液晶显示装置及其驱动方法

文档序号:2617309阅读:93来源:国知局
专利名称:液晶显示装置及其驱动方法
技术领域
本发明涉及作为信息设备的显示部所应用的液晶显示装置及其驱动方法。
背景技术
在作为个人计算机(PC)的监视器或电视接收机所应用的显示装置中,有CRT(Cathode-Ray Tube)和液晶显示装置。图27表示CRT的1个像素的发光亮度的时间变化,图28表示液晶显示装置的1个像素的发光亮度的时间变化。图27及图28的横轴表示时间,纵轴表示亮度。如图27所示,CRT进行像素通过电子射束的扫描在1帧(扫描场)内仅1次瞬间发光的脉冲型显示。与此相对,如图28所示,液晶显示装置进行在下一帧写入新数据前,像素在1帧内基本以相同亮度持续发光的保持型显示。
并且,相对自发光型的CRT,液晶显示装置为非发光型,为此背光设备等光源装置是必要的。背光设备中有在液晶显示板的背面配置多个作为线状光源的荧光管(冷阴极管)的直下型;和在液晶表示板背面所配置的导光板的端部配置荧光管的边缘照明型。图29表示直下型的光源装置的结构。如图29所示,扩散板110的背面配置着多个荧光管112。
在保持型显示方式的液晶显示装置中,显示动画会产生图像的轮廓模糊。为了使来自各像素的光接近脉冲型显示方式的显示装置,提高动画的图像质量,设想了使用直下型的光源装置,顺序点亮像素数据写入结束了的区域的荧光管的方式。但是,由于荧光管112的配置,直下型的光源装置容易产生的亮度斑、各荧光管112的光量及色度的差异,使显示区域全体很难达到均匀的亮度。并且,各荧光管112的损耗程度不同,作为亮度斑容易被发现,此外,为了提高显示质量若使用若干荧光管112,则光源装置的电力消耗也将增加。因此,在导光板的端部配置了线状光源的边缘照明型的光源装置成为主流。
图30表示边缘照明型的光源装置的结构。如图30所示,在面状导光板114的一端部和该端部相对的另一端部配置了荧光管116。
使用边缘照明型的光源装置比使用直下型的光源装置难以产生亮度斑,但会产生如上所述的动画显示时的轮廓模糊。因保持型显示方式产生的图像轮廓模糊产生的原因在于动画的观看者的视点追随动画内的移动物体随着时间变化,而描画该移动物体的各水平线的图像数据在一帧周期内却是固定的。并且,液晶显示装置的情况下,因为相对改写像素数据的帧周期液晶分子的应答速度迟缓,进行数据改写且液晶在应答过程中的像素的亮度被平均化,即使是凭借观察者的眼睛的感觉轮廓模糊也会被发现。在常黑模式的液晶显示装置中,特别是接近黑色的低灰度间改写时,因在液晶层施加的电压低,所以液晶分子的应答速度变慢了。

发明内容
本发明的目的在于提供显示特性良好的液晶显示装置及驱动方法。
上述目的通过具有以下特征的液晶显示装置实现,其特征为,具有液晶显示板,其具有相对配置的2张基板和密封在上述2张基板间的液晶;光源装置,其具有传导入射光的面状导光板和配置在上述面状导光板的端部,以指定的亮灭频率且以相互不同的定时仅在帧期间内指定的点亮时间点亮的多个线状光源。
而且上述目的通过具有以下特征的液晶显示装置的驱动方法实现,其特征为在具有多个面状光源的液晶显示装置的驱动方法中,在帧期间内,以相互不同的定时,仅在各自指定的点亮时间使上述多个面状光源点亮。
进而上述目的通过具有以下特征的液晶显示装置的驱动方法来实现,其特征为根据指定期间内各像素的灰度算出上述像素中每个像素的亮度数据,且至少根据上述亮度数据的最大值、最小值及平均值的其中之一,算出点亮时间相对上述指定期间的比率即占空比,并根据上述占空比使面状光源点亮熄灭。


图1表示根据本发明的第1实施方式的实施例1-1的液晶显示装置的结构。
图2表示根据本发明的第1实施方式的实施例1-1的液晶显示装置的结构。
图3A至图3C表示根据本发明的第1实施方式的实施例1-1的液晶显示装置的驱动方法。
图4A至图4C表示根据本发明的第1实施方式的实施例1-1的液晶显示装置的驱动方法。
图5A至图5C表示根据本发明的第1实施方式的实施例1-1的液晶显示装置的驱动方法。
图6表示根据本发明的第1实施方式的实施例1-2的液晶显示装置的结构。
图7表示根据本发明的第1实施方式的实施例1-3的液晶显示装置的结构。
图8表示根据本发明的第1实施方式的实施例1-3的液晶显示装置的结构的变形例子。
图9表示根据本发明的第1实施方式的实施例1-4的液晶显示装置的结构。
图10表示根据本发明的第1实施方式的实施例1-4的液晶显示装置的结构。
图11表示根据本发明的第1实施方式的实施例1-4的液晶显示装置的结构。
图12表示根据本发明的第2实施方式的实施例2-1的液晶显示装置的结构的功能框图。
图13表示根据本发明的第2实施方式的实施例2-1的液晶显示装置的驱动方法的流程图。
图14表示根据本发明的第2实施方式的实施例2-2的液晶显示装置的驱动方法的流程图。
