内嵌式触控显示面板及电子装置的制作方法

文档序号:12549400阅读:372来源:国知局
内嵌式触控显示面板及电子装置的制作方法

本发明涉及触控显示技术领域,尤其涉及一种内嵌式触控显示面板及电子装置。



背景技术:

随着触控显示技术的发展,内嵌式触控(In-cell Touch)显示面板越来越多地应用到手机等电子显示设备。因内嵌式触控显示面板将触控与显示功能集成在一起,即将触控电路和显示电路均做在薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate)(通常称为TFT基板)上,有利于穿透度的提升,且可以使手机等电子显示设备做得更加轻薄。

内嵌式触控显示面板又分为自容式(Self-Capacitance)及互容式(Mutual-Capacitance),无论是自容设计还是互容设计方案,为了实现触控与显示功能集成在一起,其原理都是在非触控显示屏的基础上,在TFT基板的阵列电路基础上增加一部分制程,其中包括增加一层金属走线作为触控感测拉线。该层金属走线通常是位于TFT基板靠上的层别,由于该层金属走线的线宽较细,膜厚较厚,其形貌会在TFT基板表面明显地呈现出来,在TFT基板与彩色滤光片基板(Color Filter,CF)组立后,按照传统液晶显示面板设计方案,在TFT基板与CF基板之间设置的光阻间隔物(Photoresist Spacer,PS)有的站位在金属走线上,有的站位不在金属走线上,会导致面板出现暗纹现象,且会存在面压不足、不可恢复色斑(Push Mura)、水波纹等不良。

具体地,请同时参阅图1、图2、与图3,传统的内嵌式触控显示面板包括TFT基板100、与TFT基板100相对设置的CF基板200、夹设于TFT基板100与CF基板200之间的液晶层300、及支撑在TFT基板100与CF基板200之间的多个光阻间隔物400。所述TFT基板100包括平坦层101(平坦层以下为常规的衬底层、栅极层、有源层、源/漏极层、及数层绝缘层,此处省略)、设在所述平坦层101上的公共电极层102、覆盖所述公共电极层102的层间绝缘层103、设在所述层间绝缘层103上的金属走线层104、覆盖所述金属走线层104的保护层105、以及设在保护层105上的像素电极层106。其中,所述公共电极层102包括多个相互间隔的呈矩阵式排列的触控电极1021;所述金属走线层104包括对应每一触控电极1021设置的多条有效触控感测拉线1041、及多条虚拟拉线1042。所述有效触控感测拉线1041通过贯穿层间绝缘层103的过孔(未图示)接触触控电极1021,以将每一触控电极1021接入触控驱动芯片900;所述虚拟拉线1042在相邻两触控电极1021的间隔处断开。

所述金属走线层104的膜厚较厚,其图案直接影响到TFT基板100的表面形貌。传统内嵌式触控显示面板在进行光阻间隔物400设计时,仅将光阻间隔物400按照一定规律排布,并未特意避开金属走线层104的图案,大部分光阻间隔物400站位在虚拟拉线1042上方,还有部分光阻间隔物400可能会站位在相邻两触控电极1021的间隔处,即虚拟拉线1042的断开处。当TFT基板100与CF基板200组立后,有的光阻间隔物400会顶到虚拟拉线1042上,也可能顶到虚拟拉线1042的断开处,又因为虚拟拉线1042的线宽约为3um,而光阻间隔物400的宽度约为6um,这样会造成光阻间隔物400支撑不稳,从而导致面板的面压不足,影响到产品强度方面的品质规格,还可能产生不可恢复色斑、水波纹、亮暗点等不良;另外,由于部分光阻间隔物400没有站位在虚拟拉线1042上,该处的液晶层盒厚会较小,而其它地方的光阻间隔物400站位在虚拟拉线1042上,相应的液晶层盒厚增大,面板的穿透率变大,亮度增大,从而相邻两触控电极1021的间隔处容易产生暗纹。



技术实现要素:

