半导体激光装置的制作方法

文档序号:2803596阅读:195来源:国知局
专利名称:半导体激光装置的制作方法
半导体激光装置
技术领域
本发明涉及激光技术领域,特别是涉及一种半导体激光装置。
背景技术
大功率半导体激光装置具有电光转换效率高、体积小、可靠性高和寿命长等优点,在工业加工、生物医 疗、国防等诸多领域有着极其重要的应用价值。随着半导体激光技术的发展,单阵列半导体激光器(LDA, Laser Diode Array)的出光功率已可达千瓦量级,电光转换效率可达60%以上。然而,半导体激光器的波导结构导致其光束质量不好,快慢轴方向的光参数积极不均衡,快轴方向接近衍射极限,而慢轴方向的光束质量极差,严重制约了其应用范围。目前一般半导体激光阵列输出光束在快轴方向的发散角为35-40度,在慢轴方向的发散角为6-8度,自由运转时的光谱峰值半宽度为2-4nm。激光的亮度与光功率成正比,与光参数积的平方成反比,高亮度的激光可以在较大的瑞利长度条件下聚焦成高功率密度的光斑,提高材料加工的质量和效率。高亮度的半导体激光可以直接用于金属材料的切割、焊接、熔覆及打孔等领域,拓展了半导体激光的应用范围。而目前,大功率的半导体激光阵列亮度相对较低,聚焦后的光斑一般用于塑料、橡胶等非金属的熔焊和切割,以及金属表面改性及熔覆等对功率密度要求不高的场合,而在金属的深熔焊、切割、打孔等对功率密度要求很高的场合应用还比较少,其主要原因就是激光光束的亮度不够高。因此,如何提供一种可以产生高亮度激光光束的半导体激光装置,是目前亟待解决的技术问题。

发明内容本发明提供了一种半导体激光装置,旨在解决现有技术中半导体激光装置产生激光光束亮度不够高的问题。本发明采用如下技术方案:一种半导体激光装置,所述激光装置包括沿光路依次设置的:半导体激光阵列,快轴准直镜,变栅距衍射光栅,反射镜;所述半导体激光阵列包括至少2个激光发光单元,所述激光发光单元发出的激光经过快轴准直镜准直后入射到变栅距衍射光栅,并经变栅距衍射光栅衍射后形成平行光入射到反射率为1%_15%的反射镜,所述反射镜设置为与衍射后的平行光垂直,衍射后的平行光经反射镜透射出高亮度的激光束。优选地,所述激光发光单元发出的激光中心波长范围为SOOnm—lOOOnm。优选地,所述快轴准直镜紧贴所述半导体激光阵列的出光侧固定,快轴准直镜上镀有增透膜。优选地,所述变栅距衍射光栅刻线为1000-1800线/mm,栅距为bx,其中所述bx为沿慢轴方向光栅X处的光栅常数;变栅距衍射光栅中心距半导体激光阵列的距离L为IOO-SOOmm ;相邻的激光发光单元对变栅距衍射光栅同一点的入射角相差1_4毫弧度,所述变栅距衍射光栅为透射型光栅或者反射型光栅。优选地,所述反射镜的反射率均匀分布;或者所述反射镜的中心部分反射率高,边缘部分反射率低。优选地,所述反射镜的反射率在一维方向上呈高斯函数分布。优选地,所述变栅距衍射光栅与反射镜设置为一体化光学元件。优选地,所述一体化光学元件的形状为三棱柱,所述三棱柱的截面为三角形,三棱柱的一侧面实现变栅距衍射光栅的功能,三棱柱的另一侧面实现部分反射镜的功能。优选地,所述半导体激光阵列包括3个激光发光单元。优选地,所述半导体激光装置包括3个半导体激光阵列,由所述3个半导体激光阵列组成一半导体激光堆阵,每个半导体激光阵列包括3个激光发光单元,每个半导体激光阵列的出光侧均分别固定有一快轴准直镜,三束来自不同半导体激光阵列的光束经各自的快轴准直镜准直后同时入射至变栅距衍射光栅和反射镜,透射出高亮度的激光束。本发明的有益效果在于:通过变栅距衍射光栅和反射镜构成外腔反馈,对半导体激光阵列中各子激光光束进行外腔选频,控制各子激光光束的波长梯度,改善各子激光发光单元的出射光束质量。同时,变栅距衍射光栅具有色散合束功能,经光栅衍射后,各子激光光束平行出射。整个装置简单、稳定、可靠,能产生超高亮度的半导体激光光束。

