示流程图步骤ST106中的子程序)的流程图。
当电源接入时(当电源ON时),执行图41所示处理,首先,清零计数器,即,使计数器的计数值Nf=0,Np=0(步骤ST101)。而且,计数器的计数值Nf是在电源接入时的处理中进行冲洗处理的次数,Np是在电源接入时的处理中进行泵吸处理的次数。
接着,进行喷出异常检测/判定处理(步骤ST102)。该喷出异常检测/判定处理尽管基本上与图24所示上述喷出异常检测/判定处理相同,但通过以不喷出墨滴的程度驱动静电调节器120来进行振动板121的残余振动的检测。
该喷出异常检测/判定处理例如可以对全部喷墨头100(喷嘴110)进行,也可以将多个喷墨头100分为一个组,在每个组中设定代表的喷墨头100,从而对各个代表的喷墨头100进行。
由于已经说明了图24所示喷出异常检测/判定处理,在这里,只基于图42说明在上述步骤ST102的喷出异常检测/判定处理当中的喷出异常(喷头异常)判定处理(相当于图24的步骤S 106的喷出异常判定处理)。
如图42所示,首先,测量结果即振动板121的残余振动的周期Tw输入到判定装置20(步骤ST201)。
接着,在步骤ST202中,判定残余振动的周期Tw是否存在即是否通过喷出异常检测装置10没有获得残余振动波形数据。当判定不存在残余振动周期Tw时,该喷墨头100在喷出异常检测处理中是没有进行振动板121的残余振动检测的未检查喷头(未检查喷嘴),判定需要重新检查和恢复处理(步骤ST206)。
当判定存在残余振动波形数据时,接着,在步骤ST203,判定该周期Tw是否在正常喷出时的周期所确认的规定范围Tr内。
当判定残余振动的周期Tw处于规定范围Tr内时,意味着所对应喷墨头100处于其墨滴从其喷嘴110中正常喷出的状态,判定该喷墨头100为正常(正常喷出)(步骤ST207)。当判定残余振动的周期Tw不处于规定范围Tr内时,接着,在步骤ST204,判定残余振动的周期Tw是否比规定范围Tr短。
当判定残余振动的周期Tw比规定范围Tr更短时,意味着残余振动的频率高,如上述,可以认为泡混入到喷墨头100的内腔141内,判定气泡混入到该喷墨头100的内腔141内(气泡混入),需要恢复处理(步骤ST208)。
当判定残余振动的周期Tw比规定范围Tr还长时,接着,判定残余振动的周期Tw是否比规定的阈值T1还长(步骤ST205)。当判定残余振动的周期Tw比规定的阈值T1还长时,可以认为残余振动是过衰减,判定该喷墨头100喷嘴110附近的墨汁因干燥而增粘(干燥),需要恢复处理(步骤ST209)。
在步骤ST205,当判定残余振动的周期Tw比规定阈值T1还短时,该残余振动的周期Tw为满足Tr<Tw<T1之范围的值,如上述,可以认为是比干燥的频率更高的纸粉附着在喷嘴110出口附近,判定纸粉附着在该喷墨头100的喷嘴110出口附近(纸粉附着),需要恢复处理(步骤ST210)。
这样,如果通过判定装置20判定成为对象的喷墨头100是否处于正常状态和当处于喷出异常(喷头异常)状态时判定其喷出异常的原因等时(步骤ST206~ST210),该判定结果被输出到控制部6,结束该喷出异常判定处理。
与各个喷墨头100相对应的判定结果与作为处理对象的喷墨头100带有关联而被记忆在控制部6之EEPROM(记忆装置)62的规定存储区域中。
如图41所示,当结束步骤ST102的喷出异常检测/判定处理时,基于在上述EEPROM 62所记忆的判定结果,判定是否需要喷出异常恢复处理(步骤ST103),当不需要喷出异常恢复处理时,即当喷墨头100为正常时,变为能够印字的印字待机(stand-by)状态(步骤ST104),并结束该处理。
