防眩性硬涂薄膜及其制造方法

文档序号:2784085阅读:243来源:国知局
专利名称:防眩性硬涂薄膜及其制造方法
技术领域
本发明涉及在透明的薄膜基材的至少一个面上设置了硬涂层的防眩性硬涂薄膜及其制造方法。更为详细地说,是涉及可以适合地用于偏振片等光学元件、CRT(Cathode Ray Tube)、液晶显示器(LCD)、等离子体显示器(PDP)和电致发光显示器(ELD)等图像显示装置的硬涂薄膜及其制造方法。
背景技术
作为各种图像显示装置之一有LCD,但伴随着与LCD的高视场角化、高精细化、高速应答性、色再现性等有关的技术革新,利用LCD的应用也正在从笔记本型个人电脑或监视器向电视变化。LCD的基本构成是,将分别具备透明电极的平板状的玻璃基板,以成为一定间隔的缝隙的方式通过隔板对向配置,向该玻璃基板之间注入液晶材料,密封,作为液晶单元,进而在一对玻璃基板的外侧面上分别设置偏振片。以前是在液晶单元表面上安装有玻璃或塑料构成的盖板,防止损伤在液晶单元表面上贴附的偏振片。但是,当安装盖板时,在成本和重量方面是不利的,接着对偏振片表面进行硬涂处理。
已对透明塑料薄膜基材进行硬涂处理的硬涂薄膜,通常使用热固化性树脂、或紫外线固化性树脂等电力放射线固化性树脂,在透明塑料薄膜基材上形成2~10μm左右的较薄的硬涂层而得到。当在玻璃上涂敷上述的树脂设置硬涂层时,以铅笔硬度计显示出4H以上的特性,但在基底为透明塑料薄膜基材的情况下,如果硬涂层的厚度不够充分,通常受到该透明塑料薄膜基材的影响,铅笔硬度降低到3H以下。
通过将LCD的应用移行至家庭用电视机,一般的家庭用电视机的使用者可以容易地想到即使是使用了LCD的电视机,也进行与利用以往的玻璃制的CRT的电视机同样的操作。玻璃制的CRT的铅笔硬度为9H左右,与现有的硬涂薄膜的铅笔硬度特性的差异比较明显。为此,即使铅笔硬度不到9H,要求硬涂薄膜的进一步的硬度提高。
为了增大硬涂薄膜的硬度,可以通过增加硬涂层的层厚。但是,层厚的增大存在下述问题,即在硬涂层中含有的颗粒完全埋入到该硬涂层内部就,无法发挥足够的防眩性。为了提高防眩性,也有增加颗粒的添加量的方法,但此时,层方向上的颗粒数量增大,其结果也有浊度值增大的问题。因此,近年来,所产生的弊病是解决硬涂薄膜的高硬度化的实现的结果,即防眩性或浊度值的增大,作为解决上述问题的方法,完成了下述特开平11-286083号公报~4的提案。
在特开平11-286083号公报中,公开了在透明基材薄膜上形成了以平均粒径为0.6~20μm的颗粒和平均粒径为1~500nm的微粒和硬涂树脂为主成分的防眩性薄膜。另外,还记载有硬涂层的厚度在所述颗粒的粒径以下,优选平均粒径的80%以下(具体为16μm以下)。但是,当硬涂层的厚度为此程度时,无法发挥足够的硬度。
在特开2000-326447号公报中,公开有在塑料基材薄膜的至少一个面上形成至少一层的硬涂层而成的硬涂薄膜,记载有使该硬涂层的厚度为3~30μm,进而将二次粒径为20μm以下的无机微粒添加到硬涂层中。进而,还记载有使硬涂层的表面成为凹凸形状而赋予防眩性的要点,但如果是这样的构成,完全不考虑硬涂层表面的表面粗糙度,在是无机微粒完全埋入到硬涂层内部那样的构成的情况下无法发挥足够的防眩性。
在特开2001-194504号公报中,公开有一种防反射薄膜,其是在塑料薄膜的至少一个面上层叠硬涂被膜层和以金属醇盐及其水解物为主成分的防反射薄膜层而成,在硬涂层的断裂变形以下的弹性模量为0.7~5.5GPa。另外,还记载有硬涂层的膜厚为0.5μm以上、20μm以下,在该硬涂层中含有的微粒的平均粒径为0.01~10μm。但是,如果是特开2001-194504号公报中记载的发明,尽管硬度和耐擦伤性得到改善,但是,在例如将平均粒径为1.8μm的微粒添加到膜厚为20μm左右的硬涂层中的情况下,微粒完全埋入到该硬涂层内部无法发挥足够的防眩性。
在特开2001-264508号公报中,公开有一种防眩性防反射薄膜,其是在透明支撑体上顺次层叠具有平均粒径为1~10μm的颗粒的防眩性硬涂层,和由含有平均粒径为0.001~0.2μm的无机微粒、光固化性的有机硅烷的水解物和/或其部分缩合物、以及含氟聚合物的组合物形成的折射率在1.35~1.49的范围内的低折射率层,该防眩性防反射薄膜的浊度值在3~20%的范围内,450μm~650μm的平均反射率在1.8%以下。另外,还记载有防眩性硬涂层的膜厚为1~10μm。特开2001-264508号公报中记载的发明的目的,是改善耐损伤性、防眩性等,但问题是无法得到足够的硬度。

发明内容
本发明正是鉴于上述问题点而完成的发明,其目的在于,提供高硬度、耐擦伤性、和防眩性出色的防眩性硬涂薄膜,其制造方法,使用它的光学元件和具备了它们的图像显示装置。
本发明人等为了解决上述以往的问题,对防眩性硬涂薄膜、其制造方法、使用了它的光学元件和具备了它们的图像显示装置进行了潜心研究。其结果发现,通过采用下述构成可以达到上述目的,以至完成了本发明。
即,为了解决上述问题,本发明的防眩性硬涂薄膜使在透明的薄膜基材的至少一个面上具有含有微粒的硬涂层,上述硬涂层的膜厚为15μm以上30μm以下,而且上述微粒的平均粒径为硬涂层的膜厚的30%以上75%以下,由上述微粒形成的凹凸形状的通过JIS B 0601的θa为0.4°以上1.5°以下。
如果是上述的构成,因为硬涂层的膜厚为15~30μm,所以成为硬度不足已得到抑制的结构。另外,使用的微粒使硬涂层中含有的微粒的平均粒径为其膜厚的30~75%,由微粒形成的凹凸形状的θa为0.4°以上1.5°以下,与硬涂层的膜厚相比粒径比较大。为此,可以至少使微粒的一部分从硬涂层的表层表露出来,可以使其防眩性良好。另外,也可以抑制在使用了难以受到重力沉降的影响的小粒径的微粒的情况下出现的耐擦伤性的降低。即,根据上述的构成,可以提供硬度、防眩性和耐擦伤性良好的防眩性硬涂薄膜。
上述硬涂层的形成材料优选含有氨基甲酸酯丙烯酸酯、多元醇(甲基)丙烯酸酯和具有含2个以上羟基的(甲基)丙烯酸聚合物。
通过像上述的构成那样含有氨基甲酸酯丙烯酸酯作为硬涂层的形成材料,可以向该硬涂层赋予弹性和挠性。另外,通过含有多元醇(甲基)丙烯酸酯,可以进行硬涂层的高硬度化。进而,通过含有具有3-羟丙基的(甲基)丙烯酸聚合物,可以制成固化收缩得到缓和且卷边的发生受到抑制的硬涂层。
上述多元醇(甲基)丙烯酸酯,优选含有三丙烯酸季戊四醇酯和四丙烯酸季戊四醇酯而构成。
如果是上述构成,可以在维持高硬度和良好的挠性的同时,进一步抑制卷边的发生。
另外,优选在上述硬涂层上至少设置有1层的防反射层。
当像上述构成那样在硬涂层的外表面上设置防反射层时,可以降低在硬涂层和空气的界面上的光的反射。由此,在将上述构成的防眩性硬涂薄膜应用于例如图像显示装置等时,可以抑制显示画面的图像的辨识性降低。
另外,在上述防反射层中优选含有中空且球状的氧化硅超微粒。
另外,在上述的防眩性硬涂薄膜中,优选基于JIS K 7105的光泽度为50以上95以下。另外,上述“光泽度”是指以JIS K 7105(1981年版)为基准的60度经面光泽度。
另外,本发明的防眩性硬涂薄膜的制造方法是为了解决上述的课题,在透明的薄膜基材的至少一个面上形成硬涂层的防眩性硬涂薄膜的制造方法,其中,包括调制硬涂层的形成材料的工序,即将具有该硬涂层的膜厚的30%以上75%以下的平均粒径的微粒添加到该形成材料而进行调制的工序;将上述形成材料涂敷在上述薄膜基材的至少一个面上而形成涂布膜的工序;使上述涂布膜固化,形成膜厚为15μm以上30μm以下、由上述微粒形成的凹凸形状的通过JIS B 0601的θa为0.4°以上1.5°以下硬涂层的工序。
根据上述的方法,形成膜厚为15μm~30μm的硬涂层,所以可以制造具有足够的硬度的防眩性硬涂薄膜。另外,因为使用具有相对于硬涂层的膜厚为其30~75%的平均粒径的微粒,所以即使微粒的大部分埋入到硬涂层中,也可以成为使该微粒的一部分至少表露出来的结构的硬涂层。进而,形成硬涂层并使θa为0.4°以上1.5°以下,所以可以制成防眩性出色的层。另外,使用与硬涂层的膜厚相比粒径比较大的微粒,也可以抑制在使用了难以发生重力沉降的微粒的情况下产生的耐擦伤性的降低。即,如果是上述方法,可以制造硬度、防眩性和耐擦伤性良好的防眩性硬涂薄膜。
作为上述硬涂层的形成材料的稀释溶剂,优选使用含有醋酸乙酯的溶剂。
由此,可以形成与薄膜基材的粘附性出色、可以降低从薄膜基材的剥离的硬涂层。
另外,优选上述醋酸乙酯的含量为20重量%以上。由此,可以形成与薄膜基材的粘附性更加出色的硬涂层。
另外,本发明的光学元件为了解决上述的课题,在光学构件的至少一个面上设置了前面所述的防眩性硬涂薄膜。
另外,本发明的偏振片为了解决上述的课题,具备了前面所述的防眩性硬涂薄膜。
另外,本发明的偏振片为了解决上述的课题,在偏振镜的至少一个面上设置了前面所述的防眩性硬涂薄膜。
另外,本发明的图像显示装置,为了解决上述的课题,具备前面所述的防眩性硬涂薄膜、前面所述的光学元件、或前面所述的偏振片。
本发明通过前面解释的方法发挥如下所述的效果。
即,根据本发明,可以提供高硬度、防眩性和耐擦伤性出色的防眩性硬涂薄膜,所以当在例如各种光学元件或图像显示装置中使用该防眩性硬涂薄膜时,在防止这些器件损伤的同时,可以具有良好的防眩效果,防止外光等的映入。


图1是表示本发明的一个实施方式的防眩性硬涂薄膜的概略的截面示意图。
图2是表示本发明的其他实施方式的防眩性防反射硬涂薄膜的概略的截面示意图。
具体实施例方式
关于本发明的实施方式,参照附图进行以下说明。图1是表示本实施方式的防眩性硬涂薄膜的概略的截面示意图。
如图1所示,防眩性硬涂薄膜4是在透明的薄膜基材1的一面上具有硬涂层2的构成。另外,虽然未在图1中显示,但硬涂层2也可以设置在薄膜基材1的两面上。另外,在图1中,例示了硬涂层2是单层的情况,但只要是具有本发明的硬涂层的结构,它们还可以是2层以上。
