纳米结构与纳米多孔膜组成、结构及其制造方法

文档序号:2771714阅读:260来源:国知局
专利名称:纳米结构与纳米多孔膜组成、结构及其制造方法
技术领域
本发明涉及膜组成,结构应用以及制造金属或金属氧化物的纳米结构和纳米多孔膜的方法。这些膜是从包含有机金属化合物的前体配方得到。在本文件中,“纳米结构膜”是指结构上具有纳米粒子的薄膜或具有纳米尺度域结构的薄膜,而“纳米多孔膜”是指具有直径在纳米范围内的孔的薄膜。本发明还涉及在各种应用中这种膜的使用,包括但不限于微电子工业中应用的膜。
背景技术
半导体被广泛用作形成集成电路的基础,这些集成电路用于如计算机、电视、PDA、收音机、移动电话等电子设备。这些集成电路通常在一个单晶硅片上包含了数以百万计的晶体管,以进行复杂的功能和存储数据。由于不断小型化的趋势以及其它的工业需求,半导体微电子设计者要求集成电路(1)速度较高,(2)膜的纳米组分或纳米粒子以及获得的纳米结构可较好控制,以及(3)费用较低。
1、在微电子电路中获得较高速度使集成电路更快的一种方式是降低信号串音。串音信号是在第一个导线上的信号,第一个导线连接到与之紧靠的第二个导线,并在第二个导线上产生不正确的信号。降低导线之间的电容将减小串音信号。导线之间的电容可通过降低导线之间的材料的绝缘体介电常数而被降低。许多绝缘体介电常数缩减方案正在被研究,如利用气凝胶膜(这是纳米多孔的介电膜,其中固态介电材料具有多个充满空气的空穴)。在美国专利6,380,105“Low volatility solvent-based method for formingthin film nanoporous aerogels on semiconductor substrates”中,公开了一种薄膜纳米多孔介电材料的制造方法。然而,这些膜是利用标准的VLSI(超大规模集成电路)技术形成的,这使得从控制其孔隙率方面而言,很难在该膜上形成图案,并很难产生可变的结果,因为(1)通常用于给VLSI膜成像的光致抗蚀剂使空穴充满不希望有的残留物,而(2)用于除掉光致抗蚀剂的化学溶剂使空穴中充满了不希望有的残留溶剂。除掉这些不希望有的残留光致抗蚀剂材料和残留溶剂化学物是很困难的。因此,存在着一种需要,即控制纳米多孔膜的孔隙率并易于在这些膜上形成图案,而且易于除掉残留物。
(2)控制微电子电路中的膜纳米组分或纳米粒子和所得到的纳米结构VLSI处理和设计中的另一种需要是需要控制膜的纳米结构。实际上,VLSI中所使用的设计先进的薄膜,如金属或绝缘扩散障碍层,电容器的导电电极,布线导体,薄膜电阻器,薄膜熔丝,薄膜磁膜和薄膜介电材料,它们的确试图控制纳米组分或纳米粒子。通过控制这些薄膜中的纳米粒子,可以控制膜的最终纳米结构。
(3)获得微电子电路的较低成本VLSI设计和制造中的另一种需要是简化在半导体基底上产生电路的过程。最好能简化该过程而不增加制造成本,降低制造成本会更有益。在传统的VLSI方法中,一系列必要的处理步骤包括在膜上形成图案的光刻处理。这在传统的VLSI方法中也是一笔很大的花费。大体上,对于在VLSI中其上形成有图案的每个膜,光致抗蚀剂需要被曝光和成像、显影,并用作一个掩模,以通过反应离子蚀刻(RIE)来转印图像,然后,利用等离子体O2灰烬或湿溶液条去除不希望有的光致抗蚀剂,接着是清洗步骤,以去除残留的光致抗蚀剂。的确可以看到,仅从步骤的数目来说,在任何VLSI中所用的膜层上形成图案都是相当昂贵的。在美国专利5,534,312,“Method for directly depositing metalcontaining patterned films”中,描述了不使用光致抗蚀剂来制作金属氧化物、金属、或其它包含金属的化合物的形成有图案的膜的方法。具体来说,该过程是一种光化学有机金属沉积(PMOD)法。
