液晶显示装置及其驱动方法

文档序号:2618580阅读:137来源:国知局
专利名称:液晶显示装置及其驱动方法
技术领域
本发明涉及用于信息设备等的显示部的液晶显示装置及其驱动方法。
背景技术
近年来,对液晶显示装置正不断追求其大型化、高灰度化和高对比度化,它日益被用作PC(个人计算机)的监视器或电视接收机等。对这些用途来说,要求显示画面具有从任何方向都能清晰观看的优秀的视角特性。
由于彩色液晶显示装置在视角特性方面还达不到CRT(阴极射线管)的性能,因此期望其能实现广视角化。作为液晶显示装置的广视角化的对策,有着MVA(多畴垂直排列)模式。图27A和图27B表示了MVA模式的液晶显示装置的概略剖面结构。图27A表示未在液晶层上施加电压时的状态,图27B表示在液晶层施加规定电压时的状态,如图27A和图27B所示,液晶显示装置具有相对配置的基板302、304。在两基板302、304上形成有透明电极(图中未示出)。此外,在其中之一的基板302上,形成有相互平行的多条线状突起306,另一基板304上,形成有相互平行的多条线状突起308。若沿垂直于基板面的方向来观察,突起306、308交替排列。
在两基板302、304之间,密封了具有负介电常数各向异性的液晶160。如图27A所示,由于形成于两基板302、304的相对的面之间的垂直取向膜(图中未示出)的取向限制力,液晶分子312被取向为基本垂直于基板的方向。突起306、308近旁的液晶分子312被取向为基本垂直于由突起306、308所形成的斜面。亦即,突起306、308近旁的液晶分子312取向为相对于基板面倾斜。
如图27B所示,当在两基板302、304的透明电极间施加规定的电压时,突起306、308近旁的液晶分子312就会向垂直于突起306、308的延伸方向的方向倾斜。该倾斜传播到突起306、308间的各液晶分子312,使在突起306、308间的区域中的液晶分子312向同一方向倾斜。
这样一来,由于配置了突起306、308等取向限制用结构物,就可以对每个区域限制液晶分子312的倾斜方向。当将取向限制用结构物形成在基本相互垂直的2个方向时,液晶分子312在一个像素内将向4个方向倾斜。各区域的视角特性被混合的结果,在全白或全黑显示时,可得到很广的视角。MVA模式的液晶显示装置中,即使从垂直于显示画面的方向到上下左右方向之间的夹角在80°以上,也可以得到10以上的对比度。
MVA模式的液晶显示装置把能实现高对比度和高速响应的垂直取向技术、以及能实现广视角的取向分割技术组合使用。取向分割技术在基板上形成有线状突起306、308或电极的除去部(狭缝)等的取向限制用结构物。通过这些取向限制用结构物来限制液晶分子312的取向方向的同时,由于无须使用导致生产率降低的摩擦处理,因此能实现高生产率。
此外,为实现更高显示品位的MVA模式的液晶显示装置,存在有这样的技术,该技术通过在液晶层160中形成光硬化物来提高液晶分子312的取向限制力。在液晶显示板中注入含有光硬化性组成物(树脂)的液晶,通过在施加电压的状态下形成光硬化物,就可以把规定的预倾角赋予由取向限制用结构物所分割的各取向区域的全体。由此,可以减少液晶分子312的取向异常区域,在实现高透射率化的同时,由于几乎无须利用液晶分子312的倾斜的传播,因此可以实现高速响应。
在取向限制用结构物中,除突起306、308或狭缝之外,还具有微细电极图形。图28表示形成了微细电极图形的一个像素。如图28所示,在TFT基板102上,形成有延伸到图中左右方向的多条选通总线104(图28中只表示出一条),以及通过未图示的绝缘膜,与选通总线104交叉的、延伸到图中上下方向的多条漏极总线106(图28中示出2条)。在选通总线104和漏极总线106的交叉位置附近,形成有TFT110。此外,横切过由选通总线104和漏极总线106所划定的长方形像素区域的大约中央位置,形成有存储电容总线108。
在长方形像素区域中,形成有十字形的连接电极120、122,它们将该长方形像素区域分割为4个同一形状的区域。连接电极122形成于像素区域的中央并平行于漏极总线106,连接电极120形成于存储电容总线108之上。此外,从连接电极120、122按45°的角度延伸出构成微细电极图形的许多条纹状电极124。在邻接的条纹状电极124之间,形成有除去电极状态的间隔126。由连接电极120、122和许多条纹状电极124和间隔126构成了像素电极。此外,由条纹状电极124和间隔126构成了取向限制用结构物。条纹状电极124的宽度为L1,间隔126的宽度为S1。
图29和图30表示图28中沿B-B线切断的液晶显示装置的剖面。图29表示在液晶层160上未施加电压的状态,图30表示在液晶层160上施加了电压的状态,如图29和图30所示,TFT基板102在玻璃基板150上具有条纹状电极124。与TFT基板102相对配置的对置基板103在玻璃基板151上具有公共电极154。在与TFT基板102和对置基板103的与液晶层160接触的表面上分别形成有垂直取向膜152、153。
当液晶层160处于未施加电压的状态时,如图29所示,液晶分子312大致取垂直于基板面的取向。当液晶层160处于施加了电压的状态时,如图30所示,液晶分子312倒向条纹状电极124的延伸方向的连接电极122、124一侧,具有大致平行于基板面的取向。
即使按照图28所示的结构,通过在一个像素内把液晶分子312的取向方向分割为4个方向,在全白显示或全黑显示时都可得到很广的视角。但是,若只靠微细电极图形,对液晶分子312的限制力很小,因此与上述相同,在液晶层160内形成光硬化物,提高取向限制力。光硬化物按下述方法形成,先将可通过光聚合的光硬化性组成物(单体)混合到液晶层160,然后在施加规定电压的状态下,用紫外线(UV,Ultraviolet rays)等光线进行照射来形成。
