通过从等离子体沉积无定形材料形成具有渐变带隙的膜的方法

文档序号:2934343阅读:336来源:国知局

专利名称::通过从等离子体沉积无定形材料形成具有渐变带隙的膜的方法通过从等离子体沉积无定形材料形成具有渐变带隙的膜的方法
背景技术
:本发明涉及通过从等离子体沉积至加工表面上而形成无定形材料膜的方法。更具体地,本发明涉及使用微波能量以通过电子回旋共振产生等离子体。特别关注的一个领域是在称为等离子体增强CVD(化学气相沉积)的工艺中,通过硅烷如Si仏、Si2H6或者更高阶低聚物的离解沉积无定形硅(a-Si:H)的膜。可以用于沉积无定形硅或无定形硅合金的其它前体气体包括其中硅与一个或多个碳、氧或氮结合、任选地连同氢一起存在的分子。硅合金的实例为SiOxNy所示类型的结构。此外,含硅气体可以与其它气体一起使用,例如锗烷、或可以用于沉积其它膜的不含硅的气体。关于无定形硅膜应用的特别关注的一个领域是将太阳能转化成电功率的装置。这类无定形硅材料还可以用于电子应用中,例如显示器用的TFT。本文使用的术语"无定形硅"表示氢化的无定形硅,a-Si:H。为了用于刚才提及的领域中,必须存在一些氢,通常是3-20%,以钝化作为缺陷的悬空键。在激发等离子体至电子回旋共振(在下文缩写为"ECR")的
技术领域
中,当静态或准静态磁场中电子的回转频率等于外加加速电场的频率时获得共振。对于磁场B,在由以下关系与B相关的激发频率f下获得该共振B-27imf/e(1)其中m和e是电子的质量和电荷。当以电子回旋共振频率激发等离子体时,电子与电场同相旋转,并且连续地从满足ECR条件(1)的外部激发源获得能量从而达到离解或电离气体所必需的阈能。为了满足该条件,首先需要的是电子保持陷入磁力线,也就是它的回转半径相对于静态磁场梯度足够小,使得电子在它的回转期间看到基本上恒定的磁场,以及其次是回转频率相4对于电子与中性成分例如原子和/或分子之间的碰撞频率保持较大。换句话说,当气体压力相对低且同时激发频率f高(这也意味着磁场强度B必须高)时,可期望获得激发等离子体至电子回旋共振的最佳条件。常规的发散ECR的主要困难在于,在大面积上产生密度基本上均匀的等离子体是不可能的。这意味着不能将它用于例如在大尺寸的加工表面上沉积基本上均匀的材料层。为了解决该问题,已经开发出一种称作分布式电子回旋共振(DECR)的技术,它使用其中多个等离子体激发装置形成网络的设备,这些装置共同地在加工表面产生密度基本上均匀的等离子体。单个的等离子体激发装置各自由微波能量的线式施加器构成,其一端与产生微波能量的源相连,相对一端安装有至少一个用于产生具有恒定且强度对应于电子回旋共振的磁场的至少一个表面的磁偶极子。该偶极子安装在微波施加器的端部,其安装方式确保加速到电子回旋共振的电子在极之间振荡,以至于产生位于远离施加器端部的偶极子一侧上的等离子体扩散区。各个激发装置相对于彼此分布并且位于加工表面附近,以便一起为加工表面产生均匀的等离子体。上述DECR设备在美国专利6,407,359(对应于EP-1075168)中有描述,而且其中所述设备的更详细论述参照附图在下面给出。从那些图中可以清楚的是,从衬底看去,激发装置釆取一般为矩形阵列的形式,其中包括该矩形为正方形的特定情况,因此有时将上述设备称为矩阵DECR(MDECR)设备。然而,应当理解的是,本发明还可以应用于如下的DECR设备,其中激发装置以非矩形的二维网络、例如六边形网络设置,或者其中存在装置的两条平行线,一条线中的装置相对于彼此偏移。六边形阵列的实例在以下给出"DeterminationoftheEEDFbyLangmuirprobediagnosticinaplasmaexcitedatECRaboveamultipolarmagneticfield",T.Lagarde,Y.Arnal,A.Lacoste,J.Pelletier,PlasmaSourcesSci.Technol.10,181-190,2001。该装置还可以设置成环形、部分环形或近环形阵列。