另一方面,当为需要喷出异常恢复处理时,判断表示泵吸处理次数的计数器的计数值Np是否为预先设定值α(α为自然数)以下(Np≤α),当Np为α以下时,执行喷出异常恢复处理(步骤ST106)。
在该喷出异常恢复处理中,如图43所示,首先,读出上述EEPROM 62所保存的与各个喷嘴110或者代表喷嘴110相对应的判定结果(步骤ST301)。
接着,在步骤ST302,判定所读出的判定结果是否是未重新检查(已经检查喷嘴)。当判定不是未重新检查时(在步骤ST302为“否”),即,当判定需要重新检查(未检查喷嘴)时,直接结束该喷出异常恢复处理。
另一方面,当判定不是未重新检查时(步骤ST302中的“是”)即当判定为已经检查的喷出异常时,在步骤ST303,判断被判定喷出异常的喷嘴110是否是纸粉附着。当判断纸粉没有附着在该喷嘴110出口附近时,移动到步骤ST305,当判定纸粉附着时,通过上述擦拭器300进行喷嘴板150的擦拭处理(步骤ST304)。
接着,在步骤ST305,判断被判定上述喷出异常的喷嘴110是否是气泡混入。当判断是气泡混入时,通过管泵320进行泵吸处理,并将计数器的计数值Np增加1(Np=Np+1)(步骤ST306),并结束该喷出异常恢复处理。
另一方面,当判断不是气泡混入时,判断表示冲洗处理次数的计数器的计数值Nf是否为预先设定值β(β为自然数)以下(Nf≤β)(步骤ST307),当Nf为β以下时,执行冲洗处理,并将计数器的计数值Nf增加1(Nf=Nf+1)(步骤ST308),并结束该喷出异常恢复处理。
如果通过该冲洗处理能够消除喷出异常,与进行泵吸处理的情况相比,能够减少墨汁消耗量。
当Nf比β大时,通过管泵320进行泵吸处理,将计数器的计数值Np增加1(Np=Np+1)(步骤ST309),并结束该喷出异常恢复处理。
这样,当Nf比β大时,就是说,即使当进行β次冲洗处理也不能消除喷出异常时,选择和执行作为使该喷出异常消除之恢复处理的泵吸处理(变更为泵吸处理)。
如图41所示,当结束步骤ST106的喷出异常恢复处理时,返回到步骤ST102,并再次进行步骤ST102以后的处理。
即,首先,在步骤ST102,执行喷出异常检测/判定处理,并判断是否需要喷出异常恢复处理(步骤ST103),当不需要喷出异常恢复处理时,即当通过上述喷出异常恢复处理消除了喷出异常以及喷墨头100变为正常时,或者,当重新检查为必需(未检查喷嘴),该重新检查的结果,喷墨头100被判定为正常时,变为能够印字的印字待机状态(步骤ST104),并结束该处理。
另一方面,当为需要喷出异常恢复处理时,判断表示泵吸处理次数的计数器的计数值Np是否为α以下(Np≤α),当Np为α以下时,执行上述喷出异常恢复处理(步骤ST106),当Np比α大时,将出错消息显示在操作面板7的显示部M上,停止(步骤ST107),并结束该处理。
就是说,即使当进行α次泵吸处理也不能消除喷出异常时,该喷出异常的消除是困难的,因此不进行喷出异常恢复处理。而将例如不能消除喷出异常的意见和促使修理的出错消息显示在显示部M上。
而且,在上述冲洗处理中,例如考虑下述(1)和(2)两个方法。
(1)检查各个典型的喷墨头100,当其中存在即使一个需要冲洗处理的喷墨头100时,对全部喷墨头100进行冲洗处理。
(2)检查全部喷墨头100,仅仅对需要冲洗处理的喷墨头100进行冲洗处理。