图15表示根据本发明的第2实施方式的实施例2-3的液晶显示装置的驱动方法的流程图。
图16表示根据本发明的第2实施方式的实施例2-4的液晶显示装置的驱动方法的流程图。
图17表示根据本发明的第2实施方式的实施例2-4的液晶显示装置的驱动方法的流程图。
图18表示根据本发明的第2实施方式的实施例2-5的液晶显示装置的驱动方法的流程图。
图19表示根据本发明的第2实施方式的实施例2-5的液晶显示装置的驱动方法的流程图。
图20表示根据本发明的第2实施方式的实施例2-5的液晶显示装置的驱动方法的流程图。
图21表示根据本发明的第2实施方式的实施例2-5的液晶显示装置的驱动方法的流程图。
图22表示根据本发明的第2实施方式的实施例2-5的液晶显示装置的驱动方法的流程图。
图23表示根据本发明的第2实施方式的实施例2-5的液晶显示装置的驱动方法的流程图。
图24表示根据本发明的第2实施方式的实施例2-5的液晶显示装置的驱动方法的流程图。
图25表示根据本发明的第2实施方式的实施例2-6的液晶显示装置的驱动方法的流程图。
图26表示根据本发明的第2实施方式的液晶显示装置的结构的变形例子。
图27表示CRT的1个像素的发光亮度的时间变化图。
图28表示液晶显示装置的1个像素的发光亮度的时间变化图。
图29表示直下型光源装置的结构。
图30表示边缘照明型光源装置的结构。
具体实施例方式对根据本发明的第1实施方式的液晶显示装置及驱动方法用图1至图11进行说明。本实施方式中,配置于导光板的一个端部一侧的线状光源和配置在相对的另一端部一侧的线状光源,以不同的定时点亮熄灭。因此,数据保持时间(发光时间)被缩短,显示动画时的模糊被缓和。并且,在一方线状光源熄灭期间改写该线状光源的显示区域的像素数据,并点亮另一方的线状光源进行显示,由此减轻由于数据改写而产生的模糊。
并且,在显示区域全体为高灰度时延长光源装置的点亮时间。在显示区域全体为低灰度时缩短光源装置的点亮时间,变换灰度信号且在液晶层中施加较高的电压。因此,不会降低白色显示的亮度,而且可以减轻因液晶分子的应答速度而产生的模糊。以下,用实施例1-1至1-4进行说明。
(实施例1-1)对根据本实施方式的实施例1-1的液晶显示装置及其驱动方法用图1至图5C进行说明。图1表示根据本实施例的液晶表示装置的结构,图2表示由图1的A-A线所切断的液晶显示装置的截面。如图1及图2所示,例如对角为15英寸的液晶显示装置具有液晶显示板2和边缘照明型的背光设备4。液晶显示板2具有2张玻璃基板6、7和被密封在两基板6、7间的液晶(没有图示)。背光设备4具有面状导光板10和被分别配置在与面状导光板10相对的2个端部的2个荧光管12a、12b。荧光管12a、12b是沿着面状导光板10的端部延伸的线状光源。显示区域上方的荧光管12a照亮显示区域的上半部分的区域A侧,显示区域下方的荧光管12b照亮显示区域的下半部分的区域B侧。
图3A至图3C表示向显示区域的像素数据的写入和荧光管12a、12b的点亮熄灭的定时。图3A表示像素数据是否被写入显示区域(写入/不写入)。图3B表示荧光管12a的亮灭状态(点亮/熄灭),图3C表示荧光管12b的亮灭状态。图3A至图3C中,横轴表示时间。如图3A所示,从时间t0到时间t0’的1帧期间,像素数据被写入显示区域是在时间t1到时间t5的期间。在时间t1从显示区域上端的1个选通总线部分的多个像素开始像素数据以线顺序被写入。在时间t3向区域A的像素的像素数据写入结束,向区域B的像素的像素数据写入开始。并且,在时间t5向区域B的像素的像素数据写入结束。
如图3B所示,区域A侧的荧光管12a仅从向区域A的像素数据写入结束后的时间t4到下一帧的像素数据的写入开始前的时间t0’的期间点亮,其他期间熄灭。荧光管12a的1帧期间内的点亮时间比率(以下称为占空比),例如为30%。
并且,如图3C所示,区域B侧的荧光管12b仅从前一帧的区域B的像素数据写入结束后的时间t0到区域B的像素数据写入开始前的时间t2的期间点亮,其他期间熄灭。荧光管12b的占空比例如为30%。
如此,像素数据改写中的区域侧的光源在该数据改写期间尽量熄灭。并且,1帧期间内荧光管12b开始点亮的时间t0和荧光管12a开始点亮的时间t4之间的相位差Φ变为比180°大(Φ>180°)。为了配合荧光管12a、12b的亮灭周期和帧周期,使各荧光管12a、12b亮灭的光源装置的驱动电路根据表示1帧开始的启动脉冲获得同步。
在本实施方式中,将帧频率及荧光管12a、12b的亮灭频率(1秒中点亮的次数)都设为60Hz,占空比为20%~10%(图3A至图3C中为30%)。因为液晶分子的应答速度为数msec~十数msec,所以在像素数据被改写的各像素的液晶分子的应答基本已完成时光源装置点亮。因此,可以将所希望的图像数据(亮度)原样显示。并且,由于使荧光管12a、12b亮灭并减少了发光时间,从而动画的模糊被改善,可以获得良好的显示特性。
