有机发光二极管面板的制作方法

文档序号:2639239阅读:232来源:国知局
专利名称:有机发光二极管面板的制作方法
技术领域
本发明涉及一种有机发光二极管面板(organic light emitting diode panel,OLED panel),尤其是涉及一种具有一加热电路结构(heating circuit structure)的可利用一加热工艺(heating process)直接制作出不同颜色的像素(pixel)的有机发光二极管面板。
背景技术
在平面显示器中,有机发光二极管显示器虽然起步较液晶显示器(LCD)晚,但却以具备自发光、广视角、响应速度快、低耗电量、对比强、亮度高、厚度薄、可全彩化、结构简单以及操作环境温度范围大等优点,已逐渐在中、小尺寸便携式显示器领域中受到瞩目。尤其是在经过工业部门和研究部门锲而不舍的研发之后,一些先前所无法解决的问题,例如工艺条件难以控制、掩模应用不利、帽形密封(cap seal)不稳定等,目前已经有了突破性的进展,放眼未来,有机发光二极管显示器甚至可望被应用于大尺寸的显示器领域。
而在分析有机发光二极管显示器的未来发展时,则必须先了解其驱动方式。有机发光二极管显示器本身为一电流驱动组件,其发光亮度根据通过电流的大小来决定,目前将OLED应用在矩阵式显示器(matrix display)之上时,即是通过控制OLED驱动电流的大小来达到显示不同亮度(又称为灰度)的效果。根据驱动方式的差异,矩阵式显示器可分为无源矩阵(passive matrix)显示器与有源矩阵(active matrix)显示器两种。无源矩阵显示器是采用循序驱动扫描线的方式,逐一驱动位于不同行/列上的像素,因此每一行/列上的像素的发光时间会受限于显示器的扫描频率以及扫描线数目,较不适用于大画面以及高分辨率(表示扫描线增加)的显示器。有源矩阵显示器则是于每一个像素中形成独立的像素电路,包括一电容器(capacitor,Cs),一OLED发光组件,以及至少二薄膜晶体管(thin-film transistor,TFT),以便于利用像素电路来调节OLED的驱动电流的大小,因此即使在大画面以及高分辨率的要求下,仍然可以持续提供每一像素一稳定驱动电流,并改善显示器的亮度的均匀性。
与其它显示器类似的是,当有机发光二极管显示器要实现彩色显示时,必需先形成红蓝绿三色光,再混合三色光以形成各种丰富亮丽的色彩。现有技术中常采用发出白光的材料,再使白光分别通过红、蓝、绿三色的滤光片(color filter),以产生红蓝绿三色光。然而,此种方法需要设置滤光片,于工艺上又需要控制校准精度(alignment accuracy),以免造成三色光的不均匀,故往往于布局(layout)时提供额外的限制,进而降低孔径比(aperture ratio)。
因此,现有技术中也常采用另一种方法,即利用不同的材料来制作出红、蓝、绿三色像素,再由三色像素叠加成一个彩色像素,进而达到混合红蓝绿三色光的目的。请参考图1与图2,图1为现有技术利用三色像素来制作一有机发光二极管面板10的示意图。如图1所示,现有技术的有机发光二极管面板10包含有一透明基板12,此透明基板12为一玻璃(glass)基板、一塑料(plastic)基板或是一石英(quartz)基板。透明基板12的一上表面14包括多个呈阵列排列的红色像素16、蓝色像素18以及绿色像素22,且相邻的红色像素16、蓝色像素18以及绿色像素22构成一彩色像素24。
请参考图2,图2为图1所示的有机发光二极管面板10沿切线2-2’的剖面示意图。如图2所示,有机发光二极管面板10的各个像素16、18、22之中(请参考图1),均分别包括一形成于透明基板12的表面上的透明导电层(transparent conductive layer)26、28、32,用来当做各有机发光二极管的阳极(anode);一形成于透明导电层26的表面上的有机薄膜(organic thin film)34;一形成于透明导电层28的表面上的有机薄膜36;一形成于透明导电层32的表面上的有机薄膜38;以及一分别形成于有机薄膜34、36、38的表面上的金属层(metal layer)42,用作各有机发光二极管的阴极(cathode)。并且由于有机薄膜34、36、38于制作前已经过事先规划,其内部各层材料的种类、厚度或是组合均可能有所不同,因此,在相同的工作电流之下,有机发光二极管面板10的各个像素16、18、22将发出不同颜色的光线,进而构成一彩色像素24。