如上述,根据该喷墨打印机1,在电源接入时的处理中,由于基于振动板121的残余振动的周期(振动模式)来检测(判定)有无喷出异常(喷头异常)和喷出异常的原因,因此能够可靠地检测有无喷出异常和喷出异常的原因,能够根据喷出异常的原因来进行合适的恢复处理。由此,在能够将喷墨打印机1成为能够印字的正常状态的同时,还能够防止需要量之上的墨汁耗费(能够减少排墨量)。
由于基于振动板121的残余振动的周期(振动模式)来检测有无喷出异常和喷出异常的原因,因此不需要用其他方法设置检测所用的计时器等其他装置。因此,构成是简单的,部件数减少,有利于小型化,并能够降低成本。
在该喷墨打印机1中,由于即使当上述电源接入时的处理结束之后(例如在印字中等)也能够判别喷出异常的原因,以及能够执行与喷出异常的原因相对应的合适的恢复处理(冲洗处理、泵吸处理和擦拭处理的一个或者两个),因此与现有技术液滴喷出装置中的顺序恢复处理不同,其能够减少进行恢复处理时发生的无用排墨,因此,能够防止喷墨打印机1整体喷吐量的降低或者恶化。
因此,与现有技术能够检测喷出异常的液滴喷出装置相比,由于不需要其他部件(例如光学式点遗漏检测装置等),因此不用使喷墨头100(喷头单元35)进一步为喷墨打印机1的整个尺寸做大就能够检测喷出异常,同时,能够进行喷出异常(点遗漏)检测并能够将喷墨打印机1的制造成本抑制很低。
由于通过使用墨滴喷出操作后振动板121的残余振动来检测喷出异常,因此即使在印字操作的途中也能够检测喷出异常。
根据本发明,告知装置不限于上述显示部(显示装置),作为其他的告知装置,例如可以使用灯等发光部、发出蜂鸣声的装置等。
<第二实施方式>
下面,说明本发明中喷墨头的其他构成例。图44~图47是分别概略表示喷墨头(喷头单元)其他构成例的截面图。下面尽管基于这些图进行说明,但以与上述实施方式不同的点为中心进行说明,而对于相同的事项省略其说明。
图44所示喷墨头100A通过压电元件200的驱动来使振动板212振动,内腔208内的墨汁(液体)从喷嘴203喷出。在形成了喷嘴(孔)203的不锈钢制的喷嘴板202上,通过介入粘结膜205粘接了不锈钢制的金属板204,而且在其上通过介入粘接膜205粘接了同样的不锈钢制的金属板204。而且在其上,顺次粘接连通口形成板206和内腔板207。
喷嘴板202、金属板204、粘接膜205、连通口形成板206和内腔板207被分别成形为规定的形状(形成凹部那样的形状),通过将它们重叠,形成内腔208和容器209。内腔208和容器209通过介入墨汁供给口210连通。容器209连通到墨汁输入口211。
在内腔板207的上面开口部上设置振动板212,通过介入下部电极213,压电元件200被粘接到该振动板212上。在与压电元件200下部电极213的相对侧上粘接了上部电极214。喷头驱动器215包括用于生成驱动电压波形的驱动电路,通过在上部电极214和下部电极213之间施加(供给)驱动电压波形,压电元件200振动,其上所粘接的振动板212振动。通过该振动板212的振动,使该内腔208的容积(内腔内的压力)变化,内腔208内填充的墨汁(液体)从喷嘴203作为液滴喷出。
因液滴喷出引起内腔208内所减少的液体量通过从容器209供给墨汁而补给。墨汁从墨汁输入口211供给到容器209。
图45所示喷墨头100B也与上述相同,通过压电元件200的驱动使内腔221内的墨汁(液体)从喷嘴中喷出。该喷墨头100B具有一对的对置基板220,在两基板220之间,多个压电元件200以给定的规定间隔相间设置。
在邻接的压电元件200之间形成内腔221。在内腔221之图45中前方设置板(没有图示),在后方设置喷嘴板222,在与喷嘴板222的各个内腔221相对应的位置上形成了喷嘴(孔)223。