在本实施例中,使用了和现有的液晶显示装置大致相同的结构的液晶显示装置,变更背光的亮灭定时并扫描显示区域内的多个区域。但是,来自荧光管12a的光主要传导到区域A中,来自荧光管12b的光主要传导到区域B中,如果适合于面状导光板10的散射特性及反射特性,则区域A、B的边界附近的显示特性将变得更良好。
并且,在显示区域A的亮度相对高而区域B的亮度相对低的图像时,通过设定为荧光管12a的占空比大,荧光管12b的占空比小,可以在画面的上下造成亮度差。图4A至图4C表示相互不同占空比的荧光管12a、12b的点亮熄灭定时。如图4A、图4B、图4C所示,区域A侧的荧光管12a与区域B侧的荧光管12b比较,点亮时间长。例如,在显示显示画面的上方为天空,下方为树林的图像时,在强调蓝天白云的同时,树木的黑色可以显得更黑。并且,因液晶的应答速度而产生的模糊被缓和,所以在风中摇曳的树叶也可以看得很清楚。但是,如果在显示画面的上下方亮度差极大,则图像的印象就会改变,因此希望荧光管12a、12b的占空比控制在40%以内。
例如,也可以使荧光管12a、12b的占空比在在例如20~100%的范围内在每个帧中变化。图5A至图5C表示将荧光管12a、12b的占空比在每个帧中变化的例子。如图5A、图5B、图5C所示,在帧期间C中,荧光管12a、12b的占空比同为40%。在帧期间D中,荧光管12a、12b的占空比同为80%。在帧期间E中,荧光管12a、12b的占空比同为100%。
若将荧光管12a、12b的占空比都设为在50%以上,则有必要在1帧期间内的某点,将2个荧光管12a、12b同时点亮。此时,因为动画的情况下观看者以显示画面的中央部分为中心观看,所以,当像素数据被写入显示画面的中央部分的像素时,将荧光管12a、12b熄灭可以缓和模糊。为此,将荧光管12a、12b的占空比变大时,例如占空比在40%以上,如图5A至图5C所示的帧期间D那样,分成帧期间内的初始期和结束期2次点亮,中间(时间t3’附近)熄灭。依此,将占空比增加至80%左右提高显示亮度,也可以缓和显示画面中央部分的模糊,获得良好的显示特性。其中,在帧期间D,E中,将亮灭周期(亮灭频率的倒数)分别定义为(t0”-t0’)、(t0-t0”)。
(实施例1-2)其次,对根据本实施方式的实施例1-2的液晶显示装置用图6进行说明。图6表示根据本实施例的液晶显示装置的背光设备4的概略的截面结构。如图6所示,背光设备4具有一部分被图1所示的区域A、B的边界近旁形成的分割面14分割了的面状导光板10。在分割面14表面上镀有例如铝(Al)等高反射材料。因此,从一方荧光管12a照射并到达分割面14近旁的光,没有射入面状光导板10的其他区域B,而被分割面14反射,重新传导给区域A。
若根据本实施例,由荧光管12a、12b将区域A、B大致分割并可以照明的同时,在面状光导板10内的各区域A、B的光利用效率也提高了。为此,可以获得比实施例1-1更良好的显示特性。
(实施例1-3)其次,对根据本实施方式的实施例1-3的液晶显示装置用图7及图8进行说明。图7表示根据本实施例的液晶显示装置的背光设备4的概略的截面结构。如图7所示,背光设备4具有2个楔形的面状导光板11a、11b。荧光管12a、12b分别被配置在与面状导光板11a、11b的顶角相对的一端边的光入射面18近旁。一方的面状导光板11a的尖端部19与另一方面状导光板11b的光入射面18基本相邻地配置着。如根据本实施方式,可以获得与上述实施例1-1及1-2同样的效果。
图8表示根据本实施例的液晶显示装置的变形例的背光设备4的结构。如图8所示,背光设备4具有4个楔形的面状导光板11a~11d。荧光管12a~12d分别被配置在面状导光板11a~11d的一个端部的光入射面18的近旁。面状导光板11a的尖端部19与面状导光板11b的光入射面18基本相邻地配置着。并且,面状导光板11d的尖端部19与面状导光板11c的光入射面18基本相邻地配置着。面状导光板11b的尖端部19与面状导光板11c的尖端部19基本相邻地配置着。
在如图1所示显示区域被二分为区域A、B的例子中,区域A、B的下方在液晶分子的应答未结束期间,有时会出现背光设备12a、12b点亮的情况,对于整个显示区域,在最适合的定时,将背光设备12a、12b点亮是有困难的。
如根据本变形例,可以将区域细分,使与像素数据改写的定时更适合地使荧光管12a~12d亮灭。为此,能够在显示区域的中央部分(区域A的下方)和显示区域的下部(区域B的下方)也获得良好的显示特性。