图31是MVA模式的液晶显示装置的透射率特性(T-V特性)的曲线示意图。横轴表示施加于液晶层160的施加电压(V),纵轴表示透射率(%)。在该图中用实线绘制的曲线A表示垂直于显示画面的方向(以下称为“正面方向”)的T-V特性,用△记号标记的实线B表示相对于显示画面的方位角90°、60°的方向(以下称为“倾斜方向”)的T-V特性。此处,所谓方位角是把水平方向作为基准,大约从显示画面的中心起按反时针方向所测得的角度。此外,所谓极角是与竖立在显示画面中心的垂线形成的夹角。液晶显示装置的显示模式是常黑模式,该模式为若降低施加于液晶层160的施加电压便显示全黑,升高施加电压便显示全白。T-V特性最好与视角无关,保持恒定。
但是,如图31所示,表示正面方向的T-V特性的曲线A和表示倾斜方向的T-V特性的曲线B在施加电压约2.7V附近相交。当施加电压低于2.7V时,倾斜方向的透射率高于正面方向的透射率,而当施加电压高于2.7V时则低于正面方向的透射率。因此,在施加电压从1.5V到2.7V的范围内,由于倾斜方向的透射率高于正面方向的透射率,当从倾斜方向观察时,就会产生显示图像看起来发白(白つぽい)的问题。此外,在较高的施加电压范围内,由于倾斜方向的透射率低于正面方向的透射率,因此,当从倾斜方向观察时,显示画面整体的对比度降低。
透射率随液晶层160的迟滞(Δn·d)而变动。当从倾斜方向观察时,向该倾斜方向倾斜的液晶分子312实际上使液晶层160的迟滞变小,因此产生了上述问题。此外,关于色度,当从正面方向观察和从倾斜方向观察,由于各像素的透射率的比重发生变化,产生了色度变化的问题。
图32是表示从多个视角观察MVA模式的液晶显示装置的显示画面时的T-V特性曲线图。横轴表示施加于液晶层160的施加电压(V),纵轴表示光的透射率(%)。曲线图中的曲线A表示正面方向的T-V特性。曲线B、C、D、E表示在方位角是90°时,极角为20°、40°、60°、80°的方向时的T-V特性。如图32所示,在区域F中,曲线E产生起伏,在其上存在即使增高施加电压透射率也会降低的范围。因此,在正面方向和极角为80°的方向,会产生将显示图像反转的问题。

发明内容
本发明的目的在于提供一种能得到良好视角特性的液晶显示装置及其驱动方法。
根据本发明的液晶显示装置的驱动方法,可达成上述目的,本发明的液晶显示装置的驱动方法的特征在于,只在1帧期间内的规定时间对像素的液晶施加驱动电压,改变上述驱动电压的施压时间,使上述像素显示规定的灰度。


图1是根据本发明的第1实施方式的液晶显示装置的概略结构示意图。
图2A至图2C是根据液晶分子的取向状态的液晶显示装置的视角特性的说明图。
图3是根据本发明的第1实施方式的液晶显示装置的透射率随时间变化的曲线示意图。
图4是根据本发明的第1实施方式的实施例1-1的液晶显示装置的透射率随占空比的变化而变化的曲线示意图。
图5是根据本发明的第1实施方式的实施例1-1的液晶显示装置的效果的曲线示意图。
图6A和图6B是根据本发明的第1实施方式的实施例1-2的液晶显示装置的驱动方法的概念示意图。
图7是根据本发明的第1实施方式的实施例1-2的液晶显示装置的等价电路示意图。
图8是根据本发明的第1实施方式的实施例1-2的液晶显示装置的结构示意图。
图9是根据本发明的第1实施方式的实施例1-2的液晶显示装置的结构剖面示意图。
图10是示出根据本发明的第1实施方式的实施例1-2的液晶显示装置的结构剖面图。
图11A至图11F是根据本发明的第1实施方式的实施例1-2的液晶显示装置的驱动波形示意图。
图12是根据本发明的第1实施方式的实施例1-2的液晶显示装置的结构变形例示意图。
图13是根据本发明的第1实施方式的实施例1-2的液晶显示装置的结构变形例的剖面示意图。
图14是根据本发明的第1实施方式的实施例1-2的液晶显示装置的结构变形例的示意图。
图15是根据本发明的第1实施方式的实施例1-2的液晶显示装置的结构变形例示意图。
图16是根据本发明的第2实施方式的液晶显示装置的结构示意图。
图17是根据本发明的第2实施方式的液晶显示装置的结构剖面示意图。
图18是根据本发明的第2实施方式的液晶显示装置的T-V特性曲线示意图。
图19是根据本发明的第2实施方式的液晶显示装置的效果的曲线示意图。
图20A至图20B是根据本发明的第3实施方式的液晶显示装置的原理示意图。
图21是根据本发明的第3实施方式的液晶显示装置的结构示意图。
图22是根据本发明的第3实施方式的液晶显示装置的实施效果的曲线示意图。
图23是根据本发明的第3实施方式的液晶显示装置的结构变形例示意图。
图24是根据本发明的第3实施方式的液晶显示装置的结构的另一变形例示意图。
图25是根据本发明的第3实施方式的液晶显示装置的结构的又一变形例示意图。
图26A及图26B是根据本发明的第3实施方式的液晶显示装置的效果的曲线示意图。
图27A及图27B是现有的MVA模式的液晶显示装置的结构剖面示意图。
图28是现有的MVA模式的液晶显示装置的结构示意图。
图29是现有的MVA模式的液晶显示装置的结构剖面示意图。
图30是现有的MVA模式的液晶显示装置的结构剖面示意图。
图31是现有的MVA模式的液晶显示装置的T-V特性曲线图。
图32是现有的MVA模式的液晶显示装置的T-V特性曲线图。
具体实施例方式
(第1实施方式)对根据本发明的第1实施方式的液晶显示装置及其驱动方法,用图1至图15进行说明。图1是根据本实施方式的液晶显示装置的概略结构示意图。该液晶显示装置具有下述结构把薄膜晶体管(TFT;Thin FilmTransistor)等形成的TFT基板2和滤色片(CF;Color Filter)等形成的对置基板4对置粘合,在两基板2、4间密封液晶。
在TFT基板2上设有选通总线驱动电路5和数据总线驱动电路6,它们分别封装有驱动多条总线的驱动IC。这些驱动电路5、6根据从驱动电路7输出的规定信号,将扫描信号或数据信号输出到规定的选通总线或漏极总线。在与TFT基板2的元件形成面相反一侧的基板面上配置偏振片8,在偏振片8的与TFT基板2相反一侧的面上安装背光部件3。另一方面,在与对置基板4的CF形成面相反一侧的面上,贴附有与偏振片8配置成交叉尼科尔棱镜的偏振片9。