在各个压电元件200的一个面和另一个面上分别设置一对电极224。即,对于一个压电元件200,粘接4个电极224。通过在这些电极224当中将规定的驱动电压波形施加到规定的电极之间,压电元件200通过共享模式(share mode)变形而振动(图45中的箭头所示),通过该振动使内腔221的容积(内腔内的压力)变化,内腔221内填充的墨汁(液体)从喷嘴223作为液滴喷出。即,在喷墨头100B中,压电元件200自身作为振动板功能。
图46所示喷墨头100C也与上述相同,通过压电元件200的驱动从喷嘴231中喷出内腔233内的墨汁(液体)。该喷墨头100C包括形成了喷嘴231的喷嘴板230;隔离柱(spacer)232;压电元件200。压电元件200通过介入隔离柱232相对喷嘴板230被设置为规定距离间隔,由喷嘴板230、压电元件200和隔离柱232包围的空间形成了内腔233。
多个电极粘接到压电元件200在图46中的上面。即,第一电极粘接在压电元件200的几乎中央部位上,第二电极235分别粘接到其两侧部位上。通过在第一电极234和第二电极235之间施加规定的驱动电压波形,压电元件200通过共享模式变形而振动(图46中的箭头所示),通过该振动使内腔233的容积(内腔内的压力)变化,内腔233内填充的墨汁(液体)从喷嘴231作为液滴喷出。即,在喷墨头100C中,压电元件200自身作为振动板功能。
图47所示喷墨头100D也与上述相同,通过压电元件200的驱动从喷嘴241中喷出内腔245内的墨汁(液体)。该喷墨头100D包括形成了喷嘴241的喷嘴板240;内腔板242;振动板243;通过层叠多个压电元件200而构成的层叠压电元件201。
内腔板242被形成为规定的形状(形成了凹部那样的形状),由此,形成内腔245和容器246。内腔245和容器246通过介入墨汁供给口247连通。容器246通过介入墨汁供给管311而与墨盒31连通。
层叠压电元件201在图47中的下端通过介入中间层244而与振动板243粘接。在层叠压电元件201上粘接了多个外部电极248和内部电极249。即,在层叠压电元件201的外表面上粘接了外部电极248,在构成层叠压电元件201的各个压电元件200之间(或者在各个压电元件的内部)设置了内部电极249。这种情况下,外部电极248和内部电极249的一部分被配置为使得在压电元件200的厚度方向上交互重叠。
通过在外部电极248和内部电极249之间从喷头驱动器33施加驱动电压波形,层叠压电元件201按图48中箭头所示变形(在图47中的上下方向上伸缩)振动,通过该振动使振动板243振动。通过该振动板243的振动使内腔245的容积(内腔内的压力)变化,内腔245内填充的墨汁(液体)从喷嘴241作为液滴喷出。
因液滴喷出引起内腔245内减少的液体量通过从容器246中供给墨汁而补给。通过介入墨汁供给管311,墨汁从墨盒31被供给到容器246。
如上述,即使在包括压电元件200的喷墨头100A~100D中,与上述静电电容方式喷墨头100相同,基于振动板或者起振动板作用的压电元件的残余振动,也能够检测液滴喷出异常或者确定其异常的原因。而且,在喷墨头100B和100C中,也能够构成为在面对内腔的位置上设置作为传感器的振动板(用于检测残余振动的振动板),检测该振动板的残余振动。
<第三实施方式>
下面,说明本发明喷墨头其他构成例子。图48是表示喷头单元100H构成的斜视图,图49是与图48所示喷头单元100H的1色墨汁(一个内腔)相对应的概略截面图。下面,尽管基于这些图进行说明,但以与上述第一实施方式不同的点为中心进行说明,而对于相同的事项省略其说明。