(实施例1-4)对根据本实施方式的实施例1-4的液晶显示装置用图9至图11进行说明。图9表示本实施例的液晶显示装置的背光设备4的概略的截面结构。如图9所示,背光设备4具有2个形状基本相同的面状导光板13a、13b被重叠的结构。荧光管12a被配置在面状导光板13a的一端,荧光管12b被配置在面状导光板13b的另一端。
在图9中被配置在未图示的液晶显示板2侧(图中上方)的面状导光板13a的背面,散射图形16在荧光管12a侧的区域A中形成。散射图形16使面状导光板13a中传导的光散射射出到液晶显示板2上。另一方面,在面状导光板13b的背面,散射图形16在荧光管12b侧的区域B中形成。因此,荧光管12a照亮显示区域上方的区域A,荧光管12b照亮显示区域上方的区域B。
图10表示根据本实施例的液晶显示装置的变形例的背光设备4的结构。如图10所示,两个面状导光板13a、13b共用在两端边分别配置的荧光管12a、12b。并且,各面状导光板13a、13b的液晶显示板2侧(图中上方)配置着光闸20a、20b。图中,面状导光板13a表面的左半部分(即显示画面上侧)配置着光闸20a,面状导光板13b表面的右半部分(即显示画面下侧)配置着光闸20b。光闸20a、20b中,使用光的透射率根据电场强度发生变化的聚合物散射型液晶单元。其他液晶单元也可以使用机械地开关的门进行遮挡光。光闸20a、20b,例如在面状导光板13a、13b侧有光反射面,在液晶显示板2侧有光吸收面。
图11表示根据本实施例的液晶显示装置的其他变形例的背光设备4的结构。如图11所示,背光设备4在面状导光板13a的液晶显示板2侧具有光闸20a、20b。光闸20a、20b也可以设在液晶显示板2的背光设备4侧。
并且,在本实施例中,将2张面状导光板13a、13b重叠,但是,如没有液晶显示装置的体积等的限制,也可以通过将更多的面状导光板重叠,将显示区域分割为多个区域,顺序扫描各区域进行照亮。
在本实施方式中,使被分别配置在显示区域的上方及下方的荧光管12a、12b与像素数据的写入同步点亮熄灭。像素数据被写入显示区域上半部分的区域A中期间,将区域A侧的荧光管12a熄灭,将区域B的荧光管12b点亮。像素数据被写入显示区域下半部分的区域B中期间,将区域B的荧光管12b熄灭,区域A的荧光管12a点亮。由此,像素数据被写入各区域且液晶分子基本应答后,可以用背光设备4照亮各区域。并且,可以通过减少1帧期间内的点亮时间来缩短数据的保持时间。因此可以减轻显示动画时的模糊,提高显示特性。并且,除去背光设备4的驱动电路,液晶显示装置的部件个数基本不增加,能够容易地实现。其中,根据本实施方式的液晶显示装置的背光设备4为边缘照明型,所以液晶显示装置的显示画面上难以产生亮度斑。
其次,对根据本发明的第2实施方式的液晶显示装置及其驱动方法用实施例2-1至2-6进行说明。
液晶显示装置的显示的亮度近年提高了,正在不断地接近CRT的亮度。特别是近年的光源装置在小型化的同时也在发展高亮度化。透过型液晶显示装置的显示亮度是通过增大液晶显示板的白色显示时的透射率和光源装置的亮度来提高的。
然而,液晶显示板在黑色显示时,如照射极强烈的光则会产生漏光。因此,若将光源装置的亮度提高,白色显示时的最大亮度变高的同时,黑色显示时的最小亮度也变高了。由此,会产生即使增高了光源装置的亮度也不能提高白色黑色显示的对比度的问题。并且,因黑色显示时的显示画面没有成为真黑色,亮度变高而产生显示质量下降的问题。
并且,例如在VA(Vertically Alignment)模式的液晶显示装置中,电压没有被施加到液晶层时,液晶分子与基板面基本垂直取向。在这种状态下,液晶层中产生的延迟基本为0,在常黑模式的液晶显示装置中黑色被显示。但是,对于基板面从斜的方向观看时,由于液晶层产生指定的延迟而发生漏光。
本实施方式的目的在于提供能够获得对比度高的显示特性良好的液晶显示装置及其驱动方法。
为了解决上述问题,在本实施方式中,在基本全部的显示区域,显示黑色或与黑色接近的低灰度的图像时,将光源装置的发光亮度降低,在显示比较明亮的高灰度的图像时,将光源装置的发光亮度提高。由此,不断地提高最大亮度,抑制黑色或与黑色接近的低灰度的图像的亮度,能够实现显示动态范围广的液晶显示装置。
(实施例2-1)对根据本实施方式的实施例2-1的液晶显示装置及其驱动方法用图12及图13进行说明。图12表示根据本实施方式的液晶显示装置的结构的功能框图。如图12所示,液晶显示装置具有解析由外部输入的图像信号并算出1帧期间内的点亮时间的比率即占空比的信号解析部30。背光控制部32与信号解析部30连接。背光控制部32根据在信号解析部30中算出的占空比输出指定的点亮熄灭信号。根据点亮熄灭信号使多个荧光管12a、12b亮灭的背光变换器36a、36b与背光控制部32连接。并且,图像信号控制部34与背光控制部32连接。根据图像信号控制的LCD驱动电路38与图像信号控制部34连接。