在本实施方式中,使用密封了具有负介电常数各向异性、当未施加电压时为垂直取向的液晶的常黑模式的液晶显示装置。用图2A至图2C来说明随液晶分子的取向状态变化的视角特性的变化。图2A表示显示全黑时的液晶分子的取向状态,图2B表示显示全白时的液晶分子的取向状态。此外,图2C表示显示中间色调时的液晶分子的取向状态。如图2A所示,在玻璃基板58上形成的像素电极60和在玻璃基板59上形成的公共电极62之间不施加电压的状态下,液晶分子56的取向基本垂直于基板面。在该状态,当从正面方向观察时,由于在液晶层57所产生的迟滞大约为0,所以显示为全黑。此外,从倾斜方向观察时,如图31所示,得到与正面方向具有几乎相同透射率的全黑显示。
如图2B所示,在像素电极60和公共电极62之间施加规定电压时,液晶分子56的取向处于与基板面平行的状态,当从正面方向观察时,由于在液晶层57所产生的迟滞大约为λ/2,因此显示全白。此外,当从倾斜方向观察时,比从正面方向观察时的透射率稍微降低一些,因此显示灰色(参考图31)。
此外,如图2C所示,当液晶分子56处于与基板面呈规定角度的倾斜状态时,液晶层57的迟滞从0到λ/2的范围变化,因此显示中间色调。但是该中间色调的显示,当从正面方向观察时虽然处于正常状态,但从倾斜方向观察时,液晶层57的迟滞却依赖于视角而改变,不能得到预期的灰度。例如,按如图2C所示的倾斜方向观察时,本来应当显示灰色但显示却比该灰度更发白。
图31所示的T-V特性,如已说明过的那样,施加电压从1.5V到2.7V的范围内显示中间色调,因为在倾斜方向上的透射率比正面方向的透射率高,所以显示图像看起来发白。例如在图31中,当施加2V的电压从正面方向观察得到1%的透射率,而从倾斜方向观察就变成了大约是其5倍的透射率。这样一来,施加电压从1.5V到2.7V的范围内的中间色调的显示中,液晶层57的迟滞将随视角而发生很大变化,其结果将导致所显示的中间色调也会随视角而发生很大变化。
与此相对,在显示全白时,亦即如图31所示,当把最大灰度电压5V施加到液晶层57,从正面方向观察得到30%的透射率时,从倾斜方向得到大概为其2/3左右的透射率。在此情况下,对比度只是稍微降低,并不会产生发白的问题。进而,如图31所示,在显示全黑时,透射率随视角的变化将会更小。在本实施方式,由于注意到该点,因此采用了如图3所示的驱动方法。
图3是根据本实施方式的常黑模式的液晶显示装置的液晶层57上所施加电压和透射率随时间变化的曲线图。图3上部的曲线图(a)表示施加于某个像素的液晶层57的施加电压随时间变化的情况,下部的曲线图(b)表示该像素的透射率随时间变化的情况。两曲线图(a)、(b)用公共的横轴(时间轴毫秒)来表示。上部的曲线图(a)的纵轴表示施加电压(V),下部的曲线图(b)的纵轴表示光的透射率(%)。如图(a)所示,帧fn的周期为16.7毫秒(1/60秒),液晶层是以对每帧fn以反转灰度电压的极性的帧反转驱动方式驱动的。施加于像素的灰度电压P在正极性的帧fn的例如最初50%期间(1/120秒),连续维持在+5.0V的导通电平。继而,灰度电压P变为截止电平,在其余的50%期间(1/120秒)维持在公共电位(例如,0V)。
在下一个帧fn+1,施加于像素的灰度电压P变为导通电平,在最初的50%期间(1/120秒)连续维持在-5.0V的负极性的电压电平。继而,灰度电压P在其余的50%期间(1/120秒)变为截止电平,维持在公共电位(例如,0V)。在该例中,只在1帧周期的50%(占空比50%)期间才成为导通电平。通过改变占空比,就可以显示多个灰度。这样一来,根据本实施方式的液晶显示装置的驱动方法,只在1帧期间内的规定时间对像素的液晶施加驱动电压,使驱动电压的施加时间变化,使像素显示规定的灰度。不仅可以改变驱动电压的施加时间,也可以改变驱动电压的电平。
图3下部的曲线图(b)中的曲线C表示正面方向的透射率,曲线D表示倾斜方向的透射率。如图(b)所示,正面方向和倾斜方向的透射率随灰度电压P而发生变化。当灰度电压P为导通电平(±5.0V)时,如曲线C和曲线D所示,正面方向的透射率大于倾斜方向的透射率。当灰度电压P处于截止电平(0V)时,虽然存在倾斜方向的透射率大于正面方向的透射率的部分,但1帧fn的整个期间的平均透射率是正面方向大于倾斜方向。由此,可以防止因倾斜方向的透射率大于正面方向的透射率而引起的发白现象。从而,使施加于各像素的灰度电压P的大小为如上所述的最大灰度电压(例如±5.0V),通过改变施加灰度电压P的占空比,可以抑制发白现象,在各像素上显示灰度。
此外,通过将灰度电压P的导通电平的大小和占空比作为参数来设定灰度,可以应用图31所示的任一施加电压时的正面方向和倾斜方向的透射率的比率。因此,考虑透射率特性或响应特性,通过使灰度电压P的导通电平的大小和占空比最优化,就可以遍及所有灰度得到良好的视角特性。例如,把施加于液晶层57的电压设为对垂直取向状态和水平取向状态都具有良好视角特性的电压,根据对应于这些取向状态的透射率特性,使电压施加时间发生变化来进行灰度显示,从而即使是在中间色调显示中,也可以得到优良的视角特性。
此外,本实施方式还具有可以抑制当从正面方向和倾斜方向观察时由灰度引起的色度的变化的作用。在图3下部的曲线图(b)所示的例中,如上所述,施加5.0V的电压时的光学特性(迟滞)反映到全部灰度显示中。因此,对应于施加5.0V的电压时在液晶层57所发生迟滞的色度在所有灰度中处于支配地位,故而,由灰度所引起的色度变化被大幅减少,得到良好的显示特性。此外,通过把施加电压的大小和该电压的施加时间作为参数来设定各灰度,可以应用于对应任意迟滞的色度。因此,通过考虑透射率特性或响应特性来选择该电压的施加时间,即使从倾斜方向来观察,也可以得到由灰度引起的色度变化很小的良好的视角特性。
为减少在液晶分子56的倾斜角度变化的过程中对光学特性的影响,最好是利用透射率随施加电压的变化而急剧变化的液晶,亦即使用光学响应性优良的液晶板。因此,若把本实施方式应用于光学响应性优良的液晶显示板时,可以得到更为优良的灰度视角特性。按同样的理由,在驱动电压的范围使用液晶可高速响应的电压或电压范围,可以得到更为优良的灰度视角特性。
下面,对本实施方式的液晶显示装置及其驱动方法,通过实施例1-1和1-2进行更加具体的说明。
(实施例1-1)