这些图所示喷头单元100H是通过所谓膜沸腾喷墨方式(thermal jet方式)实现的装置,支撑板410、基板420、外壁430和隔壁431、顶板440从图48和图49中下侧开始依次粘接构成。
基板420和顶板440通过介入外壁430和以等间隔平行配置的多个(图示例子中为6个)隔壁431,以规定间隔设置。在基板420和顶板440之间,形成了通过隔壁431区分的多个(图示例子中为5个)内腔(压力室墨室)432。各个内腔432构成长方形(长方体)。
如图48和图49所示,各个内腔432在图49中的左侧端部(图48中上端)由喷嘴板(前板)433覆盖。该喷嘴板433上形成了连通于各个内腔432的喷嘴(孔),墨汁(液态材料)从该喷嘴434中喷出。
图48中,尽管喷嘴434相对喷嘴板433以直线,即列状配置,但显然,喷嘴的配置模式不限定于此。被列状配置的该喷嘴434的节距能够根据印刷精度(dpi)等合适地设定。
而且,可以构成为不设置喷嘴板433,开放各个内腔432在图48中的上端(图49中左端),该开放的开口构成喷嘴。
在顶板440上形成了墨汁注入口441,在该墨汁注入口上,通过介入墨汁供给管311,连接了墨盒31。而且,尽管没有图示,在墨汁注入口441和墨盒31之间,还能够设置减震室(包括由橡胶构成的减震器,通过其变形来改变室内的容积)。由此,当滑架32往复运行时,减震室吸收墨汁的摇摆和墨压的变化,并且能够稳定地将规定量的墨汁供给喷头单元100H。
支撑板410、外壁430、隔壁431、顶板440和喷嘴板433分别由例如不锈钢等各种金属材料和各种树脂材料、各种陶瓷等构成。基板420例如由硅等构成。
在与基板420各个内腔432相对应的位置上分别设置(埋设)了发热体450。各个发热体450通过喷头驱动器(通电装置)452分别通电和发热。喷头驱动器452对应于从控制部6输入的印字信号(印字数据),并且输出例如脉冲状的信号作为发热体450的驱动信号。
发热体450的内腔432侧的面由保护膜(耐气蚀膜)451覆盖。该保护膜451是用于防止发热体450与内腔432内的墨汁直接接触设置的。通过设置该保护膜451,能够防止因发热体450与墨汁接触引起的变质、劣化等。
基板420的各个发热体450的近旁即与各个内腔432相对应的位置上分别形成了凹部460。该凹部460能够通过例如刻蚀、冲压等方法形成。
设置振动板461使得遮蔽凹部460的内腔432侧。该振动板461根据内腔432内压力(液压)的变化而在图49中的上下方向上弹性变形(弹性变位)。
振动板461的构成材料和厚度没有特别限定而合适设定另一方面,凹部460的另一侧由支撑板410覆盖,在与该支撑板410之图49中上面的各个振动板461相对应的位置上分别设置了段电极462。
振动板461和段电极462通过隔开规定的间隙距离而几乎平行配置。振动板461和段电极462之间的间隙距离(间隙长度g)没有特别限定而合适设定。通过隔开微小间隔距离来配置振动板461和段电极462,能够形成平行平板电容。如上述,当振动板461根据内腔432内的压力而在图49中上下方向上弹性变形时,据此振动板461和段电极462之间的间隙距离变化,上述平行平板电容的静电电容C变化。该静电电容C的变化由于在振动板461和段电极462上表现为分别导通的共通电极470和外部段电极471之间的电位差的变化,因此如上述,通过检测它,能够知道振动板461的残余振动(衰减振动)。
在基板420的内腔432外形成了共通电极470。在支撑板410的内腔432外形成了外部段电极471。