该方法包括将有机金属化合物的非晶形膜附着在基底上。可利用标准工业技术通过旋转涂布方式方便地将该膜附着在基底上。使用的有机金属化合物是光反应性的,并经历一个由合适波长的光启动的低温化学反应。反应的最终产物取决于进行反应所处的大气。例如,在空气中可以制成金属氧化物膜。可通过仅将膜的选定部分曝光来在膜上形成图案。通过将膜的不同部分在不同大气中曝光,可以在同一个膜上形成两种或多种材料图案。获得的形成有图案的膜通常是平面的,无需单独的平面化步骤。已经发现,该PMOD技术可用于生成经控制的纳米多孔或纳米结构的膜。可以明白,该方法确实简化了整个过程,并提供了一种较低成本的VLSI处理方法。如上文所指出的,在某些膜中为提高质量(例如介电常数),纳米孔隙率是一个期望的特性。然而,由于‘312专利没有提出纳米多孔膜,也没有提出这样的膜中的纳米多孔的控制,所以仍然有必要把制造VLSI所用的形成有图案的膜的简易经济的PMOD方法与有效控制膜中的纳米孔隙率的方法结合起来。

发明内容
本发明公开了一种纳米多孔或纳米结构的薄膜的控制沉积方法。该方法包括在基底上首先沉积一个前体膜。前体配方可通过各种方法被沉积在表面上,如旋转涂布。沉积可在室温下进行。下一个步骤是将前体溶液转换为金属或金属氧化物膜。
为了根据本发明生成一个纳米结构膜,前体配方成分中的至少一种或全部被转换为金属或金属氧化物。接下来是第二成分的转换。这两个转换步骤中的至少一个可通过光分解(通过前体化合物的光化反应的前体膜的分解)或通过离子或电子束的碰撞来完成。所得到的膜是一个控制良好的纳米结构薄膜,其中每种成分都可被独立地控制。在转换步骤过程中,光、离子或电子束通过掩模来成像。所获得的薄膜具有转换步骤在其中引起反应的区域,和没有反应的其它区域。因此,通过使用掩模或定向光束,在纳米结构金属或金属氧化物膜上形成了图案。
通过改变形成图案的大气环境,可改变组分和所得到的纳米结构,从而可改变所得到的金属或金属氧化物膜的薄膜性质。该方法也包括在光、离子或电子束转换步骤(1)之前,(2)之中,或(3)之后,或(4)-(1)、(2)或(3)的任何组合,进行的大气反应。
通过制作其中一个成分容易被去除的纳米结构膜,可制备纳米多孔膜。另外,如这里所述的处理过程的相关变量也可用来实现光解膜的孔隙率。


图1是锰和钽区域的一个透射电子显微图像。
图2是富铀区域的一个透射电子显微图像。
图3是锰氧化物膜的一个透射电子显微图像。
图4A是以锰∶月桂酸的1∶1摩尔比率制备的锰氧化物膜的一个透射电子显微图像。
图4B是以锰∶月桂酸的100∶1摩尔比率制备的锰氧化物膜的一个透射电子显微图像。
图4C是以锰∶月桂酸的1000∶1摩尔比率制备的锰氧化物膜的一个透射电子显微图像。
图5A是以锰∶NaAOT的1∶1摩尔比率制备的锰氧化物膜的一个透射电子显微图像。
图5B是以锰∶NaAOT的100∶1摩尔比率制备的锰氧化物膜的一个透射电子显微图像。
具体实施例方式