上述薄膜基材1只要是可见光的透光率出色(优选透光率为90%以上)且透明性出色的基材(优选浊度值为1%以下),就没有特别限制。具体地说,例如,可以举例为由聚对苯二甲酸乙二醇酯或聚萘二甲酸乙二醇酯等聚酯系聚合物;二乙酰纤维素或三乙酰纤维素等纤维素系聚合物;聚碳酸酯系聚合物;聚甲基丙烯酸甲酯等丙烯酸系聚合物等透明聚合物构成的薄膜。另外,还可以举出由聚苯乙烯、丙烯腈-苯乙烯共聚物(AS树脂)等苯乙烯系聚合物、聚乙烯、聚丙烯、具有环状或降冰片烯结构的聚烯烃,乙烯-丙烯共聚物等烯烃系聚合物;氯乙烯系聚合物;尼龙或芳香族聚酰胺等酰胺系聚合物等透明聚合物构成的薄膜。另外,还可以举出由酰亚胺系聚合物;砜系聚合物;聚醚砜系聚合物;聚醚-醚酮系聚合物;聚苯硫醚系聚合物;乙烯基醇系聚合物,偏氯乙烯系聚合物;聚乙烯醇缩丁醛系聚合物;芳基化物系聚合物;聚甲醛系聚合物;环氧系聚合物;或者上述聚合物的混合物等透明聚合物构成的薄膜等。特别适合使用光学上的双折射少的薄膜。在将本实施方式的防眩性硬涂薄膜4作为保护薄膜用于偏振片时,作为薄膜基材1,优选三乙酰纤维素、聚碳酸酯、丙烯酸系聚合物、具有环状或降冰片烯结构的聚烯烃等。另外,薄膜基材1可以是后述的偏振镜自身。如果是这样的构成,不需要由TAC等构成的保护层而可以使偏振片的结构单纯化,所以可以减少制造工序数,改善生产效率。另外,可以进一步使偏振片薄层化。另外,在薄膜基材1是偏振镜的情况下,硬涂层2发挥以往的保护层的作用。另外,作为硬涂薄膜,可以兼有安装在液晶单元表面上的盖板的功能。
薄膜基材1的厚度可以适当决定,通常考虑强度或操作性等作业性、薄层性等方面,为10~500μm。特别优选为20~300μm,更优选为30~200μm。进而对薄膜基材1的折射率没有特别限制,通常为1.30~1.80左右,特别优选1.40~1.70左右。
上述硬涂层2是将氨基甲酸酯丙烯酸酯(A)、多元醇(甲基)丙烯酸酯(B)和具有含2个以上羟基的烷基的(甲基)丙烯酸聚合物(C)作为形成材料而构成。
作为上述氨基甲酸酯丙烯酸酯(A),使用含有(甲基)丙烯酸和/或其酯、多元醇、二异氰酸酯作为构成成分的物质。例如,可以使用如下所示制成的物质,即由(甲基)丙烯酸和/或其酯、和多元醇作成具有至少1个羟基的羟基(甲基)丙烯酸酯,通过使其与二异氰酸酯发生反应而制造。(甲基)丙烯酸是丙烯酸和/或甲基丙烯酸,在本发明中(甲基)是相同的意思。这些各构成成分可以是一种,还可以并用2种以上。
作为(甲基)丙烯酸的酯,可以举出(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸异丙酯、(甲基)丙烯酸丁酯等(甲基)丙烯酸烷基酯,(甲基)丙烯酸环己酯等(甲基)丙烯酸环烷基酯等。
上述多元醇是至少具有2个羟基的化合物,例如,可以举出乙二醇、1,3-丙二醇、1,2-丙二醇、二甘醇、二丙二醇、新戊二醇、1,3-丁二醇、1,4-丁二醇、1,6-己二醇、1,9-壬二醇、1,10-癸二醇、2,2,4-三甲基-1,3-戊二醇、3-甲基-1,5-戊二醇、羟基三甲基乙酸新戊二醇酯、环己烷二羟甲基、1,4-环己烷二醇、螺环二醇、三环癸烷羟甲基、氢化双酚A、环氧乙烷加成双酚A、环氧丙烷加成双酚A、三羟甲基乙烷、三羟甲基丙烷、甘油、3-甲基戊烷-1,3,5-三醇、季戊四醇、二季戊四醇、三季戊四醇、糖类等。
作为上述二异氰酸酯,可以使用芳香族、脂肪族或芳香族的各种二异氰酸酯类,例如,可以举出四亚甲基二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、2,4-甲苯基二异氰酸酯、4,4-二苯基二异氰酸酯、1,5-萘基二异氰酸酯、3,3-二甲基-4,4-二苯基二异氰酸酯、二甲苯二异氰酸酯、三甲基六亚甲基二异氰酸酯、4,4-二苯基甲烷二异氰酸酯等,进而还可以举出它们的氢化物等。
关于上述氨基甲酸酯丙烯酸酯(A)的添加量,如果过少,则得到的硬涂层的柔软性或粘附性降低;如果过多,固化后的硬涂层的硬度降低。为此,相对于硬涂形成材料的总树脂成分(A~C成分的总量,或者当有添加树脂材料等时也包括它的总量),氨基甲酸酯丙烯酸酯(A)优选为15重量%~55重量%,更优选为25重量%~45重量%。当氨基甲酸酯丙烯酸酯(A)的添加量相对于硬涂形成材料的总树脂成分超过55重量%而进行添加时,有时硬涂性能降低而不优选。另外,当以不到15重量%的比例进行配合时,未改善柔软性或粘附性,有时不优选。
作为上述多元醇(甲基)丙烯酸酯(B)的构成成分,例如可以举出二(甲基)丙烯酸季戊四醇酯、三(甲基)丙烯酸季戊四醇酯、四(甲基)丙烯酸季戊四醇酯、六(甲基)丙烯酸二季戊四醇酯、(甲基)丙烯酸1,6-己二醇酯等。另外,优选含有由三丙烯酸季戊四醇酯和四丙烯酸季戊四醇酯的聚合物构成单体成分。进而,也特别优选含有三丙烯酸季戊四醇酯和四丙烯酸季戊四醇酯的混合成分。
多元醇(甲基)丙烯酸酯(B)的配合量相对于氨基甲酸酯丙烯酸酯(A)优选70重量%~180重量%的比例,更优选100重量%~150重量%的比例。当多元醇(甲基)丙烯酸酯(B)的配合相对于氨基甲酸酯丙烯酸酯(A)为超过180重量%的比例时,硬涂层的固化收缩增大,其结果,硬涂薄膜的卷边增大,或屈曲性降低,所以有时不优选。另外,当比例不到70重量%时,硬涂性即硬度或耐擦伤性降低,所以有时不优选。另外,关于耐擦伤性,从实用上的观点来看,优选在0~0.7的范围内,更优选在0~0.5的范围内。通过使多元醇(甲基)丙烯酸酯(B)的配合量在上述范围内,可以将耐擦伤性设定在上述范围内。在这里,关于上述耐擦伤性的计算,在后述的实施例中进行说明。
作为上述(甲基)丙烯酸聚合物(C),可以使用具有含2个以上羟基的烷基的(甲基)丙烯酸聚合物。更为具体地说,例如可以举出用下述化学式(1)表示的具有2,3-二羟丙基的(甲基)丙烯酸聚合物、或在分子中具有下述化学式(1)中的重复结构单元和用下述化学式(2)表示的结构单元的具有2-羟乙基和2,3-二羟丙基的(甲基)丙烯酸聚合物。
作为具有含2个以上羟基的烷基的(甲基)丙烯酸聚合物(C)的添加量,相对于氨基甲酸酯丙烯酸酯(A)优选25重量%~110重量%的比例,更优选45重量%~85重量%的比例。当配合量超过110重量%时,涂敷性降低,有时不优选。另外,当配合量不到25重量%时,卷边的发生显著增多,有时不优选。
另外,在本发明中,通过含有该(甲基)丙烯酸聚合物(C),可以抑制硬涂层2的固化收缩,其结果是防止发生卷边。从制造硬涂薄膜等的观点来看,优选将卷边的发生至少抑制在30mm以内,通过在该范围内抑制卷边的发生,可以进一步改善作业性和生产效率。
在上述硬涂层2中含有微粒3。微粒3主要作为赋予防眩性的防眩性微粒发挥功能。微粒3被分成无机微粒和有机微粒。对上述无机微粒没有特别限制,例如,可以举出氧化硅、氧化钛、氧化铝、氧化锌、氧化锡、碳酸钙、硫酸钡、滑石、高岭土、硫酸钙等。另外,对有机微粒没有特别限制,例如,可以举出聚甲基丙烯酸甲基丙烯酸酯树脂粉末、硅酮系树脂粉末、聚苯乙烯树脂粉末、聚碳酸酯树脂粉末、丙烯基苯乙烯系树脂粉末、苯代三聚氰二胺系树脂粉末、三聚氰胺系树脂粉末,进而还可以举出聚烯烃系树脂粉末、聚酯系树脂粉末、聚酰胺系树脂粉末、聚酰亚胺系树脂粉末、聚氟乙烯系树脂粉末等。这些无机微粒和有机微粒可以并用2种以上。
上述微粒3的平均粒径是硬涂层2的膜厚的30%以上75%以下,更优选为30%以上50%以下。当平均粒径不到30%时,表面无法形成足够的凹凸形状,无法赋予足够的防眩功能。另一方面,当平均粒径超过75%时,表面的凹凸差过大,外观恶化,反射光的散射增强,发白。
对上述微粒3的配合量没有特别限制,可以适当设定。具体地说,相对于硬涂形成材料100重量份优选为2~70重量份,更优选为4~50重量份,特别优选为15~40重量份。
为了极力抑制在微粒3和硬涂层2的截面产生的光的散射,需要减小微粒3和硬涂层2的折射率。硬涂层2的折射率通常为1.4~1.6。因此,作为微粒3,优选使用折射率与硬涂2近似的有机微粒或由氧化硅构成的无机微粒。当折射率为0.05以上时,光的散射增强。其结果,例如当应用于图像显示装置时,有时出现显示内容不清楚那样的不良情形。
对微粒3的形状没有特别限制,可以是珠状的大致球形,还可以是不定型的微粒。这些微粒可以适当选择1种或2种以上使用。作为微粒3,优选使用其纵横尺寸比为1.5以下的大致球形微粒。当使用纵横尺寸比超过1.5的大致球形的颗粒或多角形的颗粒时,由微粒3形成的凹凸形状的θa的控制有时变得困难。
硬涂层2的平均倾斜角θa需要为0.4°以上1.5°以下。当θa不到0.4°时,无法发挥足够的防眩性,出现外观等的映入。另一方面,当θa超过1.5°时,浊度值增大。当在上述范围内时,可以改善硬涂层2的防眩效果,可以很好地防止外光等的映入。另外,平均倾斜角是采用以JIS B0601为基准的方法得到的值。
当将薄膜基材1的折射率和硬涂层2的折射率差作为d时,d优选为0.04以下,更优选为0.02以下。作为薄膜基材1,当使用聚对苯二甲酸乙二醇酯时,通过在粒径为100nm以下的超微粒中相对于硬涂形成材料的总树脂成分配合氧化钛约35%左右,可以相对于聚对苯二甲酸乙二醇酯薄膜的折射率约1.64将d控制在0.02以下,可以抑制干涉条纹的产生。
作为薄膜基材1,当使用三乙酰纤维素薄膜时,通过在粒径为100nm以下的超微粒中相对于硬涂形成材料的总树脂成分配合氧化硅约40%左右,可以与上述一样相对于三乙酰纤维素薄膜的折射率约1.48将d控制在0.02以下,可以抑制干涉条纹的产生。
上述硬涂层2的厚度优选为15~30μm,更优选为18~25μm。将厚度的下限值设为15μm,因为硬涂层2含有多元醇(甲基)丙烯酸酯(B),所以可以将硬度维持在一定值以上(例如,以铅笔硬度计为4H以上)。另外,为了进一步增大硬度,将厚度的上限值设为25μm,因为硬涂层2含有氨基甲酸酯丙烯酸酯(A)和具有3-羟丙基的(甲基)丙烯酸聚合物(C),所以可以充分防止卷边或裂开等的发生。另外,当厚度不到15μm时,有时硬涂层的硬度降低。另一方面,当厚度超过25μm时,硬涂层自身出现裂纹,通过硬涂层的固化收缩而使硬涂薄膜在硬涂面侧出现卷边,有时在实用上成为问题。