作为段电极462、共通电极470和外部段电极471的构成材料,可以举出例如不锈钢、铝、金、铜或者包含这些的合金等。段电极462、共通电极470和外部段电极471能够分别通过例如金属箔的粘接、电镀、蒸发、溅射等方法形成。
各个振动板461和共通电极470通过导体475电连接,各个段电极462和各个外部段电极471通过导体476电连接。
作为导体475,476,可以分别举出(1)配设金属线等导线;(2)在基板420或者支撑板410的表面上形成由例如金、铜等导电性材料构成的薄膜;或者(3)在基板420等导体形成部位上实施离子掺杂等而带有导电性等。
如上述的喷头单元100H能够通过在图49中的上下方向上多个重叠而配置(于其他段上)。图50中,尽管示出了适用四色墨汁(墨盒31)时喷嘴434的配置例子,但在这种情况下,可以构成为例如将多个喷头单元100H在主扫描方向上重叠而配置,将一个喷嘴板433粘接到其前面。
尽管喷嘴板433上喷嘴434的配置模式没有特别限定,但如图50所示,在邻近的喷嘴列中,喷嘴434能够配置成为错开半个节距。
下面,说明喷头单元100H的作用(操作原理)。
当通过从喷头驱动器33输出驱动信号(脉冲信号)而给发热体450通电时,发热体450瞬时发热到300℃以上的温度。由此,在保护膜451上通过膜沸腾产生气泡(与后述构成不喷出原因的在内腔内混入、产生的气泡不同)480,该气泡480瞬时膨胀。由此,在内腔432内充满的墨汁(液态材料)的液压增大,墨汁的一部分从喷嘴434中作为液滴喷出。
在墨汁的液滴喷出之后,气泡480急剧收缩,返回到原始状态。此时内腔432内压力变化引起振动板461弹性变形,在下一个驱动信号被输入到墨滴被再次喷出之前之间,产生衰减振动(残余振动)。
当振动板461产生衰减振动时,根据此,振动板461和与此相对段电极462之间的静电电容变化。该静电电容的变化尽管表现成为共通电极470和外部段电极471之间的电压差变化,但通过读取它,能够检测和特定墨滴不喷出或者其原因。即,通过将从喷嘴434正常喷出墨滴时的共通电极470和外部段电极471之间电压差的变化(静电电容的变化)的形式(模式)进行比较,能够判定墨滴是否正常喷出,或者通过与墨滴不喷出的每个原因的形式(模式)分别进行比较和特定,能够判定墨滴不喷出的原因。
因墨滴喷出引起内腔432内所减少的液体量通过从墨汁注入口441将新墨汁供给内腔432而补给。该墨汁从墨盒31通过墨汁供给管311内而供给。
上面尽管基于图示的各个实施方式说明了本发明的液滴喷出装置,但本发明不局限于此,构成液滴喷头或者液滴喷出装置的各个部件与能够发挥同样功能的任意构成部件进行置换。而且,在本发明液滴喷出装置中可以附加其他任意的构成部件。
而且,作为从本发明液滴喷出装置之液滴喷头(在上述实施方式中为喷墨头100)喷出的喷出对象液(液滴)没有特别的限定,例如,能够假设为如下述包含各种材料的液体(包含悬浮液、乳浊液等的分散液)。即为包含彩色滤光器之滤光材料的墨汁、有机EL(电致发光)装置中用于形成EL发光层的发光材料、电子发射装置中用于在电极上形成荧光体的荧光材料、PDP(等离子体显示板)装置中用于形成荧光体的荧光材料、电泳动显示装置中用于形成泳动体的泳动体材料、用于在基板W的表面上形成围堰的围堰材料、各种涂覆材料、用于形成电极的液态电极材料、构成隔离柱的颗粒材料,该隔离柱用于在2个基板之间构成微小装置间隙、用于形成金属配线的液态金属材料、用于形成微透镜的透镜材料、抗蚀剂材料、用于形成光散射体的光散射材料等。