本发明公开一种制作纳米结构薄膜的方法,包括在基底上沉积前体溶液,然后将前体转换成薄膜。该薄膜然后被处理,该处理过程被设计为,在处理过程的不同时间进行形成金属氧化物的不同组分的不同反应,使得在该方法中可控制不同材料组分的形成。该方法中的至少一个步骤包括定向光或离子束,或电子束的相互作用,以在薄膜上形成图案。
这些纳米结构薄膜的可控构造允许对最终薄膜的各种物理性质的控制。这些薄膜可在各种基底上被沉积。这些基底的应用实例包括,但不限于简单盐,如CaF2;晶体,如兰宝石或石英;半导体表面,如硅或镓砷化物;如在半导体结构的上层上的金属,如铂,铜,或铝;和绝缘体,如二氧化硅或聚合体;和封装表面,如陶瓷制品(例如,氧化铝)和聚合体(例如,聚酰亚胺)。
对于该方法来说基底的性质不是关键的,尽管它可能会影响选择的前体膜的沉积方法,温度范围,附着性和用于沉积的溶剂。最常用的基底是硅晶片或半导体结构的上层。
前体膜,例如2000埃的Ti(OiPr)2(acac)2膜,可通过各种方法(如旋转涂布方式)沉积在基底(例如硅)上。在该方法中,前体在溶剂中分散,以形成前体溶液。在一个实例中,基底(一个预处理半导体硅晶片)在适当位置处被真空夹盘固定住,如当前的商用旋转涂布机(即米自Headway或Laurell公司)的真空夹盘。前体溶液在基底开始旋转之前或在旋转时分散在基底的表面上。然后使基底旋转,从而在表面上沉积了前体薄膜。薄膜厚度的较佳范围在1微米到200nm之间,也可以在10微米到50nm之间。如旋转涂布技术领域中所公知的,可通过调节如基底的旋转速率、前体溶液的粘性和前体溶液浓度等参数,来调节这个厚度。应该指出的是,通过后来的曝光步骤,较之一开始应用的厚度,该厚度大大减小。例如,在所有曝光步骤之后,氧化物通常造成厚度的8-10X的减小,而金属通常造成厚度的50-100X的减小。在一些情况下,溶液的供给速率也是一个因素。在一个实例中,旋转涂布在室温下进行。
可控制几个参数来实现光解膜的残留非聚集性(nonsocial)孔隙率,这包括前体化学物,用于涂布基底的溶剂,沉积膜的预处理,及沉积膜的厚度。例如,所选择前体的光敏度越高,光解膜中的孔隙率的容积率越低。这对于BaHexanoate和Ti(acac)2(iPr)2的二元系是很明显的。
如另一个实例,用于将前体旋转涂布到基底上的溶剂在溶剂的烘干过程中对产生的前体组分的初始封装密度有一个影响。原则上,与从具有较高表面张力的溶剂烘干成的膜相比,具有较低表面张力的溶剂使得被烘干的膜密度较小。毛细力与表面张力成正比,与毛细管半径成反比。该力影响在沉积膜的烘干过程中产生的气孔的伸缩,从而影响所得到的膜的纳米孔隙率。例如,较低表面张力的溶剂(如己烷)会产生比较高表面张力的溶剂(如环己酮或MIBK)低的密度的膜。膜在光解后可保留这个初始密度差异。
在可控变量实现本发明光解膜的纳米孔隙率的另一个实例中,在UV曝光之前的烘焙步骤可带来额外的孔隙率,这是因为在UV曝光过程中稠化(densification)之前形成网状。作为实现纳米孔隙率的变量的另一个实例,光解膜的孔隙率与膜的厚度成正比,当辐射剂量相同时,膜越薄,孔隙率越小。相反,当辐射剂量相同时,随着膜厚度增加,膜的孔隙率也增加。
如另一个实例,以一定浓度范围添加表面活性剂也可实现膜的纳米结构。表面活性剂的性质也是重要的,特别是,如果表面活性剂将留在膜内。例如,在图3中示出了以美国专利5,534,312描述的方法形成的膜(在此引用作为参考),通过2-乙基己酸锰膜的光解制备的一个样本。所示出的最显著的特征是由直径约为4nm的圆形特征组成的颗粒状。纯2-乙基己酸锰膜可利用254nm辐射来光解,形成非晶形的氧化物膜。这些膜也可利用掩模通过光刻法形成图案。通过在前体膜上添加例如月桂酸的表面活性剂,改变其特征的密度和外观,如图4A-4C所示。