对硬涂形成材料的稀释溶剂没有特别限制,可以使用各种物质。具体地说,例如可以举出二丁醚、二甲氧基甲烷、二甲氧基乙烷、二乙氧基乙烷、环氧丙烷、1,4-二噁烷、1,3-二噁茂烷、1,3,5-三噁烷、四氢呋喃、丙酮、甲基乙基甲酮、二乙酮、二丙酮、二异丙酮、环戊酮、环己酮、甲基环己酮、甲酸甲酯、甲酸丙酯、甲酸正戊酯、醋酸甲酯、醋酸乙酯、丙酸甲酯、丙酸乙酯、醋酸正戊酯、乙酰丙酮、二丙酮醇、乙酰乙酸甲酯、乙酰乙酸乙酯、甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、2-丁醇、1-戊醇、2-甲基-2-丁醇、环己酮、醋酸异丁酯、甲基异丁基甲酮、2-壬酮、2-戊酮、2-己酮、2-庚酮、3-庚酮等。它们可以组合1种或2种以上使用。醋酸乙酯相对总稀释溶剂优选为20重量%以上,更优选为25重量%以上,特别优选为30重量%~70重量%的范围。由此,当使用三乙酰纤维素作为薄膜基材1时,可以形成粘附性特别出色的硬涂层2。当醋酸乙酯的含量相对于总稀释溶剂超过70重量%时,挥发速度较快,所以容易出现涂敷不均或干燥不均,当不到20重量%时,与基材的粘附性降低,有时不优选。
相对于硬涂层2,例如,预先采用喷砂或压花辊、化学蚀刻等适宜的方式对在上述硬涂层2的形成中使用的薄膜的表面进行粗面化处理,使薄膜表面成为微细凹凸结构,由此组合使形成硬涂层2的材料本身的表面形成为微细凹凸结构的方法等,可以使硬涂层2的表面的凹凸状态不均匀。
在硬涂形成材料中,可以添加各种流平剂。作为流平剂,可以适当使用氟系或硅酮系的流平剂,更优选使用硅酮系的流平剂。作为硅酮系的流平剂,可以举出反应性硅酮、聚二甲基硅氧烷、聚醚改性聚二甲基硅氧烷、聚甲基烷基硅氧烷等。在这些硅酮系的流平剂中,特别优选反应性硅酮。通过添加反应性硅酮,向表面赋予润滑性并维持耐擦伤性。进而,当使用含有硅氧烷成分的层作为低折射率层时,如果使用具有羟基的物质作为反应性硅酮,则粘附性得到改善。
作为上述反应性硅酮的流平剂,例如,可以例示具有硅氧烷键、丙烯酸酯基和羟基的物质。更为具体地说,可以举出(1)(二甲基硅氧烷/甲基)∶(3-丙烯酰基-2-羟基丙氧基丙基硅氧烷/甲基)∶(2-丙烯酰基-3-羟基丙氧基丙基硅氧烷)=0.8∶0.16∶0.04的摩尔比的共聚物;(2)二甲基硅氧烷∶羟基丙基硅氧烷∶6-异氰酸酯己基三聚异氰酸∶脂肪族聚酯=6.3∶1.0∶2.2∶1.0的摩尔比的共聚物;(3)二甲基硅氧烷∶末端为丙烯酸酯的甲基聚乙二醇丙基醚硅氧烷∶末端为羟基的甲基聚乙二醇丙基醚硅氧烷=0.88∶0.07∶0.05的摩尔比的共聚物等。
流平剂的配合量相对于硬涂形成材料的总树脂成分100重量份优选为5重量份以下,更优选为0.01~5重量份的范围。
当在硬涂形成材料的固化机构中使用紫外线时,如果将上述流平剂配合到硬涂形成材料中,在预备干燥和溶剂干燥时该流平剂渗出到空气界面,所以可以防止氧阻碍紫外线固化性树脂的固化,可以得到即使在最表面也具有足够硬度的硬涂层2。另外,硅酮系的流平剂通过向硬涂层2的表面渗出来赋予润滑性,,所以也可以改善耐擦伤性。
在上述硬涂层2的形成材料中,可以在不损坏形成的范围内,根据需要添加颜料、填充剂、分散剂、增塑剂、紫外线吸收剂、表面活性剂、抗氧化剂、触变剂等。这些添加剂可以单独使用,还可以并用2种以上。
在本实施方式的硬涂形成材料中,可以使用以往公知的光聚合引发剂。例如,可以使用2,2-二甲氧基-2-苯基苯乙酮、苯乙酮、二苯甲酮、呫吨酮、3-甲基苯乙酮、4-氯二苯甲酮、4,4’-二甲氧基二苯甲酮、苯偶姻丙基醚、苄基二甲基缩酮、N,N,N’,N’-四甲基-4,4’-二氨基二苯甲酮、1-(4-异丙基醚)-2-羟基-2-甲基丙烷-1-酮、其他噻吨酮系化合物等。
为了形成上述硬涂层2,在薄膜基材1上涂敷至少含有氨基甲酸酯丙烯酸酯(A)、多元醇(甲基)丙烯酸酯(B)和具有含2个以上羟基的烷基的(甲基)丙烯酸聚合物(C)的硬涂形成材料,随后使其固化。硬涂形成材料可以在涂敷时作为溶解于溶剂的溶液进行涂敷。当将硬涂形成材料作为溶液进行涂敷时,在干燥后固化。
作为在薄膜基材1上涂敷上述硬涂形成材料的方法,可以使用公知的喷射(fountain)涂布、口模式涂布、旋涂、喷涂、凹版印刷涂布、辊涂、棒涂等涂敷法。
对上述硬涂形成材料的固化机构没有特别限制,但优选电离放射线固化。可以在该机构中使用各种活性能量,但紫外线比较合适。作为能量线源,例如优选高压水银灯、卤素灯、氙灯、金属卤化物灯、氮激光器、电子射线加速装置、放射性元素等线源。就能量线源的照射量而言,作为在紫外线波长365nm处的累计曝光量,优选50~5000mJ/cm2。当照射量不到50mJ/cm2时,固化不充分,所以有时硬涂层的硬度降低。另外,当超过5000mJ/cm2时,有时硬涂层着色而透明性降低。
如图2所示,可以在上述硬涂层2上设置防反射层5,制成防眩性防反射硬涂薄膜6。图2是表示本实施方式的防眩性防反射硬涂薄膜6的概略截面示意图。光在照射到物体时,重复所谓在其界面的反射、在内部的吸收、散射的现象,而向物体的背面透过。当在图像显示装置上安装硬涂薄膜时,作为使图像的辨识性降低的主要原因之一,可以举出在空气和硬涂层界面的光的反射。防反射层5是降低其表面反射的层。另外,虽然在图2中没有显示出,但也可以将硬涂层2和防反射层5设置在薄膜基材1的两面上。另外,在图2中,例示了设置硬涂层2和防反射层5各1层的情况,但只要具有本发明的硬涂层,防反射层5可以是2层以上。
作为防反射层5,可以举出在硬涂层2表面层叠已严格控制了厚度和折射率的光学薄膜(防反射层)而成的层。这是通过相互消除已利用了光的干涉效果的入射光和反射光的逆转的相位来显示防反射功能的方法。
在基于光的干涉效果的防反射层5的设计中,作为改善其干涉效果的机构,有增大防反射层5和硬涂层2的折射率差的方法。通常,就在基材上层叠2~5层的光学薄膜(严格控制上述厚度和折射率的薄膜)多层防反射层而言,通过只以规定的厚度形成多层折射率不同的成分,在防反射层5的光学设计方面自由度增加,可以进一步改善防反射效果,分光反射特性在可见光区域变平也成为可能。因为要求光学薄膜的各层的厚度精度,通常采用作为干式方式的真空蒸镀、溅射、CVD等进行各层的形成。
在上述硬涂形成材料中,可以使用氧化钛、氧化锆、氧化硅、氟化镁等,但为了更大地显示出防反射功能,优选使用氧化钛层和氧化硅层的层叠体。上述层叠体优选,在硬涂层上形成折射率高的氧化钛层(折射率约1.8),在该氧化钛层上形成折射率低的氧化硅层(折射率约1.45)得到的2层层叠体,进而在该2层层叠体上按顺序形成氧化钛层和氧化硅层而形成的4层层叠体。通过设置这样的2层层叠体或4层层叠体的防反射层,可以均匀地降低可见光线的波长区域(380~780nm)的反射。
另外,通过在薄膜基材1上层叠单层的光学薄膜,可以显示出防反射效果。即使在将防反射层5作成单层的设计中,为了最大限度地引出防反射功能,有必要增大防反射层5和硬涂层2的折射率差。当将上述防反射层5的膜厚设为d、将折射率设为n、将入射光的波长设为λ时,在防反射层5的膜厚和其折射率之间成为nd=λ/4的关系式。当防反射层5是其折射率小于薄膜基材1的折射率那样的低折射率层时,在上述关系式成立的条件下,反射率达到最小。例如,当防反射层5的折射率为1.45时,相对于可见光线中的550nm的波长的入射光,反射率成为最小时的防反射层5的膜厚成为95nm。
显示出防反射功能的可见光线的波长区域为380~780nm,特别是可见度高的波长区域为450~650nm的范围,通常进行的是将作为其中心波长的550nm的反射率设计成最小。
当单层设计防反射层5时,其厚度精度没有多层防反射层的厚度精度那样严格,至少相对于设计厚度在±10%的范围,即设计波长在95nm时其厚度在86nm~105nm的范围内,就可以没有问题地使用。由此,通常在形成单层的防反射层5时,可以采用作为湿式方式的喷射涂布、口模式涂布、旋涂、喷涂、凹版印刷涂布、辊涂、棒涂等涂敷法。
作为以单层形成防反射层5的材料,例如可以举出紫外线固化性丙烯酸树脂等树脂系材料,在树脂中分散了胶态硅石等无机微粒的混合系材料,四乙氧基硅烷、使用了四乙氧基钛等金属醇盐的溶胶-凝胶系材料等。另外,各材料为了赋予表面防污性而可以使用含氟化合物。从耐擦伤性的方面来看,无机成分含量多的低折射率层材料比较出色,特别优选溶胶-凝胶系材料。溶胶-凝胶系材料可以部分缩合使用。
作为上述含有氟基的溶胶-凝胶系材料,可以例示全氟代烷基烷氧基硅烷。作为全氟代烷基烷氧基硅烷,例如可以举出用通式CF3(CF2)nCH2CH2Si(OR)3(式中,R表示碳原子数为1~5的烷基,n表示0~12的整数)表示的化合物。具体地说,例如可以举出三氟丙基三甲氧基硅烷、三氟丙基三乙氧基硅烷、十三氟辛基三甲氧基硅烷、十三氟辛基三乙氧基硅烷、十七氟癸基三甲氧基硅烷、十七氟癸基三乙氧基硅烷等。其中,优选上述n是2~6的化合物。
作为低折射率层(防反射层),可以优选使用由含有特开2004-167827号公报所述的通过乙二醇换算的数均分子量为500~10000的硅氧烷低聚物、和通过聚苯乙烯换算的数均分子量为5000以上且具有氟代烷基结构以及聚硅氧烷结构的氟化合物的硬涂形成材料构成的材料。
在低折射率层(防反射层)中,为了改善膜强度而可以添加无机的溶胶。对无机的溶胶没有特别限制,例如可以举出氧化硅、氧化铝、氟化镁等,但特别优选氧化硅溶胶。无机的溶胶的添加量相对于低折射率形成材料的总固体成分100重量份可以在10~80重量份的范围内适当设定。作为无机的溶胶的粒径,优选在2~50nm的范围内,更优选在5~30nm的范围内。
在上述防反射层5的形成材料中,优选含有中空且球状的氧化硅超微粒。中空且球状的氧化硅超微粒优选平均粒径为5~300nm左右,该超微粒是在具有细孔的外壳内部形成空洞而成的中空球状,在该空洞内包含有调制该微粒时的溶剂和/或气体而成。优选用于形成上述空洞的前驱体物质残存在该空洞中。上述外壳的厚度优选在1~50nm左右的范围内,且在平均粒径的1/50~1/5左右的范围内。上述外壳优选多层的覆盖层构成。优选上述细孔被密闭,上述空洞被上述外壳密封。在防反射层5中,维持多孔质或空洞,可以降低防反射层5的折射率,所以可以优选使用。