然而,现有技术中采用白光材料,再使白光分别通过红、蓝、绿三色滤光片,以产生红蓝绿三色光的方法,所衍生的校准精度问题,不但容易造成三色光的不均匀,又容易降低孔径比。而利用不同的材料来制作出红、蓝、绿三色像素,再由三色像素叠加成一个彩色像素以混合红蓝绿三色光的方法,涉及到不同颜色像素中的有机薄膜具有差异性的问题。由于不同颜色像素中的有机薄膜具有差异性,在制作上一定会较为复杂,并且当工艺控制不良时,一样会产生校准的问题以及其它因工艺而衍生的问题,进而造成产品上的缺陷。因此,如何能发展出一种新的有源矩阵的有机发光二极管面板,其不仅不需要使用滤光片,也不会产生校准误差的问题,并因而可以提升孔径比,同时又不必制作相应于不同颜色的像素的有机薄膜,故可以维持制作流程简单化,便成为十分重要的课题。

发明内容
本发明的主要目的在于提供一种有机发光二极管面板,尤其是提供一种可以避免上述问题产生的有机发光二极管面板。
在本发明的实施例中,提供了一种有机发光二极管面板,该有机发光二极管面板包括一定义有多个像素区域的基板,一加热电路结构以及多个对应于各像素区域的有机发光二极管。其中加热电路结构包括二条互不相连的一第一导线以及一第二导线,该第一导线以及该第二导线设置于基板之上;一第一绝缘层,该第一绝缘层设置于基板之上,且该第一绝缘层之内包括多个分别暴露出第一导线以及第二导线的第一接触孔;多条第一加热线以及多条第二加热线,该多条第一加热线以及多条第二加热线设置于基板之上,各第一加热线以及各第二加热线经由各第一接触孔分别电连接至第一导线以及第二导线,且各第一加热线以及各第二加热线分别覆盖住部分各像素区域;以及一接地电极,该接地电极电连接至各第一加热线以及各第二加热线。
由于本发明的有机发光二极管面板于有机发光二极管的上方或下方设置一加热电路,且各第一、第二加热线可位于缓冲层的下方,或是将各第一、第二加热线设置于各有机发光二极管的上方或下方,再利用一加热工艺将发出红光以及绿光的有机发光二极管制作出来。因此,不仅不需要使用滤光片,可避免校准精度的问题从而使孔径比得以提升,又不需要因应不同颜色而设置不同的有机薄膜使工艺维持简单化,不至于因为复杂的工艺而衍生额外的问题。总而言之,本发明的有机发光二极管面板,具有低成本、热处理程序简便以及高产能等优点。


图1为现有技术利用三色像素来制作一有机发光二极管面板的示意图。
图2为图1所示有机发光二极管面板沿切线2-2’的剖面示意图。
图3至图7为本发明第一实施例中一有机发光二极管面板的示意图。
图8至图9为本发明第二实施例中一有机发光二极管面板的剖面示意图。
图10至图13为图8与图9的有机发光二极管面板的俯视图。
附图标记说明10、100、200有机发光二极管面板12、102、202透明基板14、112 上表面16、134、264红色像素18、132、262蓝色像素22、136、266绿色像素24、138、268彩色像素26、28、32 透明导电层34、36、38 有机薄膜42 金属层104、204像素区域106、244第一导线108、246第二导线116、242第一接触线118、212第一加热线122、214第二加热线124 接地电极126 加热电路结构128、254有机发光二极管206 二极管区域208 薄膜晶体管区域216 接地电极218 薄膜晶体管
222缓冲层224多晶硅层226源极电极228漏极电极232通道234栅极绝缘层236栅极电极238内层介电层248第二接触孔252绝缘层256透明像素电极258第三接触孔具体实施方式