可使用其它或多种表面活性剂或金属。另一种合适的表面活性剂是NaAOT。锆前体可用于制备锆氧化物/表面活性剂混合物,钛和钽前体都可用于产生膜,通过添加表面活性剂(如NaAOT)来改变相位分离性质。表面活性剂NaAOT和锰一起使用,生成纳米构型。例如,通过改变锰和NaAOT的摩尔比率,可实现纳米结构,如图5A和5B所示。
在同时使用热和光化学转换过程的情况下,首先采用哪个转换过程取决于所使用的化学系统。
可实现光解膜孔隙率的前述变量并不是构成这些变量的穷举,而是可实现光解膜孔隙率的变量示例。
如下所述,本发明的生成纳米结构膜的第一实施例使用一个前体组分和两个反应。选择一个前体,以便使前体的主要结构降低对短程次级(short-range secondary order)的形成(即纳米结晶域的形成)的障碍(barrier)。
实例1在第一实施例的例子中,钡钛双金属醇盐(公称成分是BaTi(OR)x)前体配方是通过在合适的溶液(优选是5-50%(w/w),可以是1-90%(w/w))中溶解前体来制备。如在上文“用于前体沉积的最初基本方法”中所述的,来应用该配方。然后,所得到的膜在一个单独的光解步骤中被转换。所得到的金属氧化物膜在热液条件下被处理,如在高压釜中存在适当的催化剂或没有催化剂时在一个选定的压力和温度下煮解溶液。该热液处理产生一个膜,该膜具有非晶形金属氧化物矩阵形式的纳米结晶域。
本发明的生成纳米结构膜的第二实施例是通过使用基于不同光化转换率而选择的两个或多个组分来实现,如下所述。在该实施例中,选择两个前体,以便它们不同的光化沉积率导致单独化合物的纳米尺寸域的沉积。
实例2在第二实施例的示例中,由MIBK(甲基异丁基酮)中的Ta(OEt)4(acac)(acac=2,4-pentanedionate)(重量比占18%),和2-乙基己酸锆(IV)(重量比占29%)组成的一个样本用于通过传统的旋转涂层方法来涂布基底。在这个步骤之后,利用深UV辐射(优选为254nm)光解30分钟,如美国专利5,534,332专利中所述。这个实例中的光源可以是Xe(氙)灯或Hg(汞)蒸汽灯,如OrielTM壳中的100W高压Hg蒸汽灯,该壳装备有聚光透镜和具有石英光学器件的10cm滤水器。发射325nm和/或416nm光的HeCd激光具有与许多金属复合体相关的用作光源的有用性质。UV辐射步骤主要导致钽膜反应。接下来用己烷进行5分钟的显影,从而形成一个图案。再进行2小时光解,导致锆前体组分的反应和纳米结构膜的形成。在类似的实例中,剩余锆进行热反应,随后是膜的显影。
实例3在第二实施例的另一个例子中,MIBK中的2-乙基己酸钡和Ti(OiPr)2(acac)2(分别为21.5%w/w和18.5w/w)的混合物用于通过旋转涂层方法来涂布硅基底。经涂布的基底在深UV辐射下曝光30分钟。通过使用平版印刷方法(即,基底的图案化曝光),利用己烷和异丙醇(10∶90)的混合物来显影潜像,生成形成有图案的膜。
为了确认膜的成分,所得到的钡钛氧化物膜样本被放置在30℃的水浴中进行30分钟的处理。从水中取出膜样本,然后通过电感耦合等离子体质谱(ICP-MS)来分析该水。该水显示出高水平的钡,而没有钛。这个结果表明,钡从样本中被选择地滤出,也显示出膜中的钡氧化物和钛氧化物的物种形成(例如,离散域的形成)。