对根据本实施方式的实施例1-1的液晶显示装置及其驱动方法,利用图4和图5进行说明。首先,对本实施方式中所用的液晶显示装置,参照图1、图27A和图27B进行说明。在TFT基板2上,形成有多条高为1.2μm(微米)宽为10μm的具有绝缘性的线状突起,它们以70μm为周期且相互平行。在对置基板4上形成多个同样以70μm为周期相互平行的宽度为10μm的狭缝。在两基板2、4上涂敷有垂直取向膜(例如JSR公司的产品),散布直径为3.0μm的球状隔离物,以使两基板2、4的取向限制用结构物交替排列的方式粘合。在两基板2、4间密封具有负介电常数各向异性的液晶(例如メルク公司的产品)。
其次,对根据本实施方式的液晶显示装置的驱动方法进行说明。在上述液晶显示装置中,帧反转的频率为30Hz(帧周期为1/60秒),通过改变每个像素的占空比,来进行各像素的灰度显示。根据本实施方式的液晶显示装置的液晶分子56在没有施加电压的状态下,取向基本垂直于基板面,而在施加±5.0V电压的状态下,取向基本与基板面平行。
图4表示在采用了根据本实施例的液晶显示装置的驱动方法的情况下,透射率随占空比的变化而变化的曲线图。横轴表示施加于液晶层57的灰度电压P的占空比,纵轴表示透射率(%)。在曲线图中,用实线表示的曲线E表示正面方向的透射率,用◇符号标记的实线表示的曲线F表示倾斜方向的透射率。如图4所示,根据本实施例,正面方向的透射率与倾斜方向的透射率之差,与采用图31所示的现有的液晶显示装置的驱动方法相比较,非常小,从而得到了很好的灰度视角特性。
图5是在采用根据本实施例的液晶显示装置的驱动方法的情况下的显示特性与现有的驱动方法的显示特性进行比较的曲线图。横轴表示标准透射率。对关于现有的驱动方法,以灰度电压为5.0V时的透射率来标准化各透射率。关于本实施例的驱动方法,以在整个1帧上施加5.0V时的透射率来标准化各透射率。纵轴用对数来表示倾斜方向的透射率对正面方向的透射率的比率(透射率比)。图中标有△符号的实线所表示的曲线G表示采用现有的液晶显示装置的驱动方法时的透射率比,标有◇符号的实线所表示的曲线H表示采用根据本实施例的液晶显示装置的驱动方法时的透射率比。图5所示的曲线图中,与标准透射率无关透射率比保持恒定,亦即其轮廓比较平坦时具有较优的灰度视角特性。此外,透射率比接近1.0时具有更优的灰度视角特性。如图5所示,根据本实施例,降低现有的透射率比比较高的低透射率处的透射率比,其轮廓就会变得更为平坦,在整体上透射率比更加接近1.0。因此,可得到比现有技术更加优良的灰度视角特性。
根据本实施例,由灰度引起的色度变化也得到大幅改善。例如,对于全白的色度,现有技术在x-y色度图上产生0.04左右的色度偏移,而本实施例可将色度偏移抑制在0.01以下。此外,对于改善困难的红(R)、绿(G)、兰(B)单色的色度变化,也可得到同样的效果。
在本实施方式中,列举MVA模式的液晶显示装置作为例子进行了说明,但在其它模式的液晶显示装置中,同样也可以改善灰度视角特性。例如,在密封了具有正介电常数各向异性液晶的同样取向的液晶显示装置中,通过应用本实施方式,也可得到优良的灰度视角特性。
(实施例1-2)其次,对根据本实施方式的实施例1-2的液晶显示装置及其驱动方法,用图6A至图15进行说明。图6A和图6B是根据本实施例的液晶显示装置的驱动方法的概念示意图。图6A表示显示接近全黑的灰色时的驱动状态,图6B表示显示接近全白的灰色时的驱动状态。在图6A、图6B中,横向表示1帧的时间。如图6A所示,当显示接近全黑的灰色时,使在1帧期间中例如4分之1的期间显示全白(占空比25%),其余时间显示全黑。此外,如图6B所示,在显示接近全白的灰色时,使在1帧期间中例如6分之5的期间内显示全白(占空比83%),其余时间显示全黑。这样一来,在本实施例中只用了全白显示和全黑显示,在1帧期间中,通过改变显示全白的时间,通过时间分割(占空比)来实现中间色调的显示。
例如在PDP(等离子显示板)中,把亮度的相对比不同的多个子域(例如1、2、4、8、16、32)组合,实现64级灰度。但是,在液晶显示装置中,当考虑液晶的响应特性或TFT的响应特性时,要采用PDP所使用的方法是极其困难的。与此相反,若像本实施例那样,利用通常的液晶和TFT,通过时间分割方法,就可以容易地实现多灰度显示。
其次,对根据本实施例的液晶显示装置的驱动方法进行说明。图7表示根据本实施例的液晶显示装置的1个像素的等价电路。如图7所示,沿图中上下方向,分别形成有多条大致相互平行的数据总线74和驱动电压总线76(在图7中各只显示了一条)。通过未图示的绝缘膜,形成与数据总线74和驱动电压总线76大致垂直的多条选通总线12(在图7中只显示了一条)。各数据总线74和各驱动电压总线76由数据总线驱动电路6驱动,各选通总线12由选通总线驱动电路5驱动。
在一个像素上形成有2个TFT70、72。第1个TFT70的栅极G11连接到选通总线12。TFT70的漏极D1连接到数据总线74。TFT70的源极S1在连接到并联连接的电容C1(第1电容)和电阻R1(第1电阻)的一端的同时,也连接到第2个TFT72的栅极G2。电容C1和电阻R1的另一端连接于未图示的电源电路。TFT72的漏极D2连接于驱动电压总线76,源极S2连接于像素电极60。像素电极60和公共电极以及被夹于它们之间的液晶一起形成了液晶电容C1c(第2电容)。此外,在液晶层形成有电阻(第2电阻)R2。由此,TFT72的源极S2连接于并联连接的液晶电容C1c和电阻R2的一端。液晶电容C1c和电阻R2的另一端维持在公共电位。
当通过选通总线12对栅极G1施加规定的选通电压时,TFT70成为导通状态。当TFT70成为导通状态后,施加于数据总线74的数据电压在施加到TFT72的栅极G2的同时,在电容C1中充电规定的电荷。当TFT72的栅极G2上施加了超过阈值电压的数据电压时,TFT72变为导通状态,将来自驱动电压总线76的驱动电压施加到像素电极60上。
当TFT70成为截止状态后,栅极G2的选通电压Vg2根据由电容C1和电阻R1决定的时间常数随着时间的经过而降低。当选通电压Vg2低于阈值电压时,TFT72变为截止状态。当TFT72变为截止状态后,施加于像素电极60的驱动电压根据由液晶电容C1c和电阻R2决定的时间常数随着时间的经过而降低。