请参考图3至图7,图3至图7为本发明第一实施例中一有机发光二极管面板100的示意图。如图3所示,本发明的有机发光二极管显示器100包括一透明基板102,该透明基板102为一玻璃基板、一塑料基板或是一石英基板,且透明基板102之上定义有一像素阵列区(pixel array area,未显示)以及一周边电路区(periphery circuit area,未显示)。像素阵列区中又定义有多个像素区域(pixel area)104,用来容纳各OLED组件以及与其互相搭配的电容器与薄膜晶体管,而周边电路区用来容纳控制电路(control circuit),由于本发明的重点与周边电路区无关,故不多做赘述。二条互不相连的第一导线(firstconductive line)106以及第二导线(second conductive line)108形成于基板102的上表面112,事实上,第一、第二导线106、108与形成于有机发光二极管面板100上的信号线(signal line,未显示)通过使同一金属层形成图案所形成,而第一、第二导线106、108包括一钨线(W line)、一铬线(Cr line)或是一其它导电金属线。
如图4所示,有机发光二极管面板100还包括设置于基板102之上的一第一绝缘层(first isolation layer,未显示),第一绝缘层(未显示)覆盖住各像素区域104与第一、第二导线106、108。第一绝缘层(未显示)之内包括多个第一接触孔(first contact hole)116,且各第一接触孔116分别暴露出部分的第一、第二导线106、108。第一绝缘层(未显示)包括一以四乙氧基硅烷为反应气体的氧化硅层(TEOS-SiO2layer)、二氧化硅层(silicon oxide layer)或是氮化硅层(silicon nitride layer)。
如图5所示,有机发光二极管显示器100还包括设置于基板102之上的多条第一加热线(first heating wire)118以及多条第二加热线(second heatingwire)122,各第一、第二加热线118、122经由各第一接触孔116分别电连接至第一、第二导线106、108。同时各第一、第二加热线118、122分别覆盖住部分各像素区域104。各第一、第二加热线118、122为氧化铟锡或是氧化铟锌,事实上,各第一、第二加热线118、122也可能是由半透明的材质所构成,但是当第一、第二加热线118、122由透明材质(如氧化铟锡或是氧化铟锌)所构成时,对有机发光二极管面板100整体的孔径比将会有非常正面的帮助。
基板102之上另设置有一接地电极(ground electrode)124,接地电极124电连接至各第一、第二加热线118、122,以维持各第一、第二加热线118、122之上电压的稳定。事实上,接地电极也可以是一个电连接至其它电压的电极,只要能达到供给各第一、第二加热线118、122稳定足够的加热电压的目的即可。由于第一、第二导线106、108与第一、第二加热线118、122被第一绝缘层(未显示)所电隔离(electrically isolated),因此,由第一、第二导线106、108与第一、第二加热线118、122以及接地电极124所构成的加热电路结构126中,第一、第二加热线118、122完全不会互相影响。同时,接地电极124可能是由透明材质,如氧化铟锡或是氧化铟锌所构成,也可能是由不透明的金属材质所构成。
基板102之上还形成有一第二绝缘层(未显示),第二绝缘层(未显示)覆盖加热电路结构126,且第二绝缘层之中包含有多个第二接触孔。多个有机发光二极管128(如图6所示)设置于第二绝缘层之上,并相对应于各像素区域104。各有机发光二极管128均包括一透明电极(未显示),形成于第二绝缘层之上;一有机薄膜(未显示),形成于透明电极(未显示)之上;以及一金属层(未显示),形成于有机薄膜之上。各透明电极为一氧化铟锡层或是一氧化铟锌层,并用来当作各有机发光二极管128的阳极,金属层为一镁金属层、一铝金属层、一锂金属层或是一合金层,并用来当作各有机发光二极管128的阴极。事实上,金属层视实际的需要,可以全面覆盖于所有的像素区域104之上,或是分别覆盖于各像素区域104之上。各像素区域104之中另包含有至少一薄膜晶体管,且各透明电极经由各第二接触孔(未显示)被电连接至其中的一薄膜晶体管的一漏极(未显示)。