应当注意的是,在本发明人完成的一些工作中,已经用三个或六个装置围绕的中心等离子体激发装置进行沉积,周围装置的磁体极性与中心装置的磁体相反设置并且分别以三角形或六边形阵列设置。此外,本发明可以应用于不是MDECR类型的DECR设备。因此,例如,它可适用于历史上在MDECR类型之前而且具有圆柱体形状并使用从该圆柱体的顶端延伸到底端的磁体和长天线的DECR反应器。上述设置在MichelMoisan和JacquesPelletier的"MicrowaveExcitedPlasmas",Elsevier,1992中有描述,而且适合于均匀涂覆圆柱形衬底例如管子,以及位于等离子体的中心部分并垂直于圃柱体轴线定向的平坦表面。薄膜太阳能电池通常包含夹在p掺杂层(p层)和n掺杂层(n层)之间的、例如基于硅的无定形材料的本征层(i层),而且已知太阳能电池的转换效率尤其取决于无定形材料的带隙。无定形材料在其整个厚度上具有恒定带隙的情况下,小的带隙提供较大的日光汇集以及因此较高的转换效率。然而,另外已知如果带隙在本征层厚度上以适当的方式变化,可以获得有利的结构。这称为渐变带隙。作为本发明进一步的背景,现在开始在下面论述带隙在太阳能电池中的作用,以及为何渐变带隙会是有价值的。应当理解尽管随后的论述集中在其中存在大数目的不同带隙层的本征层,但是本发明也适用于其中只存在带隙彼此不同的两层的情况,例如其中大部分本征层具有恒定带隙而且存在与p层或n层中的任一者相邻的不同带隙的相对薄层,例如与p层相邻的更高带隙的緩冲层。另外本征层可以由两个或更多个区域构成,并不是所有区域都具有渐变带隙结构。另外要注意的是尽管在下文给出的本发明的具体实施例包括带隙从一层到下一层阶跃变化的有限数目不连续层的沉积,但是本发明也适用于其中在全部或部分的厚度上带隙无阶跃变化的方法。如上所述,由Si材料制成的薄膜太阳能电池的活性部分包括三层p掺杂层、本征层和n掺杂层。如同在图IO的能带图中呈现的那样,在本征层末端处p掺杂层和n掺杂层的存在使导带和价带畸变并且产生电场。空穴(存在于价带中)向p掺杂层移动而自由电子(存在于导带中)向n掺杂层移动。公知的是空穴的迁移率和寿命显著低于电子。特别地,在良好的a-Si:H材料中空穴和电子的迁移率分别是O.Ol和lcm7V/s。因而,当远离p层生成电子-空穴对时,空穴汇集变得关键。因此,使本征层从靠近P掺杂层的小带隙材料向靠近n掺杂层的大带隙材料渐变非常有益于空穴汇集,因为增大的电场驱动电荷载流子漂移,这增大所产生的空穴而后被汇集的可能性,并因此有益于总的电池性能。另外需要对无定形硅的光吸收随波长变化的方式加以考虑。由于a-Si:H光吸收随波长减少,蓝光的吸收比红光更强。如果通过p层或n层照射电池,蓝光分别靠近P/I或N/I界面被吸收而红光在本征层的整个厚度上被更均匀地吸收。另外,当带隙增大时由于能量小于带隙的光子无法被材料吸收,日光的光学吸收减少。因此,增大本征材料从p掺杂层到n掺杂层的带隙会减少光学吸收,特别是在太阳光镨的黄色-红色部分。因此,当通过P掺杂层照射电池时,与非渐变带隙电池相比,在渐变带隙电池中本征层厚度的后半部分中生成较少的电子/空穴对。然而,如同上面说明的那样,这种渐变方向提高所生成的空穴接着汇集的概率,而且这会超过对于生成较少空穴的补偿。当从n掺杂层照射电池时,这种相同的渐变方向仍会是有利的,因为它仍然会增强空穴汇集,而且与从n层照射的非渐变电池相比,光吸收会在本征层整个深度上更好地展开,因此更靠近P/I界面。对于多结器件也关注渐变带隙结。在这些器件中,不同的结通常彼此串连(参见图11),且然后必须对这些结进行调节以具有相同的电流。开头的结将会吸收最短的波长并具有最大的带隙而后面的结将会吸收最长的波长并具有较小的带隙。在组成上渐变带隙的太阳能电池领域的回顾在以下文献中提供N.Rafat,S.E.-D.Habib,"Thelimitingefficiencyofbandgapgradedsolarcells"SolarEnergyMaterials&SolarCells,55(1998)341-361。大多数已报道的研究基于Ga卜xAlxAs材料和基于a-Si合金,尤其是a-SiGe。