本发明的目的在于提供一种内嵌式触控显示面板,能够避免由于光阻间隔物站位不同导致液晶层盒厚不均而形成暗纹,且增加了面板的面压,杜绝不可恢复色斑、水波纹、亮暗点的出现,提升内嵌式触控显示面板的观赏体验,同时提高内嵌式触控显示面板强度方面的品质规格。

本发明的另一目的在于提供一种电子装置,其内嵌式触控显示面板能够改善由于光阻间隔物站位不同导致液晶层盒厚不均而形成的暗纹,且增加了面板的面压,避免不可恢复色斑、水波纹、亮暗点的出现。

为实现上述目的,本发明首先提供一种内嵌式触控显示面板,包括TFT基板、与TFT基板相对设置的CF基板、夹设于TFT基板与CF基板之间的液晶层、及支撑在TFT基板与CF基板之间的多个光阻间隔物;

所述TFT基板包括平坦层、设在所述平坦层上的公共电极层、覆盖所述公共电极层的层间绝缘层、设在所述层间绝缘层上的金属走线层、以及覆盖所述金属走线层的保护层;所述公共电极层包括多个相互间隔的呈矩阵式排列的触控电极;所述金属走线层包括多条有效触控感测拉线、及多条虚拟拉线;

所述多个光阻间隔物沿虚拟拉线的延伸方向站立在保护层上,所述虚拟拉线在对应光阻间隔物的站位处断开。

所述有效触控感测拉线通过接触触控电极将触控电极接入触控驱动芯片。

所述有效触控感测拉线经由贯穿所述层间绝缘层的过孔接触触控电极。

每一触控电极对应多条有效触控感测拉线、及多条平行于有效触控感测拉线的虚拟拉线,且有效触控感测拉线与虚拟拉线交替设置。

每一触控电极对应于多个呈矩阵式排列的像素,每列像素包括数个子像素,每列子像素对应一条有效触控感测拉线、与一条虚拟拉线。

所述公共电极层的材质为氧化铟锡。

所述像素包括依次排列的红色子像素、绿色子像素、及蓝色子像素。

所述多个光阻间隔物均对应站立于触控电极上方。

本发明还提供一种电子装置,包括上述的内嵌式触控显示面板。

本发明的有益效果:本发明提供的一种内嵌式触控显示面板及电子装置,设置多个光阻间隔物沿金属走线层中虚拟拉线的延伸方向站立在保护层上,且设置所述虚拟拉线在对应光阻间隔物的站位处断开,使光阻间隔物站位避开金属走线层,从而光阻间隔物站立的位置更平坦,各处光阻间隔物的支撑高度相同,液晶层盒厚均匀,能够避免内嵌式触控显示面板出现暗纹,同时提升面板面压,杜绝不可恢复色斑、水波纹、亮暗点的出现,提升内嵌式触控显示面板的观赏体验,并提高内嵌式触控显示面板的整体强度。

附图说明

为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。

附图中,

图1为传统的内嵌式触控显示面板在光阻间隔物站位处的剖面结构示意图;

图2为传统的内嵌式触控显示面板中触控电极与金属走线层的有效触控感测拉线的分布示意图;

图3为传统的内嵌式触控显示面板中相邻两触控电极对应的金属走线层与光阻间隔物的分布示意图;

图4为本发明的内嵌式触控显示面板在光阻间隔物站位处的剖面结构示意图;

图5为本发明的内嵌式触控显示面板在有效触控感测拉线与触控电极接触处的剖面结构示意图;

图6为本发明的内嵌式触控显示面板中触控电极与金属走线层的有效触控感测拉线的分布示意图;

图7为本发明的内嵌式触控显示面板中相邻两触控电极对应的金属走线层与光阻间隔物的分布示意图。

具体实施方式

为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。

请同时参阅图4至图7,本发明首先提供一种内嵌式触控显示面板,包括TFT基板1、与TFT基板1相对设置的CF基板2、夹设于TFT基板1与CF基板2之间的液晶层3、及支撑在TFT基板1与CF基板2之间的多个光阻间隔物4。