如图7所示,第一、第二导线106、108经由一外部电源线(未显示)被电连接至同一电压源或是电流源,但也有可能被电连接至不同的电压源或是电流源,因此,当外加电压经由第一、第二导线106、108被施加于加热电路结构126时,将会产生相应的电流流过各第一、第二加热线118、122。基于电阻与电流平方的乘积等于功率的原理,各第一、第二加热线118、122将会提供热能给位于其上方的各有机发光二极管128。此时,未被加热的各有机发光二极管128完全不受影响,在调整外加电压的大小以及进行加热工艺时,位于各第一加热线118上方的各有机发光二极管128以及位于各第二加热线122上方的各有机发光二极管128将吸收不等量的热能,并改变有机发光二极管128的特性。
于正式运作时,未被加热的各有机发光二极管128将发出蓝光,并使各相应于这些有机发光二极管128的像素区域成为蓝色像素132,吸收较多热能的各有机发光二极管128将发出红光,并使各相应于这些有机发光二极管128的像素区域成为红色像素134,而吸收较少热能的各有机发光二极管128将发出绿光,并使各相应于这些有机发光二极管128的像素区域成为绿色像素136。且相邻的蓝色像素132、红色像素134以及绿色像素136构成一彩色像素138。值得一提的是,当接地电极124由氧化铟锡或是氧化铟锌所构成时,其宽度必需大于第一、第二导线106、108的宽度,以减少蓝色像素132、红色像素134以及绿色像素136之间阻值的差异,并提升加热均匀度,进而提升蓝光、红光以及绿光的均匀度。但是,当接地电极124的材质为金属时,则不具有这样的限制。
各第一、第二加热线118、122可能具有任何形状,而不限于图中所示条状(stripe)结构。由于发出绿光、红光、蓝光的有机发光二极管128的排列方式包括马赛克排列(Mosaic Type),三角排列(Triangle Type)或是条纹排列(Stripe Type)等,各第一、第二加热线118、122也可能是以折线或是其它型式呈现。事实上,各第一、第二加热线118、122只要能均匀地覆盖于欲加热的各像素区域104之上并达到均匀加热的目的即被涵盖在本发明之内。另外,各像素区域104中所包括的至少一薄膜晶体管(未显示将构成一驱动电路,并使面板中的每个像素对应于此驱动电路所传送过来的信号产生相应的输出电流,进而控制各有机发光二极管128的发光亮度。同时本发明所提供的加热电路不仅可以被应用于有源矩阵(active matrix)的面板,亦可以被应用于无源矩阵(passive matrix)的面板。
然而,本发明的实施方式并不仅限于上述加热电路结构126被设置于各有机发光二极管下方的结构。事实上,在本发明的有机发光二极管面板100中,各第一、第二加热线118、122亦可以被设置于各有机发光二极管的上方。在这种情况之下,各有机发光二极管与第一、第二导线106、108先被设置于基板102之上,同时第一、第二导线106、108与形成有机发光二极管面板100上的信号线(未显示)通过使同一金属层形成图案所形成。再借助于第一绝缘层(未显示)来将各有机发光二极管与各第一、第二加热线118、122电隔离,或是于制作各第一、第二加热线118、122之前,先行形成其它的绝缘层(未显示),以加强各有机发光二极管与各第一、第二加热线118、122的电隔离,再利用第一绝缘层(未显示)内的多个接触孔(未显示,或再加上其它绝缘层中的多个接触孔),来将各有机发光二极管分别电连接至各第一、第二加热线118、122,并将各第一、第二加热线118、122分别电连接至第一、第二导线106、108。于正式运作时,各第一加热线118将会加热相对应的有机发光二极管,使位于其下方的有机发光二极管发出绿光,而各第二加热线122用以加热相对应的有机发光二极管,使位于其下方的有机发光二极管发出红光,而未被加热的有机发光二极管将会发出蓝光。在此种结构中,其它的实施方式与有机发光二极管128被设置于加热电路结构126上方的结构相同。