中空且球状的氧化硅超微粒的平均粒径为5~300nm左右。这是因为,当平均粒径不到5nm时,有球状微粒中的外壳的体积比例增加、空洞的容积的比例降低的趋势,另一方面,当平均粒径超过300nm时,难以得到稳定的分散液,另外,含有该超微粒的防反射层的透明性容易降低。中空且球状的氧化硅超微粒的优选的平均粒径为10~200nm的范围。另外,上述平均粒径可以通过动态光散射法求出。
中空且球状的氧化硅超微粒的制造方法例如具有下述工序(a)~工序(c)。中空且球状的氧化硅超微粒作为分散液获得。作为这样的中空且球状的氧化硅超微粒的制造方法,例如,可以适合地采用特开2000-233611号公报中公开的氧化硅系微粒的制造方法。即,(a)调制如下所示的核颗粒分散液的工序,所述的核颗粒分散液是在pH为10以上的碱水溶液、或根据需要已分散有种颗粒的pH为10以上的碱水溶液中同时添加硅酸盐的水溶液和/或酸性硅酸液、碱可溶的无机化合物水溶液,用SiO2表示氧化硅、用MOX表示氧化硅以外的无机化合物时的摩尔比(MOX/SiO2)在0.3~1.0的范围内;(b)形成第1氧化硅覆盖层的工序,即在所述核颗粒分散液中添加氧化硅源而在核颗粒上形成第1氧化硅覆盖层;(c)除去构成上述核颗粒的元素的一部分或全部的工序,即在上述分散液中添加酸来除去构成上述核颗粒的元素的一部分或全部。
本发明的中空且球状的氧化硅超微粒的平均粒径在5~300nm的范围内。这是因为,当平均粒径不到5nm时,球状微粒中的外壳的体积比例增加,空洞的容积的比例降低,另一方面,当平均粒径超过300nm时,难以得到稳定的分散液,另外,含有该超微粒的防反射层的透明性容易降低。中空且球状的氧化硅超微粒的优选的平均粒径为10~200nm的范围。另外,上述平均粒径可以通过动态光散射法求出。
上述的中空且球状的氧化硅超微粒分散液可以通过与各种基质成分混合而作成防反射形成用涂敷液。各种基质成分是指可以在硬涂层2的表面上形成被膜的成分,可以从适合于和基材的粘附性或硬度、涂敷性等条件的树脂等中选择使用,例如,可以举出一直以来使用的聚酯树脂、丙烯酸树脂、氨基甲酸酯树脂、氯乙烯树脂、环氧树脂、三聚氰胺树脂、氟树脂、硅酮树脂、丁醛树脂、酚醛树脂、醋酸乙烯酯树脂、紫外线固化树脂、电子射线固化树脂、乳液法树脂、水溶性树脂、亲水性树脂、这些树脂的混合物,进而还可以举出这些树脂的共聚物或改性体等有机树脂。另外,作为上述的单层形成防反射层5的材料,可以将例示的水解性有机硅化合物等作为基质成分使用。
当将有机树脂用作基质成分时,例如,使用适当的有机溶剂,对已利用醇等有机溶剂置换了作为上述中空且球状的氧化硅超微粒的分散介质的水而成的有机溶剂分散液、在根据需要对上述超微粒进行公知的偶合剂处理之后分散于有机溶剂中的有机溶剂分散液和基质进行稀释,可以制成防反射形成用涂敷液。
另一方面,当使用水解性有机硅化合物作为基质成分时,例如,通过在烷氧基硅烷和醇的混合液中添加水和作为催化剂的酸或碱,得到烷氧基硅烷的部分水解产物,在其中混合上述分散液,根据需要用有机溶剂进行稀释,可以制成涂布液。
涂敷液中的上述氧化硅超微粒和基质成分的重量比例优选在氧化硅超微粒∶基质=1∶99~9∶1的范围。当上述重量比例超过9∶1时,有时防反射层5的强度不足而缺乏实用性。另一方面,当上述重量比例不到1∶99时,上述氧化硅超微粒的添加效果难以显现。
在上述硬涂层2的表面形成防反射层5的折射率,因氧化硅超微粒和基质成分等的混合比率和使用的基质的折射率而不同,但为1.2~1.42,成为低折射率。另外,本发明的氧化硅超微粒自身的折射率为1.2~1.38。
已在硬涂薄膜的硬涂层2上设置了防反射层5的防眩性防反射硬涂薄膜6,在铅笔硬度这一点上优选。含有超微粒的硬涂层2表面形成微小凹凸不平,这影响到铅笔的滑动(铅笔容易挂住,力容易传递)。当设置防反射层5时,凹凸不平变得光滑,通常,硬涂层2的铅笔硬度为3H左右的层可以成为4H的铅笔硬度。
作为这样的中空且球状的氧化硅超微粒的制造方法,例如,可以适合地采用在特开2000-233611号公报中公开的氧化硅系微粒的制造方法。
对形成防反射层(低折射率层)5时的干燥和固化的温度没有特别限制,通常为60℃~150℃,优选70℃~130℃下通常进行1分钟~30分钟,在考虑生产率的情况下,更优选为1分钟~10分钟左右。另外,在干燥和固化后,通过进一步进行加热处理,得到更高硬度的防反射硬涂薄膜。对加热处理的温度没有特别限制,通常为40℃~130℃,优选50℃~100℃下通常进行1分钟~100小时,为了进一步改善耐擦伤性,更优选进行10小时以上。另外,温度、时间并不限于上述范围,可以适当调整。加热可以适当采用通过加热板、烘炉、带式炉等的方法。
因为防反射层5安装在图像显示装置的最表面的频度较高,容易受到来自外部环境的污染。特别是在身边容易附着指纹或手垢、汗或理发材料等污染物,因该附着使表面反射率发生变化或者附着物发白浮起,看起来显示内容不清楚等等,与单纯的透明板等的情况相比,污染更明显。在这样的情况下,为了赋予与上述防附着性、易除去性有关的功能,可以在防反射层5上层叠含氟的硅烷系化合物或含氟的有机化合物等。
通过对薄膜基材1或已在薄膜基材1上进行了涂敷的硬涂层2进行各种表面处理,可以改善薄膜基材1和硬涂层2、薄膜基材1和偏振镜或硬涂层2和防反射层5的粘接性。作为其表面处理,可以使用低压等离子体处理、紫外线照射处理、电晕处理、火焰处理、酸或碱处理。另外,具体说明作为将三乙酰纤维素用作薄膜基材时的表面处理而优选使用的碱皂化处理。优选以在将纤维素酯薄膜表面浸渍于碱溶液中之后进行水洗并干燥的循环进行。作为碱溶液,可以举出氢氧化钾溶液、氢氧化钠溶液,氢氧根离子的规定浓度为0.1N~3.0N,更优选为0.5N~2.0N。碱溶液温度在25℃~90℃的范围内,更优选为40℃~70℃。随后,进行水洗处理、干燥处理,可以得到已实施表面处理的三乙酰纤维素。
另外,为了防止出现卷边,可以对薄膜基材1的背面(与硬涂层2的形成面相反的面)进行如下所述的溶剂处理。溶剂处理是,采用以往公知的方法,涂布包含可以使薄膜基材1溶解的溶剂或可以使其溶胀的溶剂的组合物而进行。通过涂布这样的溶剂,向薄膜基材1的背面侧赋予使其变圆的性质,由此,已具备硬涂层2的薄膜基材1,抵消使硬涂层2的形成面侧产生卷边的力,而防止卷边的发生。
作为上述溶剂,除了使其溶解的溶剂和/或使其溶胀的溶剂的混合物之外,有时还进一步含有不使其溶解的溶剂。使用根据薄膜基材1的卷边程度或树脂的种类以适宜的比例混合了上述溶剂的组合物和涂布量而进行。
当进一步改善防卷边功能时,就使用的溶剂组成而言,增大可以使其溶解的溶剂和/或可以使其溶胀的溶剂的混合比率、减小不使其溶解的溶剂的比率是有效的。其混合比率优选为使用(可以使其溶解的溶剂和/或可以使其溶胀的溶剂)∶(不使其溶解的溶剂)=10∶0~1∶9。作为在这样的混合组合物中含有的使透明树脂薄膜溶解或溶胀的溶剂,例如可以举出苯、甲苯、二甲苯、二噁烷、丙酮、甲基乙基甲酮、N,N-二甲基甲酰胺、醋酸甲酯、醋酸乙酯、三氯乙烯、二氯甲烷、氯化乙烯、四氯甲烷、三氯乙烷、氯仿等。作为不使其溶解的溶剂,例如,可以举出甲醇、乙醇、正丙醇、异丙醇、正丁醇等。
使用凹版印刷涂敷机、浸涂机、反向涂敷机或挤压涂敷机等,将这些溶剂组合物涂布在薄膜基材1的表面上,并使湿膜厚(干燥前的膜厚)为1~100μm、更优选为5~30μm。
如此涂布的各溶剂在干燥后可以飞散,另外还可以微量残存,但优选溶剂未残存于涂布面的状态为好。
另外,为了防止卷边的发生,可以在薄膜基材1的背面(与硬涂层2的形成面相反的面)上,设置如下所述的透明树脂层。作为上述透明树脂层,例如可以举出以热塑性树脂、放射线固化性树脂、热固化性树脂、其他反应型树脂为主成分的层。其中,特别优选将热塑性树脂作为主成分的层。
作为上述热塑性树脂,例如可以举出氯乙烯-醋酸乙烯酯共聚物、氯乙烯树脂、醋酸乙烯酯树脂、醋酸乙烯酯和乙烯基醇的共聚物、已部分水解的氯乙烯-醋酸乙烯酯共聚物、氯乙烯-偏氯乙烯共聚物、氯乙烯-丙烯腈共聚物、乙烯-乙烯醇共聚物、氯化聚氯乙烯、乙烯-氯乙烯共聚物、乙烯-醋酸乙烯酯共聚物等乙烯基系聚合物或共聚物,硝化纤维、乙酸丙酸纤维素、乙酸丁酸纤维素树脂等纤维素衍生物,马来酸和/或丙烯酸的共聚物、丙烯酸酯共聚物、丙烯腈-苯乙烯共聚物、氯化聚乙烯、丙烯腈-氯化聚乙烯-苯乙烯共聚物、甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物、丙烯酸树脂、聚乙烯醇缩乙醛树脂、聚乙烯醇缩丁醛树脂、聚酯聚氨基甲酸酯树脂、聚醚聚氨基甲酸酯树脂、聚碳酸酯聚氨基甲酸酯树脂、聚酯树脂、聚醚树脂、聚酰胺树脂、氨基树脂、苯乙烯-丁二烯树脂、丁二烯-丙烯腈树脂等橡胶系树脂,硅酮系树脂,氟系树脂等。在这些热塑性树脂内,例如使用了二乙酰纤维素等的纤维素系树脂层作为透明树脂层是特别优选的。
另外,防眩性硬涂薄膜4、防眩性防反射硬涂薄膜6,通常可以通过粘合剂或胶粘剂将其薄膜基材1侧贴合在用于LCD或ELD的光学构件上。每当贴合时,可以对薄膜基材1实施与上述同样的表面处理。
作为光学构件,例如可以举出偏振镜或偏振片。偏振片通常使用在偏振镜的-侧或两侧具有透明保护薄膜的偏振片。当在偏振镜的两面设置透明保护薄膜时,内外的透明保护薄膜可以是相同的材料,还可以是不同的材料。偏振片通常被配置在液晶单元的两侧。另外,偏振片是以使两片偏振片的吸收轴大致相互正交的方式配置的。
接着,在已层叠本发明的防眩性硬涂薄膜4或防眩性防反射硬涂薄膜6的光学元件中,以偏振片为例进行说明。本发明的防眩性硬涂薄膜4或防眩性防反射硬涂薄膜6通过使用胶粘剂或粘合剂等层叠偏振镜或偏振片,可以得到具有本发明的功能的偏振片。