其次,对根据本实施例的液晶显示装置的驱动方法用图13进行说明。首先,若图像信号由外部输入到信号解析部30,则信号解析部30由指定的范围(例如1帧部分)的图像信号算出显示画面上的亮度数据W,并算出亮度数据W的最大值(max)、最小值(min)、平均值(ave)。进而,信号解析部30至少根据最大值(max)、最小值(min)、平均值(ave)的其中之一算出占空比。
图13是表示根据本实施例的图像信号算出占空比的步骤的流程图。例如以帧周期1/60sec(16.7msec),将1280×768个的各像素的图像信号分别以红(R)、绿(G)、蓝(B)各6位(0~63)输入信号解析部30(步骤S1)。图像信号被输入后(步骤S2),信号解析部30利用图像信号R、G、B的数据值和常数r(例如7)、g(例如20)、b(例如5)算出6位(0~63)的亮度数据W=(r×R+g×G+b×B)/(r+g+b)(步骤S3)。某像素的图像信号R、G、B为R=40、G=35、B=59时,亮度数据W=39。然后,信号解析部30将亮度数据W和最大值max(初期值为0)进行比较(步骤S4),如果亮度数据W比最大值max大(W>max),就将该亮度数据W作为最大值max储存到未图示的存储器中(步骤S5)。如果亮度数据W在最大值max以下(W≤max),就返回步骤S1。重复以上步骤,指定范围的图像信号的输入结束后(步骤S2),进入步骤S6。
步骤S6中,信号解析部30根据最大值max算出占空比D(%),将最大值max和0作比较。如果max=0则转移到步骤S7,如果max>0则转移到步骤S8。如果max=0则在步骤S7中设定占空比D(%)=20。如果max>0则在步骤S8中将最大值max和60作比较。如果max≤60,设定占空比D(%)=max×4÷3+20(步骤S9)。如果max>60,设定占空比D(%)=100(步骤S10)。
由此,在显示画面全体中显示黑色时(max=0),将占空比D减少到20%以降低显示亮度,抑制因视角而产生的黑色浮动(黑浮き)而能够显示漂亮的黑色。并且,如果亮度数据W的最大值max增加,变为高灰度的画面,通过将占空比D逐渐增大而提高显示亮度。进而,通过对应最大值max而变化占空比D,比将占空比D总设为100%或与其相近的值时,更能降低消耗电力。并且,通过最大值max变化时占空比D的随之变化,显示画面的亮度的变化被强调,可以获得更有冲击力(impact)的影像。
(实施例2-2)其次,对根据本实施方式的实施例2-2的液晶显示装置的驱动方法用图14进行说明。在本实施例中,代替亮度数据W的最大值max,根据平均值ave算出占空比D。图14表示根据本实施例的图像信号算出占空比D的步骤的流程图。例如,以帧周期1/60sec,将1280×768个的各像素的图像信号分别以R、G、B的6位(0~63)输入信号解析部30(步骤S21)。图像信号被输入(步骤S22)后,信号解析部30利用图像信号R、G、B的数据值和常数r、g、b,算出亮度数据W=(r×R+g×G+b×B)/(r+g+b)(步骤S23)。信号解析部30将亮度数据W顺序加入合计值sum(初期值为0)中(步骤S24)。重复以上的步骤,指定范围的图像信号的输入结束后(步骤S22),用数据个数(1280×768)除以合计值sum,算出平均值ave(步骤S25)。
其次,信号解析部30将平均值ave与0比较(步骤S26),如果平均值ave=0,设定D=20(步骤S27)。如果ave>0,将平均值ave和40作比较(步骤S28)。如果ave≤40,设定D=ave×2+20(步骤S29)。如果ave>40,设定D=100(步骤S30)。
如果根据本实施例,和实施例2-1同样,在显示画面全体中显示黑色时(ave=0),将占空比D减少到20%以降低显示亮度,抑制因视角而产生的黑色浮动而能够显示漂亮的黑色。并且如果亮度数据W的平均值ave增加,变为高灰度的画面,通过将占空比D变大而提高显示亮度。进而,通过对应平均值ave而变化占空比D,比将占空比D总设为100%或与其相近的值时,更能降低消耗电力。
(实施例2-3)其次,对根据本实施方式的实施例2-3的液晶显示装置的驱动方法用图15进行说明。在实施例中,根据亮度数据W的最大值max和平均值ave算出占空比D。图15是表示根据亮度数据W的最大值max和平均值ave算出占空比D的步骤的流程图。首先信号解析部30根据图13及图14所示的步骤,从存储器中读出算出的最大值max和平均值ave(步骤S41)。信号解析部30将最大值max和0作比较(步骤S42),如果max=0设定D=20(步骤S43)。如果max>0,将平均值ave和40比较(步骤S44)。如果ave≤40,设定D={(ave×2+20)+100}÷2(步骤S45)。如果ave>40,设定D=100(步骤S46)。