当通过TFT70对电容C1和电阻R1以及栅极G2施加来自数据总线74的相对较高电平的数据电压时,因为TFT72长时间维持导通状态,可以在液晶层57上长时间施加驱动电压从而实现全白显示。
当通过TFT70从数据总线74对电容C1和电阻R1以及栅极G2施加相对较低电平(TFT72的阈值电压以下)的数据电压时,因为TFT72维持截止状态,可以不对液晶层57施加驱动电压而实现全黑显示。
当通过TFT70从数据总线74对电容C1和电阻R1以及栅极G2施加上述高电平和低电平之间的中间数据电压时,在TFT70变为截止之后,TFT72只在由电容C1和电阻R1确定的时间常数所决定的时间内维持导通状态。仅在该导通时间内对液晶层57施加驱动电压。由此,根据在1帧期间中TFT72的导通时间的比例,来实现中间色调的显示。
图8是根据本实施例的液晶显示装置的1个像素的结构示意图。图9是图8沿C-C线切断时的剖面示意图,图10是图8沿D-D线切断时的剖面图。如图8至图10所示,在TFT基板2上,图8中沿左右方向延伸的选通总线12以及与该选通总线12大致平行延伸的公共总线78,通过规定的间隙相邻接,并用相同材料形成。选通总线12和公共总线78通过绝缘膜大致直交,数据总线74和驱动电压总线76夹着像素区域,形成在两侧。数据总线74和驱动电压总线76由相同材料形成。
在选通总线12和数据总线74的交叉位置附近形成有TFT70。TFT70的漏极D1连接于数据总线74。此外,源极S1通过接触孔82,连接到与公共总线78大致平行形成的连接布线84上。从源极S1延伸出大致平行于公共总线78的源布线86。源布线86通过形成在接触孔80上的电阻值较低的电介质90,连接到公共总线78上。形成电介质90的材料可采用抗蚀剂或紫外线硬化树脂等。连接布线84连接于TFT72的栅极G2。TFT72的漏极D2连接于驱动电压总线76,源极S2通过接触孔222连接于像素电极60。在本实施例中,电介质90起到了作为电容C1和电阻R1的电介质的作用。此外,液晶层57起到了电阻R2的作用。
其次,根据具体例,对根据本实施例的液晶显示装置的驱动方法进行说明。图11A至图11F表示根据本实施例的液晶显示装置的2个帧的驱动波形等。图11A表示施加到某数据总线74的数据电压Vd的波形。图11B表示施加到TFT70的栅极G1的选通电压Vg1的波形。图11C表示施加到TFT72的栅极G2的选通电压Vg2的波形。图11D表示施加到驱动电压总线76的液晶驱动电压Vdd和公共电压Vcom的波形。此外,图11E表示施加到像素电极60的灰度电压Vp的波形.图11F表示像素的例如正面方向的显示亮度Tp的波形。图中的横向表示时间。图11A至图11E的纵方向表示电压电平,图11F的纵方向表示亮度电平。
在本实施例中,如图11D所示,假设公共电压Vcom=+5V。进而,在驱动电压总线76上的正极性驱动电压Vddp=+10V和负极性驱动电压Vddn=0V按每个帧交替输出。由此,便可用±5V的驱动电压帧反转地驱动液晶层57。以下,将把在驱动电压总线76上施加了正极性驱动电压Vddp的帧期间称为正极性帧期间,而把在驱动电压总线76上施加了反极性驱动电压Vddn的帧期间称为反极性帧期间。
在正极性帧期间的驱动电压总线76上施加正极性驱动电压Vddp=+10V。在该正极性帧期间,为使TFT72确实处于截止状态,TFT72的选通电压Vg2必须比漏极电压的最小值(亦即正极性驱动电压Vddp=+10V)低5V左右。此外,在正极性帧期间,为使TFT72确实处于导通状态,TFT72的选通电压Vg2必须比漏极电压的最大值(亦即正极性驱动电压Vddp=+10V)高5V。因此,如图11A所示,在正极性帧期间,施加于数据总线74上的数据电压Vdp施加从+5V到+15V之间(电压幅度为10V)的电压。
在反极性帧期间的驱动电压总线76上施加反极性驱动电压Vddn=0V。在在反极性帧期间,为使TFT72确实处于截止状态,TFT72的选通电压Vg2必须比漏极电压的最小值(亦即反极性驱动电压Vddn=0V)低5V左右。此外,在反极性帧期间,为使TFT72确实处于导通状态,TFT72的选通电压Vg2必须比漏极电压的最大值(亦即反极性驱动电压Vddn=0V)高。因此,如图11A所示,在反极性帧期间,施加于数据总线74上的数据电压Vdn施加从-5V到+5V之间的(电压幅度为10V)电压。
因此,如图11A所示,数据电压Vd在-5V到+15V之间变动,其幅度达到20V。因此,为使TFT70确实作为开关元件动作,如图11B所示,施加于选通总线12的选通电压Vg1设为TFT70截止时电压Vg1(off)=-10V,导通时电压Vg1(on)=+20V。
其次,按照顺序对驱动动作进行说明。
(1)正极性帧期间的情况例如,假定灰度电压Vdp=+12V被输出到数据总线74上(参考图11A)。其次,在选通总线12上输出选通脉冲Vg1(on),TFT70成为导通状态。在TFT70为导通状态期间,在将数据电压Vdp施加到TFT72的栅极G2的同时,对电容C1充电。在TFT72的栅极G2上,如图11C所示,施加选通电压Vg2(onp)(=+12V),TFT72成为导通状态。
其次,当选通电压变为Vg1(off),TFT70成为截止状态时,电容C1的电荷被按规定的时间常数放电,如图11C所示,施加于TFT72的栅极G2的电压电平逐渐降低。该电压电平依次接近TFT72的阈值电压Vth,进而变得低于Vth,最终变为Vg2(offp)(=Vcom=+5V)。
按此方式,TFT72的导通时间,由供给栅极G2的数据电压Vdp的大小和电容C1以及电阻R1确定的衰减时间常数来决定。在TFT72导通的状态下,如图11D所示的正极性驱动电压Vddp=+10V作为灰度电压Vp被写入像素电极60,在TFT72的导通时间内,一直维持该电压电平(参考图11E)。在此期间,如图11F所示,在液晶层得到规定的透射率Tp。
当TFT72的选通电压Vg2变为规定的阈值电压Vth以下时,TFT72成为截止状态,按照基于液晶电容C1c和液晶电阻R2的时间常数,灰度电压Vp降低直至到公共电压Vcom为止(参考图11E)。由此,如图11F所示,液晶层的透射率Tp降低。