对上述偏振镜没有特别限制,可以使用各种偏振镜。作为偏振镜,例如可以举出,在聚乙烯醇系薄膜、部分甲缩醛化聚乙烯醇系薄膜、乙烯-醋酸乙烯酯共聚物系部分皂化薄膜等亲水性高分子薄膜上,吸附碘或二色性染料等二色性物质后单向拉伸的材料;聚乙烯醇的脱水处理物或聚氯乙烯的脱盐酸处理物等聚烯系取向薄膜等。其中,由聚乙烯醇系薄膜和碘等二色性物质组成的偏振镜的偏振二色比较高,所以特别优选。对这些偏振镜的厚度没有特别限定,但是通常约为5~80μm。
将聚乙烯醇系薄膜用碘染色后经单向拉伸而成的偏振镜,例如,可以通过将聚乙烯醇浸渍于碘的水溶液进行染色后,拉伸至原长度的3~7倍来制作。根据需要,也可以浸渍于可含硼酸或硫酸锌、氯化锌等的碘化钾等的水溶液中。此外,根据需要,也可以在染色前将聚乙烯醇系薄膜浸渍于水中水洗。
通过水洗聚乙烯醇系薄膜,除了可以洗去聚乙烯醇系薄膜表面上的污物和防粘连剂之外,还可通过使聚乙烯醇系薄膜溶胀,防止染色斑等不均匀现象。拉伸既可以在用碘染色之后进行,也可以一边染色一边进行拉伸,或者也可以在拉伸之后用碘进行染色。也可以在硼酸或碘化钾等的水溶液中或水浴中进行拉伸。
作为设置在所述偏振镜的一面或两面的透明保护薄膜,优选在透明性、机械强度、热稳定性、水分屏蔽性、相位差值的稳定性等各方面具有良好性质的材料。作为形成上述透明保护薄膜的材料,可以举例为聚对苯二甲酸乙二醇酯或聚萘二甲酸乙二醇酯等聚酯系树脂;二乙酰纤维素或三乙酰纤维素等纤维素系树脂;聚甲基丙烯酸甲酯等丙烯酸系树脂;聚苯乙烯或丙烯腈-苯乙烯共聚物、苯乙烯树脂、丙烯腈-苯乙烯树脂、丙烯腈-丁二烯-苯乙烯树脂、丙烯腈-乙烯-苯乙烯树脂、苯乙烯-马来酸酐缩亚胺共聚物、苯乙烯-马来酸酐共聚物等苯乙烯系树脂;聚碳酸酯系树脂等。此外,由环系烯烃树脂、降冰片烯系树脂、聚乙烯、聚丙烯、乙烯-丙烯共聚物等聚烯烃系树脂;氯乙烯系树脂;尼龙或芳香族聚酰胺等酰胺系树脂;芳香族聚酰亚胺、或聚酰亚胺酰胺等酰亚胺系树脂;砜系树脂;聚醚砜系树脂;聚醚醚酮系树脂;聚苯硫醚系树脂;乙烯基醇系树脂,偏氯乙烯系树脂;聚乙烯醇缩丁醛系树脂;丙烯酸酯系树脂;聚甲醛系树脂;环氧系树脂;或者所述树脂的混合物等组成的高分子薄膜等也作为形成所述透明保护薄膜的树脂的例子举出。另外,上述透明保护薄膜还可以形成为丙烯酸系、氨基甲酸酯系、丙烯酸氨基甲酸酯系、环氧系、硅酮系等热固性、紫外线固化性树脂的固化层。
此外,可以举出在特开2001-343529号公报(WO 01/37007)中记载的聚合物薄膜,例如包含(A)在侧链具有取代和/或未取代亚氨基的热塑性树脂、和(B)在侧链具有取代和/或未取代苯基和腈基的热塑性树脂的树脂组合物。作为具体实例,可以举例为含有由异丁烯和N-甲基马来酰亚胺组成的交替共聚物及丙烯腈-苯乙烯共聚物的树脂组合物的薄膜。作为薄膜可以使用由树脂组合物的混合挤出制品等构成的薄膜。这些薄膜的相位差小,光弹性模量小,所以当应用于偏振片等的保护薄膜时,可以消除由变形引起的不均匀等不良情形,另外,透湿度较小,所以加湿耐久性出色。
作为所述透明保护薄膜,从偏振特性或耐久性等观点来看,优选使用三乙酰纤维素等纤维素系树脂和降冰片烯系树脂。具体地可以举出富士胶片(株)制的产品名“フジタツク”、或日本ゼオン(株)制的产品名“ゼオノア”、JSR(株)制的产品名“ア-トン”等。
所述透明保护薄膜的厚度可以适当确定,但是从强度或处理性等操作性、薄层性等观点来看,一般约为1~500μm。更优选为5~200μm。特别优选10~150μm。如果在上述范围内,能够机械地保护偏振镜,即使暴露在高温高湿下偏振镜也不收缩,确保稳定的光学特性。
另外,透明保护薄膜最好不要着色。因此,优选使用用Rth=(nx-nz)·d(其中,nx是薄膜平面内的滞相轴方向的折射率,nz是薄膜厚度方向的折射率,d是薄膜厚度)表示的薄膜厚度方向的相位差值为-90nm~+75nm的保护薄膜。通过使用该厚度方向的相位差值(Rth)为-90nm~+75nm的保护薄膜,可以大致消除由保护薄膜引起的偏振片的着色(光学着色)。厚度方向相位差值(Rth)进一步优选为-80nm~+60nm,特别优选-70nm~+45nm。
上述透明保护薄膜,其薄膜面内的相位差值和厚度方向的相位差值有时给液晶显示装置的视角特性带来影响,所以优选使用相位差值最佳化的透明保护薄膜。其中,所谓有望最佳化相位差值的透明保护薄膜是指在液晶单元近侧的偏振镜的表面上层叠的透明保护薄膜,而在液晶单元远侧的偏振镜的表面上层叠的透明保护薄膜由于没有使液晶显示装置的光学特性发生变化,所以不在此限。
作为在上述液晶单元近侧的偏振镜的表面上层叠的透明保护薄膜的相位差值,优选薄膜面内的相位差值(Re(nx-ny)·d)为0~5nm。更优选为0~3nm。进一步优选0~1nm。厚度方向的相位差值(Rth)优选为0~15nm。更优选为0~12nm。进一步优选0~10nm。特别优选0~5nm。最优选0~3nm。
已层叠防眩性硬涂薄膜等的偏振片,可以在硬涂薄膜等上顺次层叠透明保护薄膜、偏振镜、透明保护薄膜,还可以在防眩性硬涂薄膜等上顺次层叠偏振镜、透明保护薄膜。
另外,在透明保护薄膜的没有粘接偏振镜的表面上,还可以实施以硬涂层或防粘连为目的的处理。实施硬涂层处理的目的是防止偏振片表面的损坏等,例如可以通过在透明保护薄膜的表面上附加由丙烯酸系、硅酮系等适当的紫外线固化性树脂构成的硬度或滑动特性等出色的固化被膜的方式等形成。此外,实施防粘连处理的目的是防止与相邻层的粘附。其中,上述硬涂层、防粘连层等除了可以设置在透明保护薄膜自身上以外,还可以作为其他光学层与透明保护薄膜分开设置。
另外,在偏振片的层间,例如可以插入硬涂层、底涂层、胶粘剂层、粘合剂层、防静电层、导电层、阻气层、水蒸汽阻断层、水分阻断层等,或者将其层叠到偏振片表面。另外,在作成偏振片的各层的阶段,例如可以将导电性颗粒或防静电剂、各种微粒、增塑剂等向各层的形成材料中添加、混合等,由此可以根据需要进行改进。
对上述透明保护薄膜和偏振镜的层叠方法没有特别限制,例如可以通过由丙烯酸系聚合物或乙烯基醇系聚合物构成的胶粘剂、或者至少由硼酸或硼砂、戊二醛或三聚氰胺或草酸等乙烯醇系聚合物的水溶性交联剂组成的胶粘剂等进行。由此,能够成为难以在湿度或热的影响下剥离且透光率或偏光度出色的透明保护薄膜。作为所述的胶粘剂,从与作为偏振镜的原料的聚乙烯醇之间的粘接性出色的观点来看,优选使用聚乙烯醇系胶粘剂。
将含有所述降冰片烯系树脂的高分子薄膜作为透明保护薄膜,作为与偏振镜层叠时的粘合剂,优选透明性出色、双折射等小且即使用作薄层也能够充分发挥粘合力的粘合剂。作为这样的粘合剂,例如可以使用混合聚氨基甲酸酯系树脂溶液和聚异氰酸酯树脂溶液的干式层叠用胶粘剂,苯乙烯-丁二烯橡胶系胶粘剂,环氧系双组份固化型胶粘剂,例如由环氧树脂和聚硫醇双组份形成的胶粘剂、由环氧树脂和聚酰胺双组份形成的粘合剂等,特别优选溶剂型胶粘剂、环氧系双组份固化性胶粘剂,优选透明的粘合剂。根据胶粘剂,有可以通过使用适当的粘接用底涂料提高粘接力的胶粘剂,当使用这样的粘接剂时,优选使用粘接用底涂料。
作为上述粘接用底涂料,只要是能够提高粘接性的层,就没有特别限制,例如可以使用在同一个分子内具有氨基、乙烯基、环氧基、巯基、氯基等反应性官能团和水解性的烷氧基甲硅烷基的硅烷系偶合剂,在同一个分子内具有含有钛的水解性亲水性基团和有机官能性基团的钛酸酯系偶合剂,和在同一个分子内具有含有铝的水解性亲水性基团和有机官能性基团的铝酸酯系偶合剂等所谓偶合剂;环氧系树脂,异氰酸酯系树脂,氨基甲酸酯系树脂,酯氨基甲酸酯系树脂等具有有机反应性基团的树脂。其中,从工业上容易处理的观点来看,优选含有硅烷系偶合剂的层。
关于上述偏振片,为了使向液晶单元的层叠变得容易,可以在两面或一面上设置胶粘剂层或粘合剂层。
对用于上述胶粘剂层或粘合剂层的胶粘剂或粘合剂没有特别限制。可以适当选择并使用将例如丙烯酸系聚合物、硅酮系聚合物、聚酯、聚氨基甲酸酯、聚酰胺、聚乙烯基醚、醋酸乙烯酯/氯乙烯共聚物、改性聚烯烃、环氧系、氟系、天然橡胶、合成橡胶等橡胶系等聚合物作为基础聚合物的胶粘剂或粘合剂。特别是从光学透明性出色,显示适度的润湿性和凝集性和粘接性的粘合特性以及耐气候性或耐热性等出色的观点来看,优选使用丙烯酸系粘合剂。
可以在所述胶粘剂或粘合剂中含有对应基础聚合物的交联剂。另外,也可以根据需要在粘合剂层中配合例如天然物或合成物的树脂类、玻璃纤维或玻璃珠、金属粉或其它无机粉末等组成的填充剂或颜料、着色剂或抗氧化剂等适当的添加剂。另外,也可以形成含有透明微粒并显示光扩散性的粘合剂层。
其中,在所述透明微粒中,例如,可以使用平均粒径为0.5~20μm的二氧化硅、氧化钙、氧化铝、氧化钛、氧化锆、氧化锡、氧化铟、氧化镉、氧化锑等具有导电性的无机系微粒,或由类似聚甲基丙烯酸甲酯或聚氨基甲酸酯之类的适当的聚合物组成的交联或者未交联的有机微粒等适当的微粒1种或2种以上。
所述胶粘剂或粘合剂通常被用作将基础聚合物或其组合物溶解或分散到溶剂中的且固体成分浓度为10~50重量%左右的胶粘剂溶液使用。作为上述溶剂,可以适当选择使用甲苯或醋酸乙酯等有机溶剂或水等与胶粘剂的种类相对应的溶剂。
所述胶粘剂或粘合剂也可以作为不同的组成或种类的层的层叠物而设置在偏振片或光学薄膜的一面或两面上。上述胶粘剂或粘合剂的厚度可以根据使用目的或粘接力等而适当确定,一般为1~500μm,优选为5~200μm,特别优选为10~100μm。
对于所述胶粘剂层或粘合剂层等的露出面,在供于实用前为了防止其污染等,可以临时粘贴剥离纸或脱模薄膜(也称为隔离片)覆盖。由此可以防止在通常的操作状态下与胶粘剂层或粘合剂层接触的现象。作为上述隔离片,例如可以使用根据需要用硅酮类或长链烷基类、氟类或硫化钼等适宜剥离剂对塑料薄膜、橡胶片、纸、布、无纺布、网状物、发泡片材或金属箔、它们的层叠体等适宜的薄片体进行涂敷处理后的材料等基于以往的适当隔离片。
作为光学元件,在实际应用时,可以使用在上述偏振片上层叠了其他光学构件(光学层)的光学薄膜。对该光学层没有特别限制,但可以使用例如反射板、半透过板、相位差板(包括1/2或1/4等波阻片)、视角补偿薄膜等在液晶显示装置等的形成中使用的光学层1层或2层以上。特别优选的偏振片是在偏振片上进一步层叠反射板或半透过反射板而成的反射型偏振片或半透过型偏振片;在偏振片上进一步层叠相位差板而成的椭圆偏振片或圆偏振片;在偏振片上进一步层叠视角补偿薄膜而成的宽视场角偏振片;或者在偏振片上进一步层叠亮度改善薄膜(具有偏光选择层的偏光分离薄膜,例如住友3M(株)制的D-BEF等)而形成的偏振片。在椭圆偏振片、带光学补偿的偏振片等中,是向偏振片侧附加硬涂薄膜。