如图4与图5所示,所述TFT基板1包括平坦层11、设在所述平坦层11上的公共电极层12、覆盖所述公共电极层12的层间绝缘层13、设在所述层间绝缘层13上的金属走线层14、覆盖所述金属走线层14的保护层15、以及设在保护层15上的像素电极层16。结合图4至图7,所述公共电极层12包括多个相互间隔的呈矩阵式排列的触控电极121;所述金属走线层14包括多条有效触控感测拉线141、及多条虚拟拉线142。

结合图5与图6,所述有效触控感测拉线141经由贯穿所述层间绝缘层13的过孔131接触触控电极121将触控电极121接入触控驱动芯片9。在手指触摸该内嵌式触控显示面板前后,所述多个相互间隔的呈矩阵式排列的触控电极121感应到的电容电荷量不同,触控驱动芯片9通过检测触控前后的电容变化量,通过转换计算从而确定出手指触控的位置。

值得注意的是:结合图4与图7,所述多个光阻间隔物4沿虚拟拉线142的延伸方向站立在保护层15上,所述虚拟拉线142在对应光阻间隔物4的站位处断开。这样的设置与现有技术相比优化了金属走线层14与光阻间隔物4的分布,使光阻间隔物4站位避开金属走线层14,从而光阻间隔物4站立的位置更平坦,各处光阻间隔物4的支撑高度相同,液晶层盒厚均匀,能够避免内嵌式触控显示面板出现暗纹,同时提升面板面压,杜绝不可恢复色斑、水波纹、亮暗点的出现,提升内嵌式触控显示面板的观赏体验,并提高内嵌式触控显示面板的整体强度,且无需额外增加光罩及制程。

具体地,所述TFT基板1还包括位于平坦层11以下的常规的衬底层、栅极层、有源层、源/漏极层、及数层绝缘层等,像素电极层16接触漏极,这与现有技术无异,此处予以省略。所述公共电极层12与像素电极层16的材质优选(Indium Tin Oxide,ITO)。

CF基板2通常包括常规的衬底层、彩膜层等,彩膜层又包括红、绿、蓝色阻及黑色矩阵等,同样与现有技术无异,此处予以省略。

结合图6与图7,每一触控电极121对应多条有效触控感测拉线141、及多条平行于有效触控感测拉线141的虚拟拉线142,且有效触控感测拉线141与虚拟拉线142交替设置。

进一步地,每一触控电极121对应于多个呈矩阵式排列的像素P,每列像素P包括数个子像素P’,每列子像素P’对应一条有效触控感测拉线141、与一条虚拟拉线142。具体地,每一像素P通常包括依次排列的红色子像素R、绿色子像素G、及蓝色子像素B等数个子像素P’。

进一步地,由于触控电极121之间的间隙也会对TFT基板1表面形貌产生影响,所述多个光阻间隔物4均对应站立于触控电极121上方,也即对应相邻的触控电极121之间的间隙不设置光阻间隔物4,进一步保证各处光阻间隔物4的支撑高度相同,液晶层盒厚均匀。

基于上述提供的内嵌式触控显示面板,本发明还提供一种电子装置,该电子装置包括上述内嵌式触控显示面板,其可以但不限于为液晶电视、智能手机、数码相机、平板电脑、穿戴式手表等具有触控显示功能的产品。

综上所述,本发明的内嵌式触控显示面板及电子装置,设置多个光阻间隔物沿金属走线层中虚拟拉线的延伸方向站立在保护层上,且设置所述虚拟拉线在对应光阻间隔物的站位处断开,使光阻间隔物站位避开金属走线层,从而光阻间隔物站立的位置更平坦,各处光阻间隔物的支撑高度相同,液晶层盒厚均匀,能够避免内嵌式触控显示面板出现暗纹,同时提升面板面压,杜绝不可恢复色斑、水波纹、亮暗点的出现,提升内嵌式触控显示面板的观赏体验,同时提高内嵌式触控显示面板的整体强度。

以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1