实际上,公知的是a-SiGe:H材料的特征在于具有大量归因于Si和Ge原子之间网络失配的缺陷。出版文献的主要成果是使带隙渐变通过少数载流子汇集的增强和表面复合速率的降低而提高电池效率。不同类型的i层带隙渐变、例如不对称v形和u形的线性构形(profile),在现有技术中已经就它们对太阳能电池参数的影响进行了研究(例如参见Foelsch,J.;Stiebig,H.;Finger,F.;Rech,B.;Lundszien,D.;Labertz,A.',Wagner.ConferenceRecordoftheIEEEPhotovoltaicSpecialistsConference(1996),25th1133-1136)。带隙构形的形状对电池性能具有主要影响,正如通过沿着本征层的轴线移动最小带隙区域的位置而显示出的那样。渐变构形对填充系数和开路电压都有重要的影响。对于带隙最小值靠近p-i界面的不对称v形已经发现了最佳的性能,如图12所示。为了制造渐变带隙结构已经提出多种方法。因此,例如,在GB-A-2083701中公开了渐变带隙Si合金。在这些结构中Si材料的带隙通过引入至少一种带隙调节元素(即Ge、Sn、C或N)而渐变。论述渐变带隙的另一篇现有技术文献是V.Dalai,G.Baldwin,P.Garikepati,"Improvementsinstabilityofa-siliconsolarcellsthroughtheuseofbandgapgrading"ConferenceRecordofIEEEPhotovoltaicSpecialistsConference(1993),23rd816-20。该文献阐明a-Si:H电池众所周知的劣化是光激发时本征层中生成额外缺陷的结果。这些额外的缺陷具有两种后果(i)它们充当额外的复合中心,由此减少电子和空穴的寿命,并因此减少这些载流子的扩散长度。(ii)它们使电池中的场分布偏移,减小PINa-Si:H电池中部的电场并在p和n界面上稍微增大电场。在该参考文献中用渐变带隙结构解决了第二个问题。在P层和大带隙a-SiC:H緩冲层之后,以3步沉积a-Si:H本征层(i)在350X:沉积100-150nm的恒定小带隙(优选1.65eV)层。(ii)通过使沉积温度降低IO(TC并提高稀释比(即H2/SiH4)实8现在120-150nm内带隙变成约1.8eV的渐变带隙区域。(iii)在275C沉积100-150訓的恒定带隙本征区域接着沉积n层。在通过格栅将衬底与等离子体隔离的情况下经由RF三极管辉光放电沉积所有的层。沉积速率非常低(可能lA/s),使得沉积100mn期间100r的降低成为可能。上述降低在DECR的情况下是不可能的,因为沉积速率快25倍左右,使得不可能在1分钟内降低IOO匸。在上面引用的Dalal等人的参考文献还阐明带隙的渐变有益于电池效率的稳定化。该参考文献提到标准电池和渐变电池的劣化在35小时7x太阳光(氣)照射之后分别为27%和20%。
发明内容本发明起因于如下发现当DECR工艺用于沉积无定形硅膜时,膜前体气体的流量降低时,沉积材料的带隙增大,反之亦然。尽管先前已经注意到在其它类型的膜沉积工艺中存在带隙对流量的依赖性,(已经发现在热丝化学气相沉积法(HW-CVD)中提高硅烷流量趋向增加带隙,在发散ECR中情况相反),在DECR情况下的关系先前是未知的,而且无论是用DECR还是用任何其它技术,先前都未曾想过在膜沉积期间通过改变该膜前体气体的流量而产生渐变带隙。尽管此处参照无定形硅膜的沉积进行描述,但是相信该工艺也会适用于其它无定形材料膜、例如无定形锗膜和无定形碳膜的沉积。因此,本发明提供一种通过从等离子体沉积而在衬底上形成无定形材料膜的方法,该方法包括将衬底放在罩壳中,将膜前体气体以一定流量连续引入罩壳内,从罩壳内抽出未反应的和离解的气体以便在罩壳内提供低压力,以及将微波能量引入罩壳内的气体中,从而通过分布式电子回旋共振(DECR)在其中产生等离子体并使材料从等离子体沉积至村底上,其中在材料的沉积过程中改变所述流量,以便使带隙在沉积材料的厚度上变化。