进而,根据需要,也可以进行用于赋予耐擦伤性、耐久性、耐气候性、耐湿热性、耐热性、耐湿性、透湿性、防静电性、导电性、层间的粘附性改善、机械强度的改善等各种特性、性能等的处理,或者功能层的插入、层叠等。
反射型偏振片是在偏振片上设置反射层而成的,可用于形成反射从辨识侧(显示侧)入射的入射光来进行显示的类型的液晶显示装置等,并且可以省略背光灯等光源的内置,从而具有易于使液晶显示装置薄型化等优点。形成反射型偏振片时,可以通过根据需要借助上述透明保护薄膜等在偏振片的一面上附设由金属等组成的反射层的方式等适当的方式进行。
作为反射型偏振片的具体例子,可以举例为通过根据需要在经消光处理的透明保护薄膜的一面上,附设由铝等反射性金属组成的箔或蒸镀膜而形成反射层的偏振片等。
作为代替将反射板直接附设在上述偏振片的透明保护薄膜上的方法,还可以在以该透明薄膜为基准的适当的薄膜上设置反射层形成反射片等而后使用。还有,由于反射层通常由金属组成,所以从防止由于氧化而造成的反射率的下降,进而长期保持初始反射率的观点和避免另设保护层的观点等来看,优选用透明保护薄膜或偏振片等覆盖其反射面的状态的使用形式。
还有,在上述中,半透过型偏振片可以通过作成用反射层反射光的同时使光透过的半透半反镜等半透过型的反射层而获得。半透过型偏振片通常被设于液晶单元的背面侧,可以形成如下类型的液晶显示装置等,即,在比较明亮的环境中使用液晶显示装置等的情况下,反射来自于辨识侧(显示侧)的入射光而显示图像,在比较暗的环境中,使用内置的背光灯等内置光源来显示图像。即,半透过型偏振片在如下类型的液晶显示装置等的形成中十分有用,即,在明亮的环境下可以节约使用背光灯等光源的能量,在比较暗的环境下也可以使用内置光源。
对在偏振片上进一步层叠相位差板而构成的椭圆偏振片或圆偏振片进行说明。在将直线偏振光改变为椭圆偏振光或圆偏振光、将椭圆偏振光或圆偏振光改变为直线偏振光、或者改变直线偏振光的偏振方向的情况下,可以使用相位差板等。特别是,作为将直线偏振光改变为圆偏振光、将圆偏振光改变为直线偏振光的相位差板,可以使用所谓的1/4波阻片(也称为λ/4板)。1/2波阻片(也称为λ/2板)通常用于改变直线偏振光的偏振方向的情形。
椭圆偏振片可以有效地用于以下情形等,即例如补偿(防止)STN(Super Twisted Nematic)型液晶显示装置因液晶层的双折射而产生的着色(蓝或黄),从而进行上述没有着色的白黑显示的情形等。另外,控制三维折射率的偏振片还可以补偿(防止)从斜向观察液晶显示装置的画面时产生的着色,因而优选。圆偏振片可以有效地用于例如对以彩色显示图像的反射型液晶显示装置的图像的色调进行调整的情形等,而且还具有防止反射的功能。作为上述相位差板的具体例子,可以举出对聚碳酸酯、聚乙烯醇、聚苯乙烯、聚甲基丙烯酸甲酯、聚丙烯或其它聚烯烃、多芳基化合物(ポリアリレ一ト)、聚酰胺之类的适宜的聚合物组成的薄膜实施拉伸处理而成的双折射性薄膜或液晶聚合物的取向薄膜、用薄膜支撑液晶聚合物的取向层的薄膜等。相位差板可以是例如各种波阻片或用于补偿由液晶层的双折射造成的着色或视角等的材料等具有对应于使用目的的适宜的相位差的材料,也可以是层叠2种以上的相位差板而控制了相位差等光学特性的材料等。
另外上述椭圆偏振片或反射型椭圆偏振片是通过适当地组合并层叠偏振片或反射型偏振片和相位差板而成的。这类椭圆偏振片等也可以通过在液晶显示装置的制造过程中依次分别层叠(反射型)偏振片及相位差板来形成,以构成(反射型)偏振片及相位差板的组合,而如上所述,预先形成为椭圆偏振片等光学薄膜的构件,由于在质量的稳定性或层叠操作性等方面出色,因此具有可以提高液晶显示装置等的制造效率的优点。
视角补偿薄膜是从不垂直于画面的稍微倾斜的方向观察液晶显示画面的情况下也使图像看起来比较清晰的、用于扩大视场角的薄膜。作为此种视角补偿相位差板,由例如相位差薄膜、液晶聚合物等取向薄膜或在透明基材上支撑了液晶聚合物等取向层的材料等构成。通常的相位差板使用在其面方向上实施单向拉伸的具有双折射的聚合物薄膜,与此相对,在用作视角补偿薄膜的相位差板中,可以使用在面方向上实施双向拉伸的具有双折射的聚合物薄膜、或在面方向上实施单向拉伸且在厚度方向上也被拉伸的已控制厚度方向的折射率并具有双折射的聚合物、或像倾斜取向薄膜那样的双向拉伸薄膜等。作为倾斜取向薄膜,例如可以举出在聚合物薄膜上粘接热收缩薄膜后在因加热形成的收缩力的作用下,对聚合物薄膜进行拉伸处理或/和收缩处理的材料、使液晶聚合物倾斜取向的材料等。相位差板的原料聚合物可以使用与在前面的相位差板中说明的聚合物相同的聚合物,可以使用将防止基于液晶单元造成的相位差的辨识角的变化所导致的着色等或扩大辨识度良好的视场角等作为目的的适当的材料。
另外,从实现辨识度良好的宽视场角的观点等来看,可以优选使用用三乙酰纤维素薄膜支撑由液晶聚合物的取向层、特别是圆盘状液晶聚合物的倾斜取向层构成的光学各向异性层而成的光学补偿相位差板。
将偏振片和亮度改善薄膜贴合在一起而成的偏振片通常被设置于液晶单元的背面一侧而后使用。亮度改善薄膜是显示如下特性的薄膜,即,当因液晶显示装置等的背光灯或来自背面侧的反射等而有自然光入射时,反射规定偏光轴的直线偏振光或规定方向的圆偏振光,而使其他光透过。因此将亮度改善薄膜与偏振片层叠而成的偏振片可使来自背光灯等光源的光入射,而获得规定偏振光状态的透过光,同时,所述规定偏振光状态以外的光不能透过而被予以反射。借助设置于其后侧的反射层等使在该亮度改善薄膜面上反射的光再次发生反转,并使之再次入射到亮度改善薄膜上,使其一部分或全部作为规定偏振光状态的光透过,从而增加透过亮度改善薄膜的光,同时向偏振镜提供难以吸收的偏振光,从而增大能够在图像的显示等中利用的光量,并由此可以提高亮度。即,在不使用亮度改善薄膜而用背光灯等从液晶单元的背面侧穿过偏振镜而使光入射的情况下,具有与偏振镜的偏光轴不一致的偏振方向的光基本上被偏振镜所吸收,因而无法透过偏振镜。即,虽然会因所使用的偏振镜的特性而不同,但是大约50%的光会被偏振镜吸收掉,因此,在液晶图像显示等中能够利用的光量将减少,导致图像变暗。由于亮度改善薄膜反复进行如下操作,即,使具有能够被偏振镜吸收的偏振方向的光不是入射到偏振镜上,而是使该类光在亮度改善薄膜上发生反射,进而借助设于其后侧的反射层等完成反转,使光再次入射到亮度改善薄膜上,这样,亮度改善薄膜只使在这两者间反射并反转的光中的、其偏振方向变为能够通过偏振镜的偏振方向的偏振光透过,同时将其提供给偏振镜,因此可以在液晶显示装置的图像的显示中有效地使用背光灯等的光,从而可以使画面明亮。
也能够在亮度改善薄膜和所述反射层等之间设置扩散板。由亮度改善薄膜反射的偏振光状态的光朝向所述反射层等,所设置的扩散板可将通过的光均匀地扩散,同时消除偏振光状态而成为非偏振光状态。即,扩散板使偏振光恢复到原来的自然光状态。反复进行如下的过程,即,将该非偏振光状态即自然光状态的光射向反射层等,借助反射层等反射后,再次通过扩散板而又入射到亮度改善薄膜上。通过在亮度改善薄膜和上述反射层等之间设置使偏振光恢复到原来的自然光状态的扩散板,可以在维持显示画面的亮度的同时,减少显示画面的亮度不均,从而可以提供均匀并且明亮的画面。通过设置这种扩散板,可适当增加初次入射光的重复反射次数,并利用扩散板的扩散功能,可以提供均匀明亮的显示画面。
作为上述亮度改善薄膜,例如可以使用电介质的多层薄膜或折射率各向异性不同的薄膜多层层叠体之类的显示出使规定偏光轴的直线偏振光透过而反射其他光的特性的薄膜、胆甾醇型液晶聚合物的取向薄膜或在薄膜基材上支撑了该取向液晶层的薄膜之类的显示出将左旋或右旋中的任一种圆偏振光反射而使其他光透过的特性的薄膜等适宜的薄膜。
因此,在上述的使规定偏光轴的直线偏振光透过的类型的亮度改善薄膜中,通过使该透过光直接沿着与偏光轴一致的方向入射到偏振片上,可以在抑制由偏振片造成的吸收损失的同时,使光有效地透过。另一方面,在胆甾醇型液晶层之类的使圆偏振光透过的类型的亮度改善薄膜中,虽然可以直接使光入射到偏振镜上,但从抑制吸收损失这一点考虑,优选借助相位差板对该圆偏振光进行直线偏振光化,之后再入射到偏振片上。而且,通过使用1/4波阻片作为该相位差板,能够将圆偏振光变换为直线偏振光。
关于在可见光区域等宽波长范围中能起到1/4波阻片作用的相位差板,例如可以利用以下方式获得,即,将相对于波长550nm的浅色光能起到1/4波阻片作用的相位差层和显示其他相位差特性的相位差层例如能起到1/2波阻片作用的相位差层进行重叠的方式等。所以,配置于偏振片和亮度改善薄膜之间的相位差板可以由1层或2层以上的相位差层构成。
还有,就胆甾醇型液晶层而言,也可以组合不同反射波长的材料,构成重叠2层或3层以上的配置构造,由此获得在可见光区域等宽波长范围内反射圆偏振光的构件,从而能够基于此而获得较宽波长范围的透过圆偏振光。
另外,偏振片如同所述偏振光分离型偏振片,可以由层叠了偏振片和2层或3层以上的光学层的构件构成。所以,也可以是组合了上述反射型偏振片或半透过型偏振片和相位差板的反射型椭圆偏振片或半透过型椭圆偏振片等。
硬涂薄膜向上述光学元件的层叠、进而各种光学层向偏振片的层叠,也可以通过在液晶显示装置等的制造过程中依次独立层叠的方式来形成,而预先层叠它们而成的构件具有在质量的稳定性或装配操作性等方面出色,且提高液晶显示装置等的制造工序的优点。在层叠中可以使用粘合层等合适的粘接机构。当粘接上述偏振片或其他光学薄膜时,可以根据目的相位差特性等将它们的光学轴调整为适宜的配置角度。