此外,本发明的实施方式中,即使加热电路结构被设置于各有机发光二极管的下方,亦可能有其它的实施方式。请参考图8至图13,图8至图9为本发明第二实施例中一有机发光二极管面板200的剖面示意图,图10至图13为图8与图9的有机发光二极管面板200的俯视图。如图8与图10所示,本发明的有机发光二极管面板200包含有一透明基板202,此透明基板202为一玻璃基板、一塑料基板或是一石英基板,且透明基板202之上定义有一像素阵列区(未显示)以及一周边电路区(未显示)。像素阵列区中定义有多个像素区域204,且各像素区域204之内又分别定义有一二极管区域(dioderegion)206以及一薄膜晶体管区域(thin film transistor region)208,用来容纳OLED组件以及与其互相搭配的电容器与薄膜晶体管。而周边电路区用来容纳控制电路,由于本发明的重点与周边电路区无关,故于此不再赘述。
多条第一、第二加热线212、214,设置于透明基板202的上表面,且各第一、第二加热线212、214分别覆盖住部分的各像素区域204。透明基板202上另包含有一接地电极216,与各第一、第二加热线212、214相连。各第一、第二加热线212、214以及接地电极216为氧化铟锡或是氧化铟锌。事实上,各第一、第二加热线212、214也可能是由半透明的材质所构成,但是当各第一、第二加热线214由透明材质所构成时,对有机发光二极管面板200整体的孔径比将会有非常正面的帮助,同时,接地电极也可能是由不透明的金属材质所构成。
如图8所示,一薄膜晶体管218设置于薄膜晶体管区域208内的加热线之上(在此是以第一加热线212为例来做说明),且薄膜晶体管218以及第一加热线212之间包括一缓冲层(buffer layer)222。薄膜晶体管218包括一多晶硅层(polysilicon layer,poly-Si layer)224,且多晶硅层224之中包含有薄膜晶体管218的一源极电极(source electrode)226、一漏极电极(drain electrode)228以及一通道(channel)232,一栅极绝缘层(gate insulating layer,GI layer)234设置于缓冲层222之上并覆盖住多晶硅层224,一栅极电极(gate electrode)236设置于通道232上方的栅极绝缘层234的表面,一内层介电层(inter layerdielectric,ILD)238设置于栅极绝缘层234之上并覆盖住栅极电极236,以及至少一第一接触孔242贯穿内层介电层238以与门极绝缘层234。缓冲层222由氧化硅所构成,其不仅具有防止透明基板202中的杂质向上扩散的作用,也用来作为激光处理多晶硅层224时的缓冲。
如图9与图11所示,二条互不相连的第一、第二导线244、246设置于透明基板202之上,并分别通过多个贯穿位于各像素区域204以外的缓冲层222、栅极绝缘层234以及内层介电层238的第二接触孔248被电连接至第一、第二加热线212、214,在图9中以第一导线244经由多个第二接触孔248被电连接至第一加热线212为例来做说明。
请参考图8,值得注意的是,于制作有机发光二极管面板200中的第一、第二接触孔242、248的同时,所有位于各二极管区域206内的缓冲层222、栅极绝缘层234以及内层介电层238均被蚀刻干净,使后续完成有机发光二极管面板200时,第一加热线212与有机发光二极管(未显示)不至于隔着很厚的绝缘层,以确保加热效率(同理,第二加热线214与有机发光二极管之间也如此)。事实上,第一、第二导线244、246与形成于有机发光二极管面板200上的信号线(未显示)通过使同一金属层形成图案所形成,而薄膜晶体管218的源极电极226经由第一接触孔242被电连接至一相应的信号线(未显示)。第一、第二导线244、246包括一钨线、一铬线或是一其它导电金属线。
如图8与图9所示,一绝缘层252形成于透明基板202之上,并覆盖住薄膜晶体管218以及第一加热线212。绝缘层252由氧化硅所构成,且绝缘层252的厚度约略等于1000埃()。事实上,绝缘层252覆盖整个透明基板202,即各第一、第二加热线212、214、各薄膜晶体管218、第一、第二导线244、246以及透明接地电极216均受绝缘层252的保护。