钡被从膜中有选择地提取出这一事实表明,钡不包括在具有钛的次级结构中(如在钡钛的结晶相中发现的钙钛矿型结构)。例如,当钡钛膜经受上述实例中的相同条件时,没有钡或钛被从膜中滤出。
生成纳米结构膜的本发明的第三实施例是通过使用基于一个前体的热敏性和另一个前体的光化学敏感性选择的两个前体。在这个实施例中,所选择的两个前体具有适当的热和光化学敏感性,使得可以首先分离一个,再分离另一个,然后从前体膜中分离第一个。
实例4在第三实施例的一个例子中,MIBK中的2-乙基己酸钡和Ti(OiPr)2(acac)2(分别为21.5%w/w和18.5w/w)的混合物用于通过旋转涂布方法来涂布硅基底。经涂布的基底在90℃的烘板上加热2分钟,导致钛前体的热分解。接下来将膜在深UV辐射下曝光,导致钡前体的分解。通过平版印刷方法(即,基底的图案化曝光),利用己烷和异丙醇(10∶90)的混合物来显影潜像,生成形成有图案的膜。
实例3中使用的同样测试方法在实例4中生成的膜上实施,得到相同的结论,钡和钛被分离,以便钡已滤出,而钡氧化物和钛氧化物预计/期望存在于膜中。
实例5在该第三实施例的另一个例子中,由庚烷中的Ta(OEt)4(acac)和2-乙基己酸锰(II)(每个的重量比为16%)制成的混合物组成的样本被旋转涂布在硅基底上。样本通过一个热处理在室温下黑暗中起反应,该热处理引起一个反应,主要是钛前体的反应。接下来通过将膜曝光于深UV辐射下来进行锰前体的光化学反应。通过使用平版印刷方法(即,基底的图案化曝光),利用己烷来显影潜像,生成形成有图案的膜。
图1示意具有合成方法的锰和钛区域的合成纳米结构膜的TEM。用明亮部分表示锰区域的TEM图像在左侧示出,在右侧示出较暗区域的钛浓度。TEM图像的元素分析由EDX(能散x射线光谱学)或EELS(电子能耗光谱学)确定。两个图像都与钛和锰的彼此分离一致。(每个图像的比例都相同,并通过明亮区图像示出。)实例6在第三实施例的又一个实例中,由MEK(甲基乙基酮)中的Ta(OEt)4(acac)(重量比占18%)和己酸铀酰(重量比占9%)制成的混合物用于通过旋转涂布方式涂布基底。含钛复合体在室温下热反应。下一个步骤是对铀酰化合物起光化学反应(EKC请提供关于如何进行这个光化学反应的处理和装备细节)。通过使用平版印刷方法(即,基底的图案化曝光),利用丙酮来显影潜像,生成形成有图案的膜。
图2示意上述方法的合成纳米结构膜的富铀区域的一个TEM。图2的左侧表示一个样本的铀图。在这个图像中,包含铀的区域较明亮。图2的右侧以同样的放大倍数表示这个样本的亮区图像。在图2中,富铀区域是较明亮的。这两个图像示出纳米大小尺寸上的两个组分的分离。
本发明的生成纳米多孔薄膜的第四实施例是通过前体膜的光化学反应和有选择地从膜上去除大部分未起反应的组分。在该实施例中显示出,使用的不同处理可影响纳米结构和最终膜的孔隙率。另外,通过选择前体配方的一个组分,使得其大部分不会通过包含金属的前体的光化学分解起反应,并且可从转换膜上被选择性地去除,可以形成高孔性的膜。多孔性的程度和性质可由这个组分的数量和性质来控制。
已经发现,‘312专利中描述的PMOD方法可用于基于光解生成一定程度纳米孔隙率。然而,这个实施例描述了一种方法,其中生成了另外的孔隙率,不一定与通过PMOD方法的固有孔隙率有相同的尺寸。适当前体的选择,如美国申请序列号09/918,908中所讨论的低密度氧化物,可提供这个纳米孔隙率。这个方法,结合具有硅石的添加剂的适当选择,可制作光图案化低k介电膜,它们具有上述在关于美国专利号6,380,105的“相关技术”部分中讨论的技术要点,在此引用作为参考。