在本实施例中,将max≠0时的占空比D作为在实施例2-2的步骤S29中算出的值和100的平均值。因此,在ave=0且max≠0的显示画面中,可以明亮地显示W≠0的点。例如,在基本全面黑色显示的画面中出现白点时,观察者有与黑色相比更注意白色的倾向。因此,即使在这种情况下黑色的亮度变高,提高白色的亮度也很重要。
(实施例2-4)其次,对根据本实施方式的实施例2-4的液晶显示装置的驱动方法用图16及图17进行说明。在实施例中,亮度数据W的最大值max不是获得的最大的值(例如63)时,根据亮度数据W的最大值max、最小值min和平均值ave,算出占空比。
信号解析部30按照图13及图14所示的步骤算出最大值max和平均值ave的同时,还算出最小值min。图16是表示由图像信号R、G、B算出亮度数据W的最小值min的步骤的流程图。例如,以帧周期1/60sec,将1280×768个的各像素的图像信号分别以R、G、B的6位(0~63)输入信号解析部30(步骤S51)。图像信号被输入后(步骤S52),信号解析部30利用图像信号R、G、B的数据值和常数r、g、b,算出亮度数据W=(r×R+g×G+b×B)/(r+g+b)(步骤S53)。信号解析部30将最小值min(初期值为0)与亮度数据W作比较(步骤S54),如果亮度数据W比最小值min小(W<min),则将该亮度数据W作为最小值min存入存储器(步骤S55)。如果亮度数据W在最小值min以上(W≥min),返回步骤S51。在指定范围的图像信号的输入结束前重复以上的步骤。
图17是表示根据亮度数据W的最大值max、最小值min和平均值ave算出占空比D的步骤的流程图。如图17所示,信号解析部30将最大值max和最小值min和平均值ave由存储器中读出(步骤S61)。然后,算出D=100-{(max-ave)/(max-min)}×80(或D={(ave-min)/(max-min)}×80+20)(步骤S62)。
如果根据本实施示例,例如max=40、min=5、ave=38时D=95%,可以获得高亮度的显示图像。
(实施例2-5)其次,对根据本实施方式的实施例2-5的液晶显示装置的驱动方法用图18至图24进行说明。虽然显示通常的图像时出现的比较少,但仅在用R、G、B中的1色或2色显示时,如果根据亮度数据W的最大值max或平均值ave算出占空比D,则与白色显示比较,画面变暗了。例如,仅R1色的图像的占空比D为上述例子中白色显示时的r/(r+g+b)倍。但是,R的最大值max(R)为63时,将占空比D接近100%,有望显示清晰明亮的图像。
图18是表示根据本实施例的液晶显示装置的驱动方法的流程图。首先,分别算出图像信号R、G、B各数据值的最大值(max(R)、max(G)、max(B)),及平均值(ave(R)、ave(G)、ave(B))。然后,如图18所示,将max(R)和0作比较(步骤S71)。如果max(R)=0,将max(G)和0作比较(步骤S72)。如果max(G)=0,将max(B)和0作比较(步骤S73)。如果max(B)=0,设定max=0、ave=0(步骤S74)。如果不是max(B)=0,设定max=max(B)、ave=ave(B)(步骤S75)。
在步骤S72中,如果不是max(G)=0,将max(B)和0作比较(步骤S76),如果max(B)=0,设定max=max(G)、ave=ave(G)(步骤S77)。如果不是max(B)=0,设定max=max(GB)、ave=ave(GB)(步骤S78)。
在步骤S71中,如果不是max(R)=0,将max(G)和0作比较(步骤S79),如果max(G)=0,将max(B)和0作比较(步骤S80)。如果max(B)=0,设定max=max(R)、ave=ave(R)(步骤S81)。如果不是max(B)=0,设定max=max(RB)、ave=ave(RB)(步骤S82)。
在步骤S79中,如果不是max(G)=0,将max(B)和0作比较(步骤S83),如果max(B)=0,设定max=max(RG)、ave=ave(RG)(步骤S84)。如果不是max(B)=0,设定max=max(RGB)、ave=ave(RGB)(步骤S85)。
在某像素中,R=40、G=35、B=0时,用r∶g=7∶20,算出W=RG=(rR+gG)/(r+g),对此亮度数据W算出max(RG)、min(RG)、ave(RG)等。其中,也可以代替max(R)、max(G)、max(B),使用各平均值ave(R)、ave(G)、ave(B)。