如图8与图12所示,一有机发光二极管254设置于二极管区域206内的绝缘层252之上。有机发光二极管254包括一透明像素电极(pixelelectrode)256,形成于绝缘层252之上;一有机薄膜(未显示),形成于透明像素电极256之上;以及一金属层(未显示),形成于有机薄膜之上。透明像素电极256为一氧化铟锡层或是一氧化铟锌层,并用来当作有机发光二极管254的阳极,金属层为一镁金属层、一铝金属层、一锂金属层或是一合金层,并用来当作有机发光二极管254的阴极。于图8中,只特别显示出透明像素电极256,至于有机薄膜与金属层并未被明白显示,因为其有许多种变化。事实上,金属层视实际的需要,可以全面覆盖于所有的像素区域204之上,或是分别覆盖于各二极管区域206之上。其中透明像素电极256经由一第三接触孔258被电连接至薄膜晶体管218的漏极电极228。如图12所示,一有机发光二极管254分别设置于各像素区域204之内。
如图13所示,第一、第二导线244、246经由一外部电源线(未显示)被电连接至同一电压源或是电流源,但也有可能被电连接至不同的电压源或是电流源,因此,当外加电压被施加于第一、第二导线244、246之上时,将会产生相应的电流流过各第一、第二加热线212、214。基于电阻与电流平方的乘积等于功率的原理,各第一、第二加热线212、214将会提供热能给位于其上方的各有机发光二极管254。此时,利用调整外加电压的大小以及加热工艺的时间,位于各第一加热线212上方的各有机发光二极管254以及位于各第二加热线214上方的各有机发光二极管254将吸收不等量的热能,并改变有机发光二极管254的特性。
于正式运作时,未被加热的各有机发光二极管254将发出蓝光,并使各相应于这些有机发光二极管254的像素区域成为蓝色像素262,吸收较多热能的各有机发光二极管254将发出红光,并使各相应于这些有机发光二极管254的像素区域成为红色像素264,而吸收较少热能的各有机发光二极管254将发出绿光,并使各相应于这些有机发光二极管254的像素区域成为绿色像素266。且相邻的蓝色像素262、红色像素264以及绿色像素266构成一彩色像素268。于此实施例中,位于各第一加热线212上方的有机发光二极管254发出红光,位于各第二加热线214上方的有机发光二极管254发出绿光,而未被加热的各有机发光二极管254则发出蓝光。
值得一提的是,接地电极216电连接至各第一、第二加热线212、214,以维持各第一、第二加热线214之上电压的稳定。事实上,接地电极216也可以是一个电连接至其它电压的电极,只要能达到供给各加热线212、214稳定足够的加热电压的目的即可。于此实施例中,接地电极216为透明材质(如氧化铟钖或氧化铟锌)时,其宽度必需大于第一、第二导线244、246的宽度,以降低各第一、第二加热线214的阻值,并进而提升红色像素264以及绿色像素266的加热均匀度,以期达到良好的蓝光、红光以及绿光均匀度。然而,当接地电极的材质为金属时,则不具有这样的限制。此外,由于第一、第二导线244、246与第一、第二加热线212、214被缓冲层222、栅极绝缘层234以及内层介电层238所电隔离,因此,由第一、第二导线244、246、第一、第二加热线212、214以及接地电极216所构成的加热电路结构中,第一、第二加热线212、214完全不会互相影响。
各第一、第二加热线212、214可能具有任何形状,而不限于图中所示条状结构。由于发出绿光、红光、蓝光的有机发光二极管254的排列方式包含有马赛克排列,三角排列或是条纹排列等,各第一、第二加热线212、214也可能是以折线或是其它型式呈现。事实上,各第一、第二加热线212、214只要能均匀地覆盖于欲加热的各像素区域204之上并达到均匀加热的目的即被涵盖在本发明之内。同时,各第一、第二加热线212、214也可能绕过各薄膜晶体管218,在此情形之下,各薄膜晶体管218直接设置于各薄膜晶体管区域208内的透明基板202的表面。此外,各像素区域204中所包含的薄膜晶体管218与其它薄膜晶体管(未显示),构成一驱动电路,并使面板中的每个像素对应于此驱动电路所传送过来的信号产生相应的输出电流,进而控制各有机发光二极管254的发光亮度。另外,本发明所提供的加热电路,不仅可以被应用于有源矩阵的面板,亦可以被应用于无源矩阵的面板。