本发明能够包括具有振动板的多个液滴喷头以及能够适用于所有方式(形式)的液滴喷出装置。
权利要求
1.一种液滴喷出装置,具有多个液滴喷头,其包括由驱动电路驱动的调节器以及通过所述调节器的驱动而变位的振动板,由所述驱动电路驱动调节器而将内腔内液体从喷嘴作为液滴喷出,其特征在于,该液滴喷出装置具有喷出异常检测/恢复处理确定装置,其至少在电源接入时检测所述振动板的残余振动,基于该被检测的所述振动板残余振动的振动模式,检测出所述液滴喷头的喷出异常,并且确定消除该喷出异常的恢复处理;恢复装置,其执行由所述喷出异常检测/恢复处理确定装置所确定的恢复处理。
2.根据权利要求1所述的液滴喷出装置,其特征在于,所述喷出异常检测/恢复处理确定装置,基于在通过所述驱动电路以不喷出液滴的程度驱动所述调节器时的所述振动板残余振动的振动模式,检测所述液滴喷头的喷出异常,并且确定消除该喷出异常的恢复处理。
3.根据权利要求1所述的液滴喷出装置,其特征在于,所述喷出异常检测/恢复处理确定装置具有基于所述振动板残余振动的振动模式检测所述液滴喷头的喷出异常之原因的功能。
4.根据权利要求3所述的液滴喷出装置,其特征在于,所述喷出异常检测/恢复处理确定装置在检测到所述液滴喷头的喷出异常时,对于所述液滴喷头,根据该喷出异常的原因,确定消除所述喷出异常原因的恢复处理。
5.根据权利要求1所述的液滴喷出装置,其特征在于,所述恢复装置包括擦拭装置,其通过擦拭器对排列了所述液滴喷头之喷嘴的喷嘴面进行擦拭处理;冲洗装置,其进行通过驱动所述调节器而从所述液滴喷头的喷嘴预备喷出所述液滴的冲洗处理;泵浦装置,其通过与覆盖所述液滴喷头之喷嘴面的盖连接的泵进行泵吸处理。
6.根据权利要求5所述的液滴喷出装置,其特征在于,所述喷出异常检测/恢复处理确定装置在所述液滴喷头的喷出异常的原因被判定为气泡混入到所述内腔内时,选择所述泵吸处理作为消除该喷出异常的恢复处理。
7.根据权利要求5所述的液滴喷出装置,其特征在于,所述喷出异常检测/恢复处理确定装置在所述液滴喷头的喷出异常的原因被判定为纸粉附着在所述喷嘴出口附近时,至少选择所述擦拭处理作为消除该喷出异常的恢复处理。
8.根据权利要求5所述的液滴喷出装置,其特征在于,所述喷出异常检测/恢复处理确定装置在所述液滴喷头的喷出异常的原因被判定为所述喷嘴附近的液体因干燥而增粘时,选择所述冲洗处理和所述泵吸处理作为消除该喷出异常的恢复处理。
9.根据权利要求5所述的液滴喷出装置,其特征在于,所述喷出异常检测/恢复处理确定装置在所述液滴喷头的喷出异常的原因被判定为所述喷嘴附近的液体因干燥而增粘时,选择所述冲洗处理作为消除该喷出异常的恢复处理。
10.根据权利要求9所述的液滴喷出装置,其特征在于,所述喷出异常检测/恢复处理确定装置在即使通过所述冲洗装置进行规定次数的冲洗处理也没有消除所述喷出异常时,选择所述泵吸处理作为消除该喷出异常的恢复处理。
11.根据权利要求5所述的液滴喷出装置,其特征在于,具有告知装置,在即使通过所述泵吸装置进行规定次数的泵吸处理也没有消除所述喷出异常时,告知该信息。
12.根据权利要求1所述的液滴喷出装置,其特征在于,所述振动板残余振动的振动模式包括所述残余振动的周期。
13.根据权利要求12所述的液滴喷出装置,其特征在于,所述喷出异常检测/恢复处理确定装置,在所述振动板残余振动的周期比规定范围的周期还短时,判定气泡混入到所述内腔内;在所述振动板残余振动的周期比规定阈值还长时,判定所述喷嘴附近的液体因干燥而增粘;在所述振动板残余振动的周期比所述规定范围的周期还长并且比所述规定阈值还短时,判定纸粉附着在所述喷嘴的出口附近。