图19是表示由图像信号R求出max(R)的步骤的流程图。首先,各像素的图像信号R输入信号解析部30(步骤S91)。图像信号R被输入后(步骤S92),比较R的数据值和最大值max(R)(初期值为0)(步骤S93),如果R比最大值max(R)大(R>max(R)),将R作为最大值max(R)存储到未图示的存储器中(步骤S94)。如果R在最大值max以下(R≤max(R)),返回步骤S91。在指定范围的图像信号R的输入结束前反复以上的步骤。
图20是表示由图像信号R求出min(R)的步骤的流程图。首先,各像素的图像信号R输入信号解析部30(步骤S101)。图像信号R被输入后(步骤S102),比较R的数据值和最小值min(R)(初期值为0)(步骤S103),如果R比最小值min小(R<min(R)),将R作为最小值min(R)存储到存储器中(步骤104)。如果R在最小值min以上(R≥min(R)),返回步骤S101。在指定范围的图像信号R的输入结束前重复以上步骤。
图21是表示由图像信号R求出ave(R)的步骤的流程图。首先,各像素的图像信号R输入信号解析部30(步骤S111)。图像信号R输入后(步骤S112),将R的数据值顺序加入合计值sum(R)(初期值为0),存入存储器(步骤S113)。在指定范围的图像信号R的输入结束前重复以上步骤。指定范围的图像信号R的输入结束后(步骤S112),用数据个数除以合计值sum(R),算出平均值ave(R)(步骤S114)。
图22是表示由图像信号R、G求出max(RG)的步骤的流程图,图23是表示由图像信号R、G求出min(RG)的步骤的流程图。图24是表示由图像信号RG求出ave(RG)的步骤的流程图。因为与图19至图21所示的步骤相同,所以省略对此的说明。
进行上述计算时,如果存储器容量有剩余,则存储若干帧的图像信号,由该图像信号算出max(R)、max(G)、max(B),再次计算亮度数据W并算出max、min、ave。其后,使指定时间延迟使图像显示。另一方面,如果处理能力有富余,存储1帧的图像信号并基本同时地算出max(R)、max(G)、max(B)和W=(rR+gG)/(r+g)、W=(gG+bB)/(g+b)、W=(bB+rR)/(b+r)及W=(rR+gG+bB)/(r+g+b)的其中之一。
根据本实施例,即使是以R、G、B中的1色或2色进行显示的情况也可以获得高亮度的显示。
(实施例2-6)
对根据本实施方式的实施例2-6的液晶显示装置的驱动方法用图25进行说明。在本实施例中,使占空比D根据图像的时间变化而变化。亮度数据W的平均值ave在单位时间内大变动时,对应其变化改变占空比D。据此显示亮度的变化被强调,可获得有冲击力的影像。对此,平均值ave的变化小时,将占空比D逐渐变化为某基准值D0。基准值D0例如可以为80%等恒定的值。但是,平均值ave已变大时(画面全体接近于白色)时,为了减轻眩目感形成对观看者的眼睛好的显示画面,也可以随着平均值ave的变大,将值减少。
例如,若设定D0=80(ave≤24)、D0=100-(ave×50)/63(ave≥25),以接近于在白底上写字的静止画的画面(或静止画)等,使观看者不会感到眩目而可以很舒适地持续观看。
图25是表示随着平均值ave的变动使占空比D变化的步骤的流程图。将某帧的平均值ave设为avem,求出的占空比D设为Dm,前一帧的平均值ave设为avem-1,占空比设为Dm-1。如图25所示,信号解析部30读出每帧的平均值ave(步骤S151)。信号解析部30设定dm=avem-avem-1(步骤S152),将|dm|与指定的值Δ作比较(步骤S153)。如果|dm|≥Δ,将dm和0作比较(步骤S154)。如果dm≥0,则Dm=Dm-1×(1+α)(步骤S155)。如果dm<0,则Dm=Dm-1×(1-a)(步骤S156)。
在步骤S153中,如果|dm|<Δ,则将Dm-1和D0比较(步骤S157)。如果Dm-1=D0,则设Dm=Dm-1(步骤S158)。如果Dm-1>D0,则将计数值count与例如10比较(步骤S159)。如果count=10,则设Dm=Dm-1-β(步骤S160)。如果count<10,则设count=count+1(步骤S161)。
在步骤S157中,如果Dm-1<D0,则将计数值count和10比较(步骤S162)。如果count=10,则设Dm=Dm-1+β(步骤S163)。如果count<10,则设count=count+1(步骤S164)。
例如若设定Δ=2、α=0.3、β=1,可以获得具有明暗变化的良好的显示。并且,为了在显示画面全体显示黑色时确实将占空比D降低,检测出ave=0且max=0的时间,将占空比D设为例如20%等的低值。ave=0而max≠0时,将占空比D提高到例如80%以上,例如使在黑底上显示的白色文字明亮地浮现出来。例如由于文字等偏向高灰度,max=63的像素在显示画面的横方向或纵方向连续时,将占空比D设为例如100%。如此,可以对观看者显示有冲击力的图像。