`图1是本发明实施例1提供的单阵列半导体激光装置结构示意图;图2是图1中变栅距衍射光栅的结构示意图;图3是本发明实施例1中变栅距衍射光栅与反射镜一体化的结构示意图;图4是本发明实施例1中反射镜的反射率高斯分布示意图;图5是本发明实施例2提供的多阵列半导体激光装置结构示意图。附图标记说明:100:半导体激光阵列101:激光发光单元200:快轴准直镜300:变栅距衍射光栅400:反射镜10:半导体激光堆阵
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供了一种半导体激光装置,所述激光装置包括沿光路依次设置的:半导体激光阵列,快轴准直镜,变栅距衍射光栅,反射镜;所述半导体激光阵列包括至少2个激光发光单元,所述激光发光单元发出的激光经过快轴准直镜准直后入射到变栅距衍射光栅,并经变栅距衍射光栅衍射后形成平行光入射到反射率为1%_15%的反射镜,所述反射镜设置为与衍射后的平行光垂直,衍射后的平行光经反射镜透射出高亮度的激光束。本发明实施例通过变栅距衍射光栅和反射镜构成外腔反馈,对半导体激光阵列中各子激光光束进行外腔选频,控制各子激光光束的波长梯度,改善各子激光发光单元的出射光束质量。同时,变栅距衍射光栅具有色散合束功能,经光栅衍射后,各子激光光束平行出射。整个装置简单、稳定、可靠,能产生超高亮度的半导体激光光束。实施例1本发明实施例1提供了一种单阵列半导体激光装置。提高半导体激光阵列亮度的方法主要有相干叠加和非相干叠加两类:相干叠加的本质是光波振幅的叠加,可以有效地改善半导体激光阵列输出光束的光束质量,但需要各叠加子光源相位同步锁定,技术难度较大,且不容易获得大功率的同相稳定输出;非相干叠加是光强的叠加,如光束 整形法、偏振叠加法及波长叠加法等方法,但非相干叠加难以获得高亮度的激光光束,且对光束质量的改善有限。激光的亮度与光功率成正比,与光参数积的平方成反比,所以将光参数积减小一个数量级,亮度就会增加两个数量级。如果在非相干叠加类中先改善子激光发光单元的光束质量,再对具有波长梯度的光束实施光强叠加,就能得到更高亮度的激光光束。利用外腔反馈,能改善半导体激光的光束质量,改善后的各子激光光束叠加,可以获得高亮度的稳定激光。本发明实施例采用外腔和色散元件,通过外腔注入让各激光发光单元分别谐振在不同的波长上,且相邻激光发光单元的中心波长顺次相差一个△ λ的梯度,再经色散分光后将半导体激光阵列发出的光近似平行地沿某一方向出射,使整个半导体激光阵列的光束质量等同于单个激光发光单元在外腔注入锁定时的光束质量,改善子激光光束质量的同时使总功率提高N倍,其中N为半导体激光阵列中的发光点数,也即半导体激光阵列中的激光发光单元数。请参考图1所示,为实施例1提供的单阵列半导体激光装置结构示意图。该半导体激光装置为单阵列,包括沿光路依次设置的一个半导体激光阵列100、快轴准直镜200、变栅距衍射光栅300和反射镜400。该半导体激光阵列100包括至少2个激光发光单元101,本实施例中为3个激光发光单兀101。激光发光单兀发出的激光中心波长范围可以为800nm-1000nm,但不限于此波长范围。优选地,可采用发出激光中心波长为976nm的半导体激光阵列100,但不限于此波长。本实施例中,激光发光单元101的发光点为lxlOOum (微米),快轴发散角为35度,慢轴发散角为8度,相邻激光发光单元101间距为500um,单个激光阵列100的输出功率为50-80w。
本实施例中,快轴准直镜200的焦距为1.0mm左右,数值孔径为0.5-0.8。快轴准直镜200紧贴半导体激光阵列100的出光侧固定,其上镀有增透膜,976nm附近的光透过率大于99.5%。半导体激光阵列100发出的光经快轴准直镜200准直后,快轴方向发散角约为几个毫弧度。请同时参考图2所示,为变栅距衍射光栅300的结构示意图。变栅距衍射光栅300刻线平均为1000-1800线/mm,透射衍射效率为90%以上,本实施例中变栅距光栅密度
I sin .sin B
= + 其中,h为光栅各处的光栅常数,α为光栅各点的入射角,β为出射平