(2)反极性帧期间的情况以继上述的正极性帧之后显示同一灰度的情况为例进行说明。首先,根据未图示的电路,通过电容C1和电阻R1,TFT72的栅极G2的选通电压Vg2(offn)维持在-5V。
继而,反极性的灰度电压Vdn=+2V被输出到数据总线74(参考图11A),其次,向选通总线12输出选通脉冲Vg1(on),TFT70成为导通状态。在TFT70为导通状态的期间,在把数据电压Vdn施加到TFT72的栅极G2的同时,对电容C1充电。如图11C所示,在TFT72的栅极G2上施加选通电压Vg2(onn)(=+2V),TFT72成为导通状态。
其次,当选通电压变为Vg1(off),TFT70成为截止状态时,电容C1的电荷按规定的时间常数被放电,如图11C所示,施加于TFT72的栅极G2的电压电平逐渐降低。该电压电平逐渐接近TFT72的阈值电压Vth,进而比其低,最终变为Vg2(offn)(=-5V)。
这样,TFT72的导通时间由供给栅极G2的数据电压Vdn的大小和电容C1和电阻R1确定的衰减时间常数来决定。在TFT72导通的状态下,图11D所示的反极性驱动电压Vddn=0V作为灰度电压Vp被写入像素电极60,在TFT72的导通时间内,一直维持该电压电平(参考图11E)。在此期间,如图11F所示,在液晶层得到规定的透射率Tp。
当TFT72的选通电压Vg2变为规定的阈值电压Vth以下时,TFT72成为截止状态,按照基于液晶电容C1c和液晶电阻R2的时间常数,灰度电压Vp降低直至到公共电压Vcom为止(参考图11E)。由此,如图11F所示,液晶层的透射率Tp降低。
这样,根据本实施例,通过输出到数据总线74的数据电压Vd的大小,就可以控制TFT72的导通时间。在TFT72处于导通状态时,在液晶层57上施加+10V或0V的驱动电压Vdd,在截止状态时则等于公共电压Vcom=+5V。因此,可以根据数据电压Vd的大小,控制在1个帧内显示全白的时间。
因此,将数据电压Vd设为最高,就可以大致在1帧期间内维持TFT72处于导通状态,得到全白显示,将数据电压Vd设为最低,就可以大约在1帧期间内,维持TFT72处于截止状态,得到全黑显示。
通过把数据电压设定为最高和最低之间的任意值,就可以在1帧期间内,把TFT72只在任意的时间内维持在导通状态,其后又设为截止状态。由此,便可以显示中间色调。根据本实施例,利用一般的液晶材料和TFT结构,可得到与实施例1-1相同的效果。
此外,在本实施例中,因为并不保持施加于液晶层57的电压,因此不存在使其放电的必要,所以不必使用电阻值大的液晶。从而可以使用如氰基系列等液晶,提高液晶显示装置的响应速度。加之,因为可以使用折射率各向异性An很大但电阻值很小的氯系液晶,从而可减少单元厚度d。因此,可以实现响应速度更高的液晶显示装置。
其次,对根据本实施例的液晶显示装置的变形例进行说明。图12表示根据本变形例的液晶显示装置的结构。图13是图12沿E-E线切断时的剖面图,如图12及图13所示,根据本变形例的液晶显示装置与图8所示结构不同,它并未形成公共总线78。在连接布线84上形成有在绝缘膜88上开口的接触孔202。TFT70的源极S1通过连接布线84和在接触孔202上形成的电阻器91,连接到对置基板4的公共电极62。电阻器91成为保持规定单元厚度的柱状隔离物。作为电阻器91的形成材料,例如最好用抗蚀剂。在本变形例中,电阻器91起到了电阻R1和电容C1的电介质的作用。根据本变形例也可得到与上述实施例同样的效果。
其次,对根据本实施例的液晶显示装置的其它变形例进行说明。图14表示根据本变形例的液晶显示装置的结构。图15是图14沿F-F线切断时的剖面图,根据本变形例的液晶显示装置与图8所示结构相同,形成有公共总线78。连接布线84形成于选通总线12和公共总线78之间。TFT70的源极S1通过接触孔206连接到连接布线84的一端。在接触孔206附近的剖面结构与图10所示的接触孔82的附近相同。连接布线84通过形成于接触孔208上的电阻器210,连接到第2连接布线85的一端,该第2连接布线85与数据总线74和驱动电压总线76都由同样材料形成。接触孔208附近的剖面结构与图9所示接触孔80附近的结构相同。第2连接布线85的另一端通过接触孔220连接到公共总线78上。像素电极60通过在接触孔204上形成的电阻器92,连接到公共总线78。在本变形例中,电阻器210起到了电阻R1和电容C1的电介质的作用。电阻器92起到了电阻R2的作用。根据本变形例也可得到与上述实施例同样的效果。
如上所述,根据本实施方式,可制造出具有良好视觉特性的液晶显示装置。
(第2实施方式)
其次,对根据本发明的第2实施方式的液晶显示装置,用图16至图19进行说明。此外,对与根据第1实施方式的液晶显示装置的构成要素具有相同功能作用的构成要素赋予相同符号并省略其说明。图16表示从显示画面一侧来观察根据本实施方式的液晶显示装置时,2个像素所具有的基本结构。图17是沿图16中所示的A-A线切断时的液晶显示装置的剖面图。如图16所示,利用形成在对置基板上的遮光膜(BM)50,划定出图示的纵向较长的长方形的2个像素区域,进而将各像素区域沿横向一分为二。此外,如图16和图17所示,在各像素区域的对置基板一侧,形成有相对像素区域端部倾斜延伸的线状突起52。在各像素区域的TFT基板一侧,形成有相对像素区域端部倾斜延伸的狭缝54,狭缝54与突起52交替排列。像素区域通过突起52和狭缝54被分割为液晶分子56的取向方向不同的4个区域(取向区域)。
如图17所示,各像素具有区域A和区域B,区域A位于形成突起52或狭缝54取向限制用结构物的区域附近,区域B则位于2个区域A之间。在区域A和区域B中,液晶分子的预倾角(相对基板的角度)不同。因此,从局部来看,2个具有不同T-V特性的区域A、B存在于1个像素中。但是作为整体观察的实际显示中,可得到将各T-V特性平均起来的T-V特性。
在被分割的多个区域A、B中的其中一个,为了维持高对比度,必须使预倾角大约为90°(取向方向基本垂直于基板)。本例中,区域B的预倾角大约为90°。加之,为维持相同的高对比度,区域A、B的预倾角最好是全部都大于80°。本例中,区域A的液晶分子56的预倾角为80°以上。此外,当将各区域A、B的T-V特性均等地混合进行平均化后,作为整体,可得到更加平坦的T-V曲线。作为整体当得到平坦的T-V曲线时,可使正面方向和倾斜方向之间的透射率之差变小。因此,最好是大致均等地分割区域A、B。