在上述的偏振片、或至少层叠有1层的偏振片的光学薄膜等的光学构件的至少一面上,设置有上述硬涂薄膜,但在未设置硬涂薄膜的面上,也可以设置用于和液晶单元等其他构件粘接的粘合层。对形成粘合层的粘合剂没有特别限定,例如可以适宜地选择使用以丙烯酸系聚合物、硅酮系聚合物、聚酯、聚氨基甲酸酯、聚酰胺、聚醚、氟系或橡胶系等的聚合物为基础聚合物的粘合剂。特别优选使用类似丙烯酸系粘合剂的光学透明性优良并显示出适度的润湿性、凝聚性以及粘接性的粘合特性且耐气候性或耐热性等优良的粘合剂。
而且,除了上述之外,从防止因吸湿造成的发泡现象或剥离现象、因热膨胀差等引起的光学特性的下降或液晶单元的翘曲、进而从高质量且耐久性优良的液晶显示装置的形成性等观点来看,优选吸湿率低且耐热性优良的粘合层。
在上述胶粘剂或粘合剂中可以含有与基础聚合物相对应的交联剂。另外,粘合层等中可以含有例如天然或合成树脂类、特别是增粘性树脂或由玻璃纤维、玻璃珠、金属粉、其它的无机粉末等构成的填充剂、颜料、着色剂、抗氧化剂等可添加于粘合层中的添加剂。另外也可以是含有微粒并显示光扩散性的粘合层等。
粘合层向偏振片、光学薄膜等光学元件的附设可以利用适宜的方式进行。作为其例子,例如可以举出以下方式,即调制在由甲苯或醋酸乙酯等适宜溶剂的纯物质或混合物构成的溶剂中溶解或分散基础聚合物或其组合物而成的约10~40重量%的粘合剂溶液,然后通过流延方式或涂敷方式等适宜的展开方式直接将其附设在光学元件上的方式;或者基于上述而在隔离件上形成粘合层后将其移送并粘贴在光学元件上的方式等。粘合层也能够作为与各层组成或种类等不同的层的重叠层而设置。粘合层的厚度可以根据使用目的或粘接力等而适当确定,一般为1~500μm,优选5~200μm,特别优选10~100μm。
对于粘合层的露出面,在供于使用前为了防止其污染等,可以临时粘贴隔离件以进行覆盖。由此能够防止在通常的操作状态下与粘合层接触的现象。作为隔离件,在满足上述的厚度条件的基础上,例如可以使用根据需要用硅酮系或长链烷基系、氟系或硫化钼等适宜剥离剂对塑料薄膜、橡胶片、纸、布、无纺布、网状物、发泡片材或金属箔、它们的层叠体等适宜的薄片体进行涂敷处理后的材料等以往常用的适宜的隔离件。
还有,在本发明中,也可以在形成上述的光学元件的偏振镜、透明保护薄膜、光学层、或粘合层等各层上,利用例如用水杨酸酯系化合物或苯并苯酚(benzophenol)系化合物、苯并三唑系化合物或氰基丙烯酸酯系化合物、镍配位化合物系化合物等紫外线吸收剂进行处理的方式等方式,使之具有紫外线吸收能力等。
另外,本发明的防眩性硬涂薄膜可以用作防玻璃裂开层叠体中的表面处理薄膜。该防玻璃裂开层叠体是在通过底涂层设置于液晶显示用光学薄膜的一面侧的防玻璃裂开粘合剂层上,进而设置表面处理薄膜而构成,防玻璃裂开粘合剂层在20℃下的动态储藏弹性模量G’为1×107Pa以下。即使将本发明的防眩性硬涂薄膜用于这种构成的防玻璃裂开层叠体,也可以防止因外部冲击使液晶面板的玻璃基板裂开,而且可以防止通过加热、加湿等耐久试验在液晶用光学薄膜上出现剥离或浮起等。
已设置本发明的硬涂薄膜的光学元件能够优选用于液晶显示装置等各种装置的形成等。液晶显示装置可以根据以往的方法形成。即,一般来说,液晶显示装置可通过适宜地组合液晶单元和光学元件以及根据需要而加入的照明系统等构成部件并装入驱动电路等而形成,在本发明中,除了使用本发明的光学元件之外,没有特别限定,可以依据以往的方法形成。对于液晶单元而言,也可以使用例如TN型或STN型、π型等任意类型的液晶单元。
能够形成在液晶单元的一侧或两侧配置了上述光学元件的液晶显示装置、在照明系统中使用了背光灯或反射板的装置等适宜的液晶显示装置。此时,本发明的光学元件能够设置在液晶单元的一侧或两侧。当将光学元件设置在两侧时,它们既可以相同,也可以不同。另外,在形成液晶显示装置时,可以在适宜的位置上配置1层或2层以上的例如扩散板、防眩层、防反射膜、保护板、棱镜阵列、透镜阵列薄片、光扩散板、背光灯等适宜的部件。
接着,对有机电致发光装置(有机EL显示装置)进行说明。一般地,有机EL显示装置是在透明基板上依次层叠透明电极、有机发光层以及金属电极而形成发光体(有机电致发光体)。这里,有机发光层是各种有机薄膜的层叠体,已知有例如由三苯基胺衍生物等构成的空穴注入层和由蒽等荧光性有机固体构成的发光层的层叠体、或此种发光层和由二萘嵌苯衍生物等构成的电子注入层的层叠体、或者这些空穴注入层、发光层及电子注入层的层叠体等各种组合。
有机EL显示装置根据如下的原理进行发光,即,通过在透明电极和金属电极上施加电压,向有机发光层中注入空穴和电子,由这些空穴和电子的复合而产生的能量激发荧光物质,被激发的荧光物质回到基态时,就会放射出光。中间的复合机制与一般的二极管相同,由此也可以推测出,电流和发光强度相对于外加电压显示出伴随整流性的较强的非线性。
在有机EL显示装置中,为了取出有机发光层中产生的光,至少一方的电极必须是透明的,通常将由氧化铟锡(ITO)等透明导电体制成的透明电极作为阳极使用。另一方面,为了容易进行电子注入而提高发光效率,在阴极上使用功函数较小的物质是十分重要的,通常使用Mg-Ag、Al-Li等金属电极。
在具有这种构成的有机EL显示装置中,有机发光层由厚度为10nm左右的极薄的膜构成。因此,有机发光层也与透明电极一样,使光几乎完全透过。其结果是,在不发光时从透明基板表面入射并透过透明电极和有机发光层而在金属电极反射的光会再次向透明基板的表面侧射出,因此,当从外部进行辨识时,有机EL装置的显示面如同镜面。
在包含如下所述的有机电致发光体的有机EL显示装置中,可以在透明电极的表面侧设置偏振片,同时在这些透明电极和偏振片之间设置相位差板,上述有机电致发光体是在通过施加电压而进行发光的有机发光层的表面侧设有透明电极,同时在有机发光层的背面侧设有金属电极而形成。
由于相位差板及偏振片具有使从外部入射并在金属电极反射的光成为偏振光的作用,因此,通过该偏振光作用具有无法从外部辨识出金属电极的镜面的效果。特别是,当采用1/4波阻片构成相位差板并且将偏振片和相位差板的偏振方向的夹角调整为π/4时,能够完全遮蔽金属电极的镜面。
即,入射至该有机EL显示装置的外部光因偏振片的存在而只有直线偏振光成分透过。该直线偏振光一般会被相位差板转换成椭圆偏振光,而当相位差板为1/4波阻片并且偏振片和相位差板的偏振方向的夹角为π/4时,成为圆偏振光。
该圆偏振光透过透明基板、透明电极、有机薄膜,在金属电极上反射,之后再次透过有机薄膜、透明电极、透明基板,由相位差板再次转换成直线偏振光。然后,因为该直线偏振光与偏振片的偏振方向垂直,所以无法透过偏振片。其结果可以完全遮蔽金属电极的镜面。
下面,以例示的方式详细说明本发明的优选实施例。但是,在该实施例中记载的材料或配合量等,只要没有特别的限定性记载,本发明的范围就不仅限于此,而不过是实施例。另外,各例中,份和%只要没有特别记载都是指重量基准。
(实施例1)配合作为氨基甲酸酯丙烯酸酯(以下,A成分)的由季戊四醇系丙烯酸酯和氢化二甲苯二异氰酸酯构成的氨基甲酸酯丙烯酸酯100份,作为多元醇(甲基)丙烯酸酯(以下,B成分)的六丙烯酸二季戊四醇酯(以下,B1成分(单体))49份、三丙烯酸季戊四醇酯(以下,B2成分(单体))24份和四丙烯酸季戊四醇酯(以下,B3成分(单体))41份,作为具有含2个以上羟基的烷基的(甲基)丙烯酸聚合物(以下,C成分)的具有2-羟乙基和2,3-二羟丙基的(甲基)丙烯酸聚合物(大日本油墨化学工业株式会社制,商品名PC1097)59份。进而,通过醋酸丁酯和醋酸乙酯的混合比例为55∶45(相对总溶剂的醋酸乙酯比率为45%)的混合溶剂,稀释相对于总树脂成分的平均粒径为10μm的PMMA颗粒(折射率1.49)30份、反应性流平剂0.5份、聚合引发剂(Irgacure 184)5份,并使固体成分浓度为55%,来调制硬涂形成材料。另外,上述反应性流平剂是以二甲基硅氧烷∶羟基丙基硅氧烷∶6-异氰酸酯己基三聚异氰酸∶脂肪族聚酯=6.3∶1.0∶2.2∶1.0的摩尔比发生共聚的共聚物。
以厚80μm的三乙酰纤维素薄膜(折射率1.48)作为薄膜基材,使用棒涂机在上述薄膜上涂敷上述硬涂形成材料,通过在100℃下加热1分钟,使涂膜干燥。随后,用金属卤化物灯照射累计光量300mJ/cm2的紫外线,进行固化处理形成厚20μm的硬涂层,制作本实施例的防眩性硬涂薄膜。
(实施例2)在本实施例中,除了将PMMA颗粒的添加量变更为15份之外,采用与实施例1相同的方法,制作防眩性硬涂薄膜。
(实施例3)在本实施例中,添加平均粒径为15μm的PMMA颗粒(折射率1.49)30份,进而将固体成分浓度变更成35%,除此之外,采用与实施例1相同的方法,制作防眩性硬涂薄膜。
(实施例4)在本实施例中,添加平均粒径为8μm的PMMA颗粒(折射率1.49)30份,进而将硬涂层的膜厚变更成16μm,除此之外,采用与实施例1相同的方法,制作防眩性硬涂薄膜。
(实施例5)在本实施例中,除了将硬涂层的厚度变更为16μm之外,采用与实施例1相同的方法,制作防眩性硬涂薄膜。
(实施例6)在本实施例中,除了将硬涂层的厚度变更为29μm之外,采用与实施例1相同的方法,制作防眩性硬涂薄膜。
(实施例7)在本实施例中,添加平均粒径为15μm的PMMA颗粒(折射率1.49)30份,进而将硬涂层的膜厚变更成23μm,除此之外,采用与实施例1相同的方法,制作防眩性硬涂薄膜。
(实施例8)在本实施例中,除了将防反射层设置于硬涂层之外,采用与实施例1相同的方法,制作防眩性硬涂薄膜。
另外,防反射的形成采用如下所示的方法。即,首先,作为防反射层的形成材料,准备通过乙二醇换算的平均分子量为500~10000的硅氧烷低聚物(コル一コ一トN103(コル一コ一ト公司制,固体成分2重量%)),测量其数均分子量。其结果,数均分子量为950。另外,准备オプスタ一JTA105(商品名,JSR(株)制,固体成分5重量%)作为通过聚苯乙烯换算的数均分子量为5000以上且具有氟代烷基结构和聚硅氧烷结构的氟化合物,当测量该氟化合物的数均分子量时,通过聚苯乙烯换算的数均分子量为8000。另外,作为固化剂,使用JTA105A(JSR公司制,固体成分5重量%)。