行光的出射角,λ为激光波长。优选地,变栅距衍射光栅300中心距半导体激光阵列100的距离L范围为100—800mm,但不限于此距离范围,优选地,L为200mm。相邻的激光发光单元101对变栅距衍射光栅300同一点的入射角相差1-4毫弧度,例如为2毫弧度。通过外腔反馈使得相邻激光发光单元101的波长梯度Λ λ约为0.5nm-2nm。变栅距衍射光栅300为透射型光栅或者反射型光栅。反射镜400的反射率分布均匀,反射率为1%_15%。当然,反射镜400也可以为变反射率反射镜,其反射率在空间分布上可以不同,比如中心部分反射率闻,边缘部分反射率低,能有效改善慢轴方向的发散角。当然,也可以在一维方向上让反射率分布呈高斯函数或其他形式,具体请参考图4所示,为反射镜400的反射率高斯分布示意图,中心部分反射率高,对应返回激光腔中的子激光发光单元101慢轴中心区域的光得到的增益更多,能进一步压缩慢轴光束的能量分布。激光光路的传播路径和本实施例提供的半导体激光装置的工作原理为:激光发光单元101发出的激光经过快轴准直镜200准直后,在快轴方向的发散角变得很小,入射到变栅距衍射光栅300上的光斑变为一长方形,其慢轴方向长,快轴方向短。变栅距衍射光栅300的光栅刻线与慢轴方向 垂直,慢轴方向的光发生衍射,同一子激光发光单元101发出的光由于变栅距的作用使得输出的衍射光变为平行光,并入射到反射镜400。由于变栅距衍射光栅300对不同入射波长的光聚焦点不同,因此相邻的激光发光单元101出射的两束光只有保持一定的波长梯度才能经过变栅距衍射光栅300衍射后变为同一方向的平行光。反射镜400与衍射后的平行光垂直,只有经过反射镜400原路返回的光才能进入半导体激光腔内,所以外腔反馈自动选择了相邻激光发光单元101的波长梯度,同时也改善了各子激光发光单元101的出射光束质量。反射镜400为部分反射,透过反射镜400后的光束转变为超高亮度的激光束。光整形过程中,子激光光束在快轴方向上经过变栅距衍射光栅300和反射镜400不改变原光束的发散角,所以出射的光束能量呈一直带分布,分布密度略有梯度。超高亮度激光束的亮度一般大于百兆瓦/(cm2, sr),目前的商用半导体激光光源的亮度均小于此值,最大的60兆瓦/ (cm2, sr)左右。优选地,变栅距衍射光栅与反射镜可以设置为一体化光学元件,请同时参考图3所示,为变栅距衍射光栅与反射镜一体化的结构示意图,本实施例中,该一体化光学元件为三棱柱,其截面为三角形,当然,三角形的形状并无特殊限制,例如可以是直角三角形。三棱柱的一侧面实现变栅距衍射光栅的功能,三棱柱的另一侧面实现部分反射镜的功能。当三棱柱的截面为直角三角形时,三角形斜边所在的一侧面实现变栅距衍射光栅的功能,三角形一直角边所在的一侧面实现部分反射镜的功能。采用一体化元件,对整个光路的调整变得非常简便,并且增加了整个装置的稳定性及可靠性。本发明实施例1提供的半导体激光装置,通过变栅距衍射光栅300和反射镜400构成外腔反馈,对半导体激光阵列100中各子激光光束进行外腔选频,控制各子激光光束的波长梯度,改善各子激光发光单元101的出射光束质量。同时,变栅距衍射光栅300具有色散合束功能,经光栅衍射后,各子激光光束平行出射。通过同一个变栅距衍射光栅300,在改善子激光光束质量的同时,对子激光光束实现波长合成,整个装置简单、稳定、可靠,能产生超高亮度的半导体激光光束。实施例2本发明实施例2提供了一种多阵列半导体激光装置。请参考图5所示,为本发明实施例2提供的多阵列半导体激光装置结构示意图。图中以3个半导体激光阵列组成的半导体激光堆阵为例说明整个装置的结构组成,但本发明提供的半导体激光装置的组成阵列数不限于3个,可以是若干个,例如2个、4个、5个或者更多个,此处不一一列举。单个阵列的结构及原理在实施例1中已做详细说明,此处不再赘述。