其次,对根据本实施例的液晶显示装置的制造方法进行说明。在TFT基板2上,形成多个宽为10μm的狭缝54,它们相互平行并且以70μm为间隔,在对置基板4上,形成多个高为1.2μm、宽为10μm、相互平行的、以70μm为间隔的线状绝缘突起52。在基板2和基板4的相对的面上,涂敷垂直取向膜(例如JSR公司的产品)。其次,散布例如直径为4.0μm的球状隔离物(例如積水ファインケミカル的产品)。然后,在使狭缝54和突起52相互交替排列的状态把TFT基板2和对置基板4粘合,密封添加了0.3wt%的光硬化性组成物(例如メルク公司的产品)的n型液晶(例如メルク公司的产品)。如图16所示,在1个像素内,狭缝54和突起52沿右上方45°和右下方45°延伸形成。由狭缝54和突起52沿4个方向取向分割的取向区域的液晶倾斜方向,为沿显示画面的上下方向或左右方向呈45°的倾斜方向。在1个像素内的各取向区域的面积大致相等。
在TFT基板和对置基板间密封液晶后,以各取向限制用结构物为中心,将进行了构图以使光只照射在宽度为17.5μm的区域A上的光掩膜重叠在液晶显示板上,在此状态下,一边在像素电极60和公共电极62之间施加20V的直流电压,一边用4000mJ的照射能量来照射UV光。由此,使区域A的光硬化性组成物有选择地被硬化。继而,在不施加电压的状态下,对整个液晶显示板,用4000mJ的照射能量来照射UV光,使具有宽度为17.5μm的区域B的光硬化性组成物硬化。通过该工序,在区域A上,液晶分子56的预倾角约为80°,在区域B上,液晶分子56的预倾角约为90°。
图18表示根据本实施例的液晶显示装置的T-V特性。横轴表示施加于液晶层57的施加电压(V),纵轴表示光的透射率(%)。在该图中用实线绘制的曲线A表示正面方向的T-V特性,用◇记号标记的实线所示曲线B表示倾斜方向的T-V特性。图18所示的T-V特性与图31所示的现有的液晶显示装置的T-V特性相比较,因为正面方向和倾斜方向的透射率之差变得很小,因此可得到在正面方向和倾斜方向之间的显示图像的色度偏差小的良好的灰度视角特性。实际在液晶显示装置上显示图像,从倾斜方向观察显示画面时,本实施方式中与从正面方向观察所见的显示图像的差较小,可以确认得到了良好的灰度视角特性。并且,用于比较的现有的液晶显示装置,除了液晶中不含光硬化性组成物,以及不进行UV光照射处理之外,两者都是以相同形态和条件进行制造的。
对本实施方式虽然形成了液晶分子56的预倾角不同的2个区域A、B,但形成液晶分子56的预倾角不同的3个以上的区域也可以具有同样或者甚至更加优良的显示特性。此外,虽然预倾角较小越小可得到的灰度视角特性越好,但存在对比度降低的所谓交替换位(trade off)关系。因此,必须根据液晶显示装置的使用环境等来选择预倾角。
图19是根据本实施方式的液晶显示装置的效果的曲线示意图。横轴表示标准化透射率,用灰度电压为6.0V时的透射率对各透射率进行标准化。纵轴用对数来表示倾斜方向的透射率对正面方向的透射率的比率(透射率比)。图中标有△符号的实线所表示的曲线C表示现有的液晶显示装置的透射率比,标有◇符号的实线所表示的曲线D表示根据本实施方式的液晶显示装置的透射率比。如图19所示,根据本实施方式,降低现有的透射率比高的低透射率处的透射率比,其轮廓就会变得更为平坦,在整体上透射率比更接近1.0。因此,根据本实施方式,可得到比现有装置更加优良的灰度视角特性。
(第3实施方式)其次,对根据本发明的第3实施方式的液晶显示装置,用图20A至图26B进行说明。此外,对与根据第1和第2实施方式的液晶显示装置的构成要素具有相同功能作用的构成要素,赋予相同符号并省略其说明。首先,对根据本实施方式的液晶显示装置的原理加以说明。图20A和图20B表示根据本实施方式的液晶显示装置的液晶分子的倾斜角度和视角方向的关系。图20A表示现有的液晶显示装置的情况,图20B表示根据本实施方式的液晶显示装置的情况。如图20A所示,现有的液晶显示装置中,由于液晶分子56的倾斜角度不同,从倾斜方向观察时的液晶层57的迟滞有时就存在变动。例如,沿图中箭头的视角方向分子长轴对齐的液晶层,该视角方向的迟滞为最小。与此相对,根据本实施方式的液晶显示装置,如图20B所示的液晶分子56、56’那样,通过在1个像素内设置倾斜角度逐渐不同的多个区域,实质上就可以抑制从倾斜方向观察时的迟滞的变动。
与第2实施方式相同,根据本实施方式的液晶显示装置的特征是在1个像素内使其液晶分子56、56’的预倾角不同。图21表示根据本实施方式的液晶显示装置的结构。如图21所示,在TFT基板2上形成沿图中左右方向延伸的多条选通总线12,以及通过未图示的绝缘膜与选通总线12交叉的、沿图中上下方向延伸的多条漏极总线14。在选通总线12和漏极总线14的交叉位置附近,形成有TFT16。此外,横切过由选通总线12和漏极总线14所划定的长方形像素区域的大约中央位置,形成存储电容总线20。
在长方形的像素区域中,形成十字形的连接电极26、28,它们将该像素区域分割为4个同一形状的长方形。连接电极26形成于像素区域中央并平行于漏极总线14,连接电极28形成于存储电容总线20上。从连接电极26、28按45°的角度延伸形成微细电极图形的多个条纹状电极22、22’。条纹状电极22以宽度L1形成,而条纹状电极22’以宽度L2(>L1)形成,在邻接的条纹状电极22之间,形成有除去电极状态的间隔24。此外,在邻接的条纹状电极22’之间,形成有除去电极状态的间隔24’。间隔24以宽度S1形成,间隔24’以宽度S2(>S1)形成。由连接电极26、28和许多条纹状电极22、22’和间隔24、24’构成像素电极。此外,一部分条纹状电极22、22’电连接到TFT16的源极。条纹状电极22、22’和间隔24、24’构成了取向限制用结构物。