实例7在第四实施例的一个实例中,由MIBK中的Ta(OEt)4(acac)(重量比占24.8%)和1,3-二环己基碳二亚胺(重量比占6.7%)制成的样本被旋转涂布到基底上。利用深UV辐射的近30分钟的光解主要导致钛膜的反应。在此之后是利用己烷的5分钟显影,导致图案化薄膜的形成。留在薄膜内的1,3-二环己基碳二亚胺通过与己烷的接触而被去除。合成的图案化薄膜是纳米多孔的(由SEM分析确定)。可选择地,通过对由Ta(OEt)4(acac)的光解产生的膜的热处理来去除1,3-二环己基碳二亚胺。
实例8在第四实施例的另一个实例中,由乙醇中的Ta(OEt)4(acac)(重量比占15%)和尿素(重量比占5%)组成的前体配方用于通过旋转涂布方式涂布基底。利用深UV辐射的30分钟的光解主要导致钛膜的反应。这个步骤之后是利用乙醇的5分钟显影,导致图案化薄膜的形成。留在薄膜内的尿素在图案的显影过程中通过与乙醇的接触而被去除。合成的图案化薄膜是纳米多孔的(由SEM分析确定)。可选择地,通过对由钛前体的光解产生的膜的热处理来去除己二酸。
实例9在该第四实施例的另一个实例中,由乙醇中的Ta(OEt)4(acac)(重量比占10%)和己二酸(重量比占5%)制成的样本用于通过旋转涂布方法涂布基底。随后利用深UV辐射进行大约30分钟的光解,主要造成钛膜的反应。在此之后利用乙醇进行5分钟显影,从而形成图案化的薄膜。留在薄膜内的己二酸通过与乙醇的接触而被去除。合成的图案化薄膜是纳米多孔的(由SEM分析确定)。可选择地,通过对由钛前体的光解产生的膜的热处理来去除己二酸。
尽管已经具体参考优选实施例描述了本发明,应该理解的是,这些实施例是示意性的,根据在此公开的内容,对本领域的技术人员来说,很显然的是,本发明可被修改,并可以不同但等效的方式来实施,。在此公开的特定实施例可以不同的方式被改变或修改,这样的改变都被认为在本发明的范围和精神内。因此,本发明的范围不应该被这里的特定公开所限制,但只受到所附权利要求的限制。
权利要求
1.一种沉积纳米结构膜的方法,该膜包括一种或多种嵌有纳米孔的金属或金属氧化物;其中所述纳米孔的形成是在金属配合基前体溶液沉积在基底上之后该溶液的光化学反应的结果。
2.如权利要求1所述的方法,其中在所述膜上形成图案。
3.一种沉积膜的方法,该膜包括一种或多种嵌有纳米孔的金属或金属氧化物,所述方法包括在基底的表面上沉积金属配合物前体溶液的膜;和把沉积在所述基底上的所述前体溶液转换成嵌有纳米孔的金属或金属氧化物膜,其中所述转换至少部分是以光化学方式进行。
4.如权利要求3所述的方法,其中嵌有所述纳米孔的所述沉积膜是非晶形的。
5.如权利要求3所述的方法,其中所述转换至少部分是以热的方式进行。
6.如权利要求3所述的方法,其中所述转换至少部分是以热液方式进行。
7.如权利要求3所述的方法,其中所述转换至少部分是用等离子体、电子束或离子束来进行。
8.如权利要求3所述的方法,其中所述膜以两个或多个步骤按顺序被转换。
9.如权利要求3所述的方法,其中所述转换至少部分是用紫外光来进行。
10.如权利要求3所述的方法,其中在由所述转换步骤形成的所述金属或金属氧化物膜上形成图案。
11.如权利要求10所述的方法,其中所述转换至少部分是以热的方式进行。