请参考图5所示,该半导体激光装置包括3个半导体激光阵列100,由该3个半导体激光阵列100组成一半导体激光堆阵10,每个半导体激光阵列100包括3个激光发光单元101,每个半导体激光阵列100的出光侧均分别固定有一快轴准直镜200,3个快轴准直镜200准直各自阵列的快轴光束,三束来自不同半导体激光阵列100的光束经各自的快轴准直镜200准直后同时入射至变栅距衍射光栅300和反射镜400,每个半导体激光阵列100的光束均按实施例1中的描述自行叠加增加亮度,而不同半导体激光阵列100的光束则在快轴方向通过空间叠加,输出类似百叶窗似的空间能量分布光斑,所有半导体激光堆阵10输出的光束经过本实施例提供的装置,光束合成后总光束质量等同每一个外腔注入后子激光光束的质量,从而透射出超高亮度的激光束。如果用一透镜聚焦焦点会很小,瑞利长度会较大,满足一定亮度要求时该半导体激光装置可用于金属切割等场合,可以部分替代光纤激光器的功能。以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
权利要求
1.一种半导体激光装置,其特征在于,所述激光装置包括沿光路依次设置的: 半导体激光阵列, 快轴准直镜, 变栅距衍射光栅, 反射镜; 所述半导体激光阵列包括至少2个激光发光单元,所述激光发光单元发出的激光经过快轴准直镜准直后入射到变栅距衍射光栅,并经变栅距衍射光栅衍射后形成平行光入射到反射率为1%_15%的反射镜,所述反射镜设置为与衍射后的平行光垂直,衍射后的平行光经反射镜透射出高亮度的激光束。
2.根据权利要求1所述的半导体激光装置,其特征在于,所述激光发光单元发出的激光中心波长范围为800nm-1000nm。
3.根据权利要求1所述的半导体激光装置,其特征在于,所述快轴准直镜紧贴所述半导体激光阵列的出光侧固定,快轴准直镜上镀有增透膜。
4.根据权利要求1所述的半导体激光装置,其特征在于,所述变栅距衍射光栅刻线为1000-1800线/mm,栅距为bx,其中所述bx为沿慢轴方向光栅x处的光栅常数;变栅距衍射光栅中心距半导体激光阵列的距离L为IOO-SOOmm ;相邻的激光发光单元对变栅距衍射光栅同一点的入射角相差1-4毫弧度,所述变栅距衍射光栅为透射型光栅或者反射型光栅。
5.根据权利要求1所述的半导体激光装置,其特征在于,所述反射镜的反射率均匀分布;或者所述反射镜的中心部分反射率高,边缘部分反射率低。
6.根据权利要求5所述的半导体激光装置,其特征在于,所述反射镜的反射率在一维方向上呈高斯函数分布。
7.根据权利要求1所述的半导体激光装置,其特征在于,所述变栅距衍射光栅与反射镜设置为一体化光学兀件。
8.根据权利要求7所述的半导体激光装置,其特征在于,所述一体化光学元件的形状为三棱柱,所述三棱柱的截面为三角形,三棱柱的一侧面实现变栅距衍射光栅的功能,三棱柱的另一侧面实现部分反射镜的功能。
9.根据权利要求1 8任一项所述的半导体激光装置,其特征在于,所述半导体激光阵列包括3个激光发光单元。
10.根据权利要求1 8任一项所述的半导体激光装置,其特征在于,所述半导体激光装置包括3个半导体激光阵列,由所述3个半导体激光阵列组成一半导体激光堆阵,每个半导体激光阵列包括3个激光发光单元,每个半导体激光阵列的出光侧均分别固定有一快轴准直镜,三束来自不同半导体激光阵列的光束经各自的快轴准直镜准直后同时入射至变栅距衍射光栅和反射镜,透射出高亮度的激光束。
全文摘要
本发明涉及激光技术领域,提供了一种半导体激光装置,该激光装置包括沿光路依次设置的半导体激光阵列、快轴准直镜、变栅距衍射光栅和反射镜;该半导体激光阵列包括至少2个激光发光单元,激光发光单元发出的激光经过快轴准直镜准直后入射到变栅距衍射光栅,并经变栅距衍射光栅衍射后形成平行光入射到反射率为1%-15%的反射镜,反射镜设置为与衍射后的平行光垂直,衍射后的平行光经反射镜透射出超高亮度的激光束。本发明可提供超高亮度的激光光束,且整个装置简单、稳定、可靠。
文档编号G02B27/10GK103199439SQ20131010139
公开日2013年7月10日 申请日期2013年3月26日 优先权日2013年3月26日
发明者余勤跃, 樊仲维, 扈金富 申请人:温州泛波激光有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1