14.根据权利要求1所述的液滴喷出装置,其特征在于,所述喷出异常检测/恢复处理确定装置包括振荡电路,基于通过所述振动板的残余振动而改变的静电电容成分,使该振荡电路振荡。
15.根据权利要求1所述的液滴喷出装置,其特征在于,所述喷出异常检测/恢复处理确定装置包括振荡电路,基于通过所述振动板的残余振动而改变的所述调节器的静电电容成分,使该振荡电路振荡。
16.根据权利要求15所述的液滴喷出装置,其特征在于,所述振荡电路通过所述调节器的静电电容成分和与所述调节器连接的电阻元件的电阻成分而构成CR振荡电路。
17.根据权利要求15所述的液滴喷出装置,其特征在于,所述喷出异常检测/恢复处理确定装置包括F/V变换电路,其通过基于所述振荡电路输出信号中振荡频率的变化所生成的规定信号群,生成所述振动板残余振动的电压波形。
18.根据权利要求17所述的液滴喷出装置,其特征在于,所述喷出异常检测/恢复处理确定装置包括波形整形电路,其将由所述F/V变换电路所生成的所述振动板残余振动的电压波形整形为规定波形。
19.根据权利要求18所述的液滴喷出装置,其特征在于,所述波形整形电路包括DC成分除去装置,其从由所述F/V变换电路生成的所述振动板残余振动的电压波形中除去直流成分;比较器,其将由该DC成分除去装置除去了直流成分的电压波形和规定电压值进行比较;该比较器基于该电压比较,生成矩形波并输出。
20.根据权利要求19所述的液滴喷出装置,其特征在于,所述喷出异常检测/恢复处理确定装置包括测量装置,其从由所述波形整形电路所生成的所述矩形波中测量所述振动板残余振动的周期。
21.根据权利要求20所述的液滴喷出装置,其特征在于,所述测量装置具有计数器,通过该计数器对基准信号的脉冲进行计数,测量所述矩形波的上升沿之间或者上升沿和下降沿之间的时间。
22.根据权利要求1所述的液滴喷出装置,其特征在于,所述调节器是静电式调节器。
23.根据权利要求1所述的液滴喷出装置,其特征在于,所述调节器是利用压电元件之压电效应的压电调节器。
24.根据权利要求1所述的液滴喷出装置,其特征在于,所述调节器是包括通过通电而发热之发热体的膜沸腾式调节器。
25.根据权利要求24所述的液滴喷出装置,其特征在于,所述振动板根据所述内腔内压力的变化而弹性变形。
26.根据权利要求1所述的液滴喷出装置,其特征在于,还包括记忆装置,其将由所述喷出异常检测/恢复处理确定装置所检测的所述喷出异常的原因与检测对象的液滴喷头建立关联而存储。
27.根据权利要求1所述的液滴喷出装置,其特征在于,所述液滴喷出装置包括喷墨打印机。
全文摘要
本发明的目的在于提供一种液滴喷出装置,其在电源接入时液滴喷头的恢复处理中,能够容易和可靠地进行合适的恢复处理。本发明的液滴喷出装置具有多个液滴喷头,其包括由驱动电路驱动的调节器以及通过所述调节器的驱动而变位的振动板,由所述驱动电路驱动调节器而将内腔内液体从喷嘴作为液滴喷出,其特征在于,该液滴喷出装置具有喷出异常检测/恢复处理确定装置,其至少在电源接入时检测所述振动板的残余振动,基于该被检测的所述振动板残余振动的振动模式,检测出所述液滴喷头的喷出异常,并且确定消除该喷出异常的恢复处理;恢复装置,其执行由所述喷出异常检测/恢复处理确定装置所确定的恢复处理。
文档编号B41J2/125GK1753789SQ2004800053
公开日2006年3月29日 申请日期2004年2月27日 优先权日2003年2月28日
发明者樋口浩司, 新川修, 坂上裕介 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1