图22是在根据本实施方式的液晶显示装置中,透射率的变化相对条纹状电极22和间隔24的宽度变化而变化的关系曲线图。横轴表示条纹状电极22的宽度L(μm),纵轴表示间隔24的宽度S(μm)。透射率(%)表示将3.4V的电压施加到液晶层57时的正面方向的透射率。
如图22所示,通过增加形成条纹状电极22、22’的宽度L,减小形成间隔24、24’的宽度S,施加规定电压时的透射率会增加。由图22可知,透射率对纵轴方向亦即间隔24、24’的宽度S的变化极其敏感。
这样一来,通过在1个像素内形成不同宽度的条纹状电极22、22’和间隔24、24’,就可以在1个像素内得到局部不同的多个T-V特性。因此,整体上,就可以作为把这些多个T-V特性进行平均所得的1个T-V特性,得到灰度显示。
图23表示根据本实施方式的液晶显示装置的变形例。如图23所示,在本变形例中,分别用3个不同的宽度L1、L2、L3来分别形成条纹状电极22、22’、22”,分别用3个不同的宽度S1、S2、S3来分别形成间隔24、24’、24”。
图24表示根据本实施方式的液晶显示装置的另一变形例。如图24所示,在本变形例中,用大致相同的宽度L1来形成条纹状电极22,而分别用2个不同的宽度S1、S2来分别形成间隔24、24’。
图25表示根据本实施方式的液晶显示装置的又一变形例。如图25所示,在本变形例中,平行于漏极总线14形成有多个条纹状电极23和多个间隔25、25’,条纹状电极23由大致相同的宽度L1形成,而间隔25、25’则分别用不同的宽度S1、S2形成。多个条纹状电极23通过连接电极29相互电连接,该连接电极29形成在像素区域的大约中央的位置,并平行于选通总线12。条纹状电极23中的一部分电连接于TFT16的源极。
图26A及图26B是根据本实施方式的效果的曲线示意图。图26A表示在根据本实施方式的液晶显示装置中,在1个像素内形成具有不同T-V特性的3个区域时的各个区域的局部T-V特性。此外,图26B表示在1个像素内大致均等地形成具有不同T-V特性的3个区域时的平均T-V特性。横轴都表示施加电压,纵轴都表示透射率。
如图26B所示,通过在1个像素内大致均等地形成具有不同T-V特性的3个区域,把图26A所示的3个T-V特性均等地混合的结果,作为整体就可以得到平坦的不产生起伏的1条T-V曲线。从而,可以消除如图32所示的发生灰度反转的视角,从而可大幅改善液晶显示装置的显示特性。
其次,对根据本实施方式的液晶显示装置的制造方法进行说明。在形成TFT16的玻璃基板上,形成例如ITO(Indium Tin Oxide)(铟锡氧化物)膜并进行构图,形成具有图21所示的微细电极图形的像素电极。其次,在TFT基板2和对置基板4上形成由聚酰亚胺等构成的垂直取向膜。其次,将TFT基板2和对置基板4在规定的位置粘合。然后,将混合了具有负介电常数各向异性的液晶与能通过UV光进行聚合的单体的液晶组成物密封在两基板2、4之间。
其后,在密封了液晶的液晶显示板上施加选通电压(例如DC30V)和灰度电压(例如DC5V)。此时,对置基板4的公共电极维持在地电位。通过在液晶层57上施加电压,液晶分子56的取向逐渐稳定下来。在此状态下照射UV光,在液晶层57内形成光硬化物。根据规定的配置,把具有规定光学轴的偏光板粘合在液晶显示板上,完成液晶显示装置的制造。
本发明并不限于上述实施方式,可作种种变形。
例如,上述实施方式中列举了MVA模式的液晶显示装置作为例子,但本发明并不仅限于此,也可应用于TN(扭曲向列型)模式等其它液晶显示装置。
此外,上述实施方式中列举了常黑模式的液晶显示装置作为例子,但本发明并不仅限于此,也可应用于常白模式的液晶显示装置。
进而,上述实施方式中列举了透射型的液晶显示装置作为例子,但本发明并不仅限于此,也可应用于反射型或半透射型的其它液晶显示装置。
如上所述,根据本发明,可实现得到良好视角特性的液晶显示装置。
权利要求
1.一种液晶显示装置,其特征在于,具有一对基板,它们被相对配置;液晶,其被密封在所述一对基板间;像素区域,多个像素区域配置为矩阵状,像素区域具有多个取向区域,这些取向区域具有所述液晶的预倾角不同的多个区域。
2.如权利要求1所述的液晶显示装置,其特征在于,所述液晶具有使光硬化性组成物硬化的光硬化物,至少一个以上区域的预倾角由所述光硬化物规定。
3.如权利要求1或2所述的液晶显示装置,其特征在于,所述预倾角包含大约90°角。
4.如权利要求1至3的任何一项所述的液晶显示装置,其特征在于,所述预倾角在80°以上。
5.如权利要求1至4的任何一项所述的液晶显示装置,其特征在于,所述多个区域被大致均等地进行分割。
6.一种液晶显示装置,其特征在于,具有一对基板,它们被相对配置;液晶,其被密封在所述一对基板间;多个像素区域,其被配置为矩阵状;像素电极,其形成于所述像素区域,具有多个条纹状电极和所述条纹状电极间的间隔,所述条纹状电极和/或所述间隔由不同的宽度形成。
7.如权利要求6所述的液晶显示装置,其特征在于,所述液晶具有使光硬化性组成物硬化的光硬化物,所述预倾角由所述光硬化物规定。
8.如权利要求1至7的任何一项所述的液晶显示装置,其特征在于,所述一对基板的相对的面上分别具有垂直取向膜,所述液晶具有负的介电常数各向异性。
全文摘要
本发明提供一种液晶显示装置及其驱动方法,其用于信息设备等的显示部,并能得到良好视角特性。当将相对较高电平的数据电压施加于TFT72的栅极G2时,驱动电压被长时间施加于液晶层57,实现全白显示。当将相对较低电平的数据电压施加于TFT72的栅极G2时,驱动电压不施加于液晶层57,实现全黑显示。当将所述高电平和低电平之间的数据电压施加于TFT72的栅极G2时,TFT72只在由电容C1和电阻R1确定的时间常数所决定的时间内维持导通状态。仅在该导通时间内对液晶层57施加驱动电压。由此,根据在1帧期间中的TFT72的导通时间的比例,实现中间色调的显示。
文档编号G09G3/36GK1763613SQ200510117008
公开日2006年4月26日 申请日期2003年2月27日 优先权日2002年2月27日
发明者上田一也, 吉田秀史, 井上雄一, 小池善郎 申请人:夏普株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1