12.如权利要求10所述的方法,其中所述转换至少部分是以热液方式进行。
13.如权利要求10所述的方法,其中所述转换至少部分是用等离子体、电子束或离子束来进行。
14.如权利要求10所述的方法,其中所述转换至少部分用紫外光来进行。
15.如权利要求3所述的方法,其中所述转换至少部分在氧气氛下进行。
16.如权利要求4所述的方法,其中所述沉积通过旋转涂布,喷涂,浸镀,或涂墨方式来进行。
17.如权利要求3所述的方法,其中至少一种表面活性剂被添加到所述前体溶液中。
18.如权利要求3所述的方法,其中在沉积之后和在转换所述膜之前使用烘焙步骤。
19.一种沉积非晶形纳米结构膜的方法,该膜具有包括一种或多种金属或金属氧化物的一个或多个区域,其中所述膜具有一个或多个区域,其中所述一个或多个区域是通过以下方式形成在基底上沉积前体混合物的非晶形膜,并使所述膜经受辐照步骤,以由所述前体混合物形成材料区域。
20.如权利要求19所述的方法,其中前体混合物的所述非晶形膜具有由所述前体混合物形成的第一和第二区域,其中前体混合物的所述非晶形膜经受第一辐照步骤,以形成和所述前体混合物分离的第一材料的第一区域;并且其中所述前体混合物随后经受第二辐照步骤,以形成第二材料的第二区域。
21.如权利要求19所述的方法,其中至少部分所述膜上被形成图案。
22.如权利要求20所述的方法,其中使用电磁辐射来启动所述第一辐照步骤中的光化学反应。
23.如权利要求22所述的方法,其中使用电磁辐射来启动所述后续步骤之一中的光化学反应。
24.如权利要求20所述的方法,其中通过使用电磁辐射以启动至少一个所述步骤中的光化学反应,而利用电磁辐射在所述膜上图案。
25.如权利要求21所述的方法,其中利用一种技术在至少一部分所述膜上形成图案,该技术选自由使用电子、使用离子、使用原子、使用中性粒子、和使用带电粒子组成的组。
26.如权利要求20所述的方法,其中使用添加剂以实现前体材料在至少一个辐照步骤过程中经历相分离的能力。
27.如权利要求19所述的方法,其中形成的至少一个区域具有纳米孔。
28.如权利要求27所述的方法,其中所述纳米孔是通过以光化学或热方式去除挥发性有机化合物而形成的。
29.如权利要求27所述的方法,其中所述纳米孔是通过使用溶剂而形成的。
30.如权利要求19所述的方法,其中两个以上区域是通过两个以上的辐照步骤而形成的。
全文摘要
本发明包括制作各种合成物的纳米结构和纳米多孔薄膜结构的方法。可直接在这些膜上形成图案。在这些方法中,前体膜沉积在一个表面上,前体膜的不同组分在选择的条件下起反应,形成纳米结构或纳米多孔膜。这种膜可用在各种应用中,例如,低k电介质,传感器,催化剂,导体或磁膜。可以下述方式生成纳米结构膜(1)使用一种前体组分和两种反应,(2)基于不同的光化学转换率使用两种或多种组分,(3)使用两个前体,基于一个前体的热敏性和另一个前体的光化学敏感性,和(4)通过前体膜的光化学反应并从膜上选择性去除大部分未反应的组分。
文档编号G03F7/004GK1703286SQ03825492
公开日2005年11月30日 申请日期2003年9月26日 优先权日2002年9月30日
发明者L·G·斯文森, S·P·慕克吉, P·J·小罗曼, R·H·希尔, H·O·马德森, X·张, D·霍赫茨 申请人:西蒙弗雷泽大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1