如以上所说明的,通过使占空比D变化可以获得强调显示的明暗变化的图像。但是,为了防止动态图像整体显暗,所以要进行下面的工作。在已将占空比D降低时,将图像的灰度数据变高来显示。如果占空比D下降的程度和灰度升高的程度相同则显示亮度不下降。将占空比变化的区域定为50~100%,若以「原灰度数据」÷「占空比」变换灰度数据来显示,则画面亮度保持明亮,看起来如同黑色亮度下降了,可以获得动态范围广的图像。
并且,也可以代替变换灰度数据来改变γ特性也可以。进而,若相反地占空比D上升时加大γ值,则和占空比D为100%的显示相比图像显得明亮,可以扩大动态范围。
以上是在1帧期间即全体显示区域中进行占空比的变更和图像加工的例子。若将显示区域分割成多个,则可以在一个画面内进行更细致地对应。例如,如第1实施方式中所述的,在边缘照明型的背光设备中针对被配置在面状导光板的上下端的荧光管,可以考虑将显示区域上下分割为2个区域,针对显示区域上半部分和下半部分的像素数据(1/2帧),分别算出最大值max、最小值min及平均值ave等,使占空比D在上下区域分别变化。在显示画面的上半部分是蓝天白云,下半部分是水车小屋的图像中,使上半部分的占空比D高,使下半部分的占空比D比上半部分低。据此,在强调明亮的天空白色的云朵的同时,有质感的水车小屋也被表现出来。
并且,也可以用直下型的背光设备,将显示区域在上下方向上更细地分割并在上下方向上扫描。图26表示用4个荧光管12a~12d,将显示区域分割为4个区域A~D的例子。如此,通过将显示区域分割为多个区域,分别算出适合的占空比D并进行扫描,可以获得更良好的显示特性。进而,也可以作为光源使用配置为矩阵的多个LED等,算出在每个LED中所被分割的每个区域占空比,对应占空比使各LED亮灭。
如根据本实施方式,显示明亮颜色的图像时提高背光的输出,持续保持最大亮度,表现黑色或与其相近的暗颜色的图像时降低背光的输出,可以紧缩黑色,获得宽广的动态范围。并且,除了降低黑色亮度浮动的视角依存可以显示漂亮的黑色外,可以强调图像的明暗变化来获得有冲击力的图像。进而,还可以降低消耗电力。
本发明不仅限于上述实施方式,也可以进行种种变形。
例如,在上述实施方式中作为光源装置使用了背光设备,但是,本发明不限于此,使用前光设备也可以。
如上所述,若根据本发明可以实现显示特性良好的液晶显示装置。
权利要求
1.一种液晶显示装置的驱动方法,其特征在于根据指定期间内各像素的灰度,算出所述各像素的亮度数据;根据所述亮度数据的最大值、最小值及平均值的至少其中之一,算出点亮时间相对所述指定期间的比率即占空比;根据所述占空比使面状光源点亮熄灭。
2.如权利要求1所述的液晶显示装置的驱动方法,其特征在于所述亮度数据按R(红)、G(绿)、B(蓝)像素求出。
3.如权利要求1或2所述的液晶显示装置的驱动方法,其特征在于根据所述占空比使所述灰度发生变化。
4.如权利要求1或2所述的液晶显示装置的驱动方法,其特征在于根据所述占空比使γ值发生变化。
5.如权利要求3所述的液晶显示装置的驱动方法,其特征在于根据所述占空比使γ值发生变化。
6.如权利要求1或2所述的液晶显示装置的驱动方法,其特征在于所述指定的期间与帧周期相等。
7.如权利要求3所述的液晶显示装置的驱动方法,其特征在于所述指定的期间与帧周期相等。
8.如权利要求4所述的液晶显示装置的驱动方法,其特征在于所述指定的期间与帧周期相等。
9.如权利要求5所述的液晶显示装置的驱动方法,其特征在于所述指定的期间与帧周期相等。
全文摘要
本发明提供一种显示特性良好的液晶显示装置及其驱动方法。在时间t1,由显示区域上端的1个选通总线部分的多个像素开始以线顺序写入像素数据。在时间t3,向画面上方的像素的像素数据的写入结束,向画面下方的像素的像素数据的写入开始。在时间t5,向画面下方的像素的像素数据的写入结束。画面上方的荧光管12a仅从向画面上方的像素数据的写入结束后的时间t4开始到下一帧的像素数据的写入开始前的时间t0’的期间点亮,其他期间熄灭。画面下方的荧光管12b仅从前一帧中的画面下方的像素数据的写入结束后的时间t0开始到画面下方的像素数据的写入开始前的时间t2的期间点亮,其他期间熄灭。
文档编号G09G3/20GK1651995SQ2005100555
公开日2005年8月10日 申请日期2003年3月11日 优先权日2002年3月11日
发明者菅原真理, 小林哲也, 濱田哲也, 后藤猛, 林启二, 铃木敏弘 申请人:富士通显示技术株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1