接着,混合100重量份的オプスタ一JTA105、1重量份的JTA105A、590重量份的コル一コ一トN103、和151.5重量份的醋酸丁酯,调制防反射层形成材料。使用口模式涂布机在硬涂层上涂敷该防反射层形成材料,并使其宽度与硬涂层相同,通过在120℃下加热3分钟,干燥、固化,形成防反射层(低折射率层,厚度0.1μm、折射率1.43)。
(实施例9)在本实施例中,在利用实施例1得到的防眩性硬涂薄膜的硬涂层上形成防反射层,制作防眩性防反射硬涂薄膜。
防反射层的形成采用如下所示的方法。即,在混合溶剂(IPA/MIBK/プチセロ/甲苯(80/9/10.5/0.5))中,分散二季戊四醇系丙烯酸酯100份、具有甲基丙烯酰氧基丙基和丁基的硅酮系聚合物15份、丙烯酸己二醇酯2.5份、ルシリン型光聚合引发剂6份、和用具有丙烯基的硅烷偶合剂进行表面处理且已疏水化的直径60nm的中空且球状的氧化硅超微粒,将固体成分调制成3%,得到防反射层形成材料。使用该防反射层形成材料,采用与实施例7的方法,在硬涂层上形成防反射层。
(实施例10)首先,与实施例1一样制作本实施例的防眩性硬涂薄膜。接着,在三乙酰纤维素薄膜的被硬涂面(与硬涂层的形成面相反一侧的面)上,使用拉丝锭对后述的涂敷液进行涂敷并使湿厚度为20μm,在80℃下进行1分钟的干燥处理。另外,作为上述涂敷液,使用在丙酮∶醋酸乙酯∶IPA(异丙醇)=37∶58∶5的混合溶剂。
(实施例11)首先,与实施例1一样制作本实施例的防眩性硬涂薄膜。接着,在三乙酰纤维素薄膜的被硬涂面(与硬涂层的形成面相反一侧的面)上,使用拉丝锭对后述的涂敷液进行涂敷并使湿厚度为20μm,在80℃下进行1分钟的干燥处理。另外,作为上述涂敷液,使用在丙酮∶醋酸乙酯∶IPA(异丙醇)=37∶58∶5的混合溶剂配合二乙酰纤维素并使固体成分浓度为0.5%的液体。
(实施例12)在本实施例中,使用醋酸丁酯和醋酸乙酯的混合比例为79∶21(相对于总溶剂的醋酸乙酯比率为21%)的溶剂作为混合溶剂,使用该溶剂进行稀释并使其固体成分浓度为63%,调制成硬涂形成材料,使用该硬涂形成材料形成硬涂层,除此之外,采用与实施例1相同的方法,制作硬涂薄膜。
(实施例13)在本实施例中,使用醋酸丁酯和MIBK(甲基异丁基甲酮)的混合比例为55∶45(相对于总溶剂的醋酸乙酯比率为45%)的溶剂作为混合溶剂,除此之外,与实施例10一样,制作防眩性防反射硬涂薄膜。
(实施例14)在本实施例中,使用醋酸丁酯和丁醇的混合比例为55∶45(相对于总溶剂的醋酸乙酯比率为45%)的溶剂作为混合溶剂,除此之外,与实施例10一样,制作防眩性防反射硬涂薄膜。
(实施例15)在本实施例中,除了不使用反应性流平剂之外,采用与实施例1相同的方法制作防眩性硬涂薄膜。
(比较例1)通过醋酸丁酯和甲苯的混合溶剂(醋酸丁酯∶甲苯=13∶87),稀释平均粒径为3.5μm的聚苯乙烯颗粒(折射率1.59)15份、流平剂(商品名メガフアツクF470N、大日本油墨化学工业(株)制)0.5份、合成蒙脱石2.5份、聚合引发剂(商品名Irgacure 907)5份,使其固体成分浓度为35%,调制硬涂层的形成材料。
以厚80μm的三乙酰纤维素薄膜(折射率1.48)作为薄膜基材,使用棒涂机在上述薄膜上涂敷上述硬涂层的形成材料,形成涂膜,在100℃下加热该涂膜1分钟,使其干燥。随后,用金属卤化物灯向涂膜照射累计光量300mJ/cm2的紫外线,进行固化处理形成厚5μm的硬涂层,制作本比较例的防眩性涂薄膜。
(比较例2)在本比较例中,除了将PMMA颗粒的添加量变更为3份之外,采用与实施例1相同的方法,得到本比较例的防眩性硬涂薄膜。
(比较例3)在本比较例中,除了将PMMA颗粒的添加量变更为70份之外,采用与实施例1相同的方法,得到本比较例的防眩性硬涂薄膜。
(比较例4)在本比较例中,使用平均粒径为3μm的PMMA颗粒(折射率1.49)作为微粒,将其添加量变更为30份,除此之外,采用与比较例例1相同的方法,得到本比较例的防眩性硬涂薄膜。
(硬涂层的厚度)使用(株)ミツトヨ制的测微尺式厚度计进行测量。对在透明的薄膜基材上设置了硬涂层的硬涂薄膜的厚度进行测量,通过减去基材的厚度计算出硬涂层的膜厚,结果显示于表1。
(防反射层的厚度)使用大塚电子(株)制的瞬间多侧光系统MCPD2000(商品名),通过干涉光谱的波形计算出。
另外,对得到的防眩性硬涂薄膜(包括防眩性防反射硬涂薄膜)进行下述评价。结果显示于表1。
(浊度)以JIS-K7136(1981年版)的浊度(haze)为基准,使用浊度计HR300(村上色彩技术研究所制)进行测量。结果显示于表1。
(光泽度)关于光泽度,将测量角度设为60°,以JIS K7105-1981为基准,使用スガ试验机(株)制(数字变角光泽计UGV-5DP)进行测量。
(铅笔硬度)在玻璃板上载置防眩性硬涂薄膜的未形成硬涂层的面,关于硬涂层(或防反射层)表面,按照JIS K-5400所述的铅笔硬度试验(其中,负荷500g)实施试验。结果显示于表1。
(耐擦伤性)针对防眩性硬涂薄膜或防反射硬涂薄膜的耐擦伤性的强弱的值,用以下的试验内容求出。
(1)将试样切断成至少宽25mm、长100mm以上的大小,将其载置在玻璃板上。随后求出初期的浊度值。
(2)在直径25mm的圆柱的平滑的截面上,均匀安装在钢丝棉#0000上,以负荷1.5kg并用每秒约100mm的速度在试样表面往复30次,通过以下的指标目视评价判断。
○没有损伤。
△有细小的损伤,但对辨识性没有影响。
×有明显的损伤,损害辨识性。
(中心线平均表面粗糙度Ra和平均倾斜角θa)使用粘合剂在防眩性硬涂薄膜的未形成硬涂层的面上,贴合MATSUNAMI制的玻璃板(厚1.3mm)。使用高精度微细形状测量器(商品名サ一フコ一ダET4000,(株)小阪研究所制)进行测量,求出JISB0601-1994所述的Ra值和θa值。
(粘附性)硬涂层相对于薄膜基材的粘附性通过进行JIS K5400所述的方格剥离试验来评价。即,进行100次的剥离试验,计数硬涂层从薄膜基材剥离的数量,用剥离数量/100显示于表1。
(反射率)关于使用厚约20μm的粘合剂在防眩性硬涂薄膜的未形成硬涂层的面上贴合三菱レイヨン制黑色丙烯酸板(厚2.0mm)并使贴合背面的反射消失的膜,测量防反射层表面的反射率。反射率使用(株)岛津制作所制的UV2400PC(带有8°倾斜积分球)分光光度计,测量分光反射率(镜面反射率+扩散反射率),通过计算求出C光源/2°视场的全反射率(Y值)。结果显示于表1。
表1


权利要求
1.一种防眩性硬涂薄膜,其特征在于,是在透明薄膜基材的至少一个面具有含有微粒的硬涂层的防眩性硬涂薄膜,所述硬涂层的膜厚为15μm以上30μm以下,而且所述微粒的平均粒径为硬涂层的膜厚的30%以上75%以下,通过所述微粒形成的凹凸形状的根据JIS B 0601的θa为0.4°以上1.5°以下。
2.根据权利要求1所述的防眩性硬涂薄膜,其特征在于,所述硬涂层的形成材料包括氨基甲酸酯丙烯酸酯、多元醇(甲基)丙烯酸酯和具有含两个以上羟基的烷基的(甲基)丙烯酸聚合物。
3.根据权利要求2所述的防眩性硬涂薄膜,其特征在于,所述多元醇(甲基)丙烯酸酯是含有三丙烯酸季戊四醇酯、四丙烯酸季戊四醇酯而构成的。
4.根据权利要求1~3中任意一项所述的防眩性硬涂薄膜,其特征在于,在所述硬涂层上设有至少一层的防反射层。
5.根据权利要求4所述的防眩性硬涂薄膜,其特征在于,在所述防反射层中含有中空且球状的氧化硅超微粒。
6.根据权利要求1所述的防眩性硬涂薄膜,其特征在于,根据JIS K 7105的光泽度为50以上95以下。
7.一种防眩性硬涂薄膜的制造方法,是在透明薄膜基材的至少一个面形成硬涂层的防眩性硬涂薄膜的制造方法,其特征在于,包括调制硬涂层的形成材料的工序并在该形成材料中添加具有该硬涂层的膜厚的30%以上75%以下的平均粒径的微粒而调制的工序;在所述薄膜基材的至少一个面涂敷所述形成材料,形成涂布膜的工序;和使所述涂布膜固化而形成硬涂层的工序,所述的硬涂层的膜厚为15μm以上30μm以下且通过所述微粒形成的凹凸形状的根据JIS B 0601的θa为0.4°以上1.5°以下。
8.根据权利要求7所述的防眩性硬涂薄膜的制造方法,其特征在于,使用含有醋酸乙酯作为所述硬涂层的形成材料的稀释溶剂的物质。
9.根据权利要求8所述的防眩性硬涂薄膜的制造方法,其特征在于,所述醋酸乙酯的含量为20重量%以上。
10.一种光学元件,其特征在于,将权利要求1所述的防眩性硬涂薄膜设置在光学构件的至少一个面。
11.一种偏振片,其特征在于,具备权利要求1~6中任意一项所述的防眩性硬涂薄膜。
12.一种偏振片,其特征在于,在偏振镜的至少一个面设置权利要求1~6中任意一项所述的防眩性硬涂薄膜。
13.一种图像显示装置,其特征在于,具备权利要求1~6中任意一项所述的防眩性硬涂薄膜。
14.一种图像显示装置,其特征在于,具备权利要求10所述的光学元件、或者权利要求11或12所述的偏振片。
15.一种图像显示装置,其特征在于,具备权利要求11所述的光学元件的偏振片。
16.一种图像显示装置,其特征在于,具备权利要求12所述的光学元件的偏振片。
全文摘要
本发明提供一种防眩性硬涂薄膜(4),是在透明的薄膜基材(1)的至少一个面上具有含微粒(3)的硬涂层(2)的防眩性硬涂薄膜(4),所述硬涂层(2)的膜厚为15μm以上30μm以下,而且所述微粒(3)的平均粒径为硬涂层(2)的膜厚30%以上75%以下,由所述微粒(3)形成的凹凸形状的通过JIS B 0601的θa为0.4°以上1.5°以下。由此可以提供高硬度、耐擦伤性、和防眩性出色的防眩性硬涂薄膜,其制造方法,使用了它的光学元件,和具备了它们的图像显示装置。
文档编号G02B1/11GK1794016SQ20051013383
公开日2006年6月28日 申请日期2005年12月21日 优先权日2004年12月22日
发明者鹰尾宽行, 滨本大介, 高田胜则, 楠本诚一, 木村雄一, 重松崇之 申请人:日东电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1