与现有技术相比较,本发明的有机发光二极管面板于有机发光二极管的上方或下方设置一加热电路,其中各第一、第二加热线可位于缓冲层的下方,或是将各第一、第二加热线设置于各有机发光二极管的上方或下方,再利用一加热工艺将发出红光以及绿光的有机发光二极管制作出来。如此一来,不仅不需要使用滤光片,可避免校准精度问题而使孔径比得以提升,又不需要因应不同颜色而设置不同的有机薄膜而使工艺维持简单化,不至于因为复杂的工艺而衍生额外的问题。总而言之,本发明的有机发光二极管面板具有低成本、热处理程序简便以及高产等优点。
以上所述仅为本发明的优选实施例,凡依照本发明的权利要求书所限定的范围所作的等效变化与修饰,皆应属本发明的涵盖范围。
权利要求
1.一种有机发光二极管面板,包括一基板,在所述的基板之上定义有多个像素区域;一加热电路结构,所述的加热电路结构包括二不相连的一第一导线以及一第二导线,都形成于所述的基板之上;一形成于所述的基板之上的第一绝缘层,所述的第一绝缘层还包括多个分别暴露出所述的第一导线以及所述的第二导线的第一接触孔;多条第一加热线以及多条第二加热线,都设置于所述的基板之上,各所述的第一加热线以及各所述的第二加热线经由各所述的第一接触孔分别电连接至所述的第一导线以及所述的第二导线,且各所述的第一加热线以及各所述的第二加热线分别覆盖住部分的各所述的像素区域;以及一接地电极,所述的接地电极电连接至各该第一加热线以及各该第二加热线;以及多个有机发光二极管,对应于各所述的像素区域。
2.如权利要求1所述的面板,其中还包括一覆盖于所述的加热电路结构之上的第二绝缘层,且各所述的有机发光二极管设置于所述的第二绝缘层之上。
3.如权利要求1所述的面板,其中各所述的第一加热线用以加热相对应的有机发光二极管,以使位于各所述的第一加热线上方的有机发光二极管发出绿光,而各所述的第二加热线用以加热相对应的有机发光二极管,以使位于各该第二加热线上方的所述的有机发光二极管发出红光,其中未被加热的各所述的有机发光二极管发出蓝光。
4.如权利要求1所述的面板,其中各所述的有机发光二极管设置于所述的第一绝缘层之下。
5.如权利要求1所述的面板,其中所述的像素区域包括至少一薄膜晶体管,且所述的薄膜晶体管用以控制各所述的有机发光二极管的发光亮度。
6.如权利要求1所述的面板,其中各所述的有机发光二极管包括一透明电极,形成于所述的第二绝缘层之上,其中各所述的透明电极用来当作各所述的有机发光二极管的阳极;一有机薄膜,形成于所述的透明电极之上;以及一金属层,形成于所述的有机薄膜之上,其中各所述的金属层用来当作各所述的有机发光二极管的阴极。
7.如权利要求1所述的面板,,其中所述的接地电极为一透明接地电极,且所述的接地电极的宽度大于第一导线以及一第二导线的宽度。
8.一种有机发光二极管面板,包括一基板,在该基板之上定义有多个像素区域,且各所述的像素区域之内分别定义有一二极管区域以及一薄膜晶体管区域;多条第一加热线以及多条第二加热线,设置于该基板之上,且各所述的第一加热线以及各所述的第二加热线分别覆盖住部分的各所述的像素区域;一薄膜晶体管,设置于各所述的薄膜晶体管区域内的各所述的加热线之上;一绝缘层,形成于所述的基板之上,且所述的绝缘层覆盖各所述的薄膜晶体管以及各所述的加热线;以及一有机发光二极管,设置于各所述的二极管区域内的所述的绝缘层之上,其中各所述的第一加热线电连接至一第一导线以加热相对应的有机发光二极管,使其发出绿光,而各所述的第二加热线电连接至一第二导线以加热相对应的有机发光二极管,使其发出红光。
9.如权利要求1所述的面板,其中所述的第一导线以及所述的第二导线不相连。
10.如权利要求8所述的面板,其中还包括一与各所述的第一加热线以及各所述的第二加热线相连的接地电极。
全文摘要
一种有机发光二极管面板,包括定义有多个像素区域的基板,设置于基板之上的一加热电路结构,以及对应于各像素区域的多个有机发光二极管。其中加热电路结构包括二条不相连的导线,多条加热线分别电连接至二导线并覆盖住部分像素区域,以及一接地电极。
文档编号G09F9/30GK1641902SQ20041000130
公开日2005年7月20日 申请日期2004年1月6日 优先权日2004年1月6日
发明者郭文源, 薛玮杰, 石安 申请人:统宝光电股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1