这样做的一个后果是膜前体气体含有多于一种组分气体的话,该多组分气体的总流量必须随时间变化,尽管该前体气体的组成(即单个组分的相对含量)不需要改变,且优选没有改变。然而,要注意的是,在这样做的情况下,提及通过改变流量使带隙渐变并不意图排除如下可能性通过改变带隙所产生的渐变效果可以通过其它机制所产生的额外渐变来补充。一种这样的机制描述于我们在与本申请相同日期提交并且题为"Methodforformingafilmwithagradedbandgapbydepositionofanamorphousmaterialfromaplasmausingdistributedelectroncyclotronresonance"的共同待决的申请中(我们的巻号G28555EP(欧洲专利申请No.06301119.1))。该申请描述如何通过改变脉冲微波供给的频率和/或功率而改变带隙。另外要注意的是本发明包括其中带隙在全部或一部分的膜厚度上以单阶跃或多阶跃变化(通过以阶跃方式改变流量)的膜制造,以及其中带隙在全部或一部分的膜厚度上以连续、无阶跃方式变化(通过以连续、无阶跃方式改变流量)的情况。在下面参照附图进一步描述本发明,其中图1是显示如EP-1075168中描述和显示的等离子体产生设备的概略正视图,省去另外在图3中所示的引入和抽出气体的装置;图2是图l设备的俯视图3显示将气体引入该设备和从设备中抽出气体的一种方式;图4和5是分别显示硅烷流量对材料带隙的影响和介电函数虛部的最大值的坐标图6显示三种不同电池的本征层厚度上带隙变化的坐标图7显示四种电池在反向偏压下相对于波长的量子效率,其中三种电池具有渐变带隙而一种没有;图8是显示与图7中相同的四种电池在正向偏压下和短路时的量子效率之比的坐标图9a和9b是类似于图6的坐标图,然而是关于性能示于图7和8中的四种电池,而且其中图9a相对于沉积时间而不是沉积厚度绘制;图10是通过p层照射的太阳能电池的能带图;图ll是多结太阳能电池器件的示意图;和图12是太阳能电池的不对称带隙构形的示意图。具体实施例方式图1和2显示相对于其上要沉积膜的衬底产生等离子体的设备。该设备包含概略表示并装配有进气装置和气体泵吸装置(图1中未示出)的密封軍壳1,它使得要电离或离解的气体的压力能够根据气体性质和激发频率保持在期望的值,该值例如可以是约10—2至2xi0-1Pa。然而,可以使用小于10—2Pa(比如低至10"Pa),或高于2xi0—1Pa(比如高达5xl(T1Pa,乃至1Pa或更大)的气体压力。例如,泵吸可以由16001/sAlcatelTurbo-分子泵进行,它用来从罩壳中抽出气体。使气体在质量流量控制器(MFC)的控制下从适当的气体源、例如压力气瓶进入軍壳。该气体例如可以包含SiH4作为膜前体气体,或者在上面关于无定形硅的沉积提及的其它气体中的一种。除了膜前体外,还可以引入诸如He、Ne或Ar的非反应性稀释气体,诸如氢、氮或氧的反应性气体,或诸如乙硼烷、三甲基硼或膦的掺杂剂气体。通常,任何这些其它气体通过与膜前体气体相同的端口、作为与它的混合物引入罩壳中,然而它们可以分别引入。供气系统应当确保适当的气体流量进入反应器中,其通常为1-1000sccm(标准立方厘米/分钟)。气体的注入口一般由插入沉积室的单根管子或多根管子构成。该管子、或者存在多于一根的话则每根管子可以由格栅延伸,从而确保沉积室内气体的更均匀分布。可以在反应器中的任何地方进行注入,但是优选将膜前体气体引向衬底表面。用于本文时,应当理解提及设置出口以将气体引向村底表面不仅包括其中使气体直接瞄准其上要沉积膜的衬底表面的情况,而且包括其中所述表面完全处于从出口在气流方向上延伸的线和与其成直角并穿过出口的线之间所限定的角度的情况。在上述情况下,从出口出来的气流将会具有朝着所述表面的所有部分的矢量分量。一种称为"点,,注入的进行该操作的方法概略示于图3中。在这种设置中,通过管子、或多根管子20(显示的是2根)引入膜前体,每根管子的出口21位于如同此处限定(由虛线表示)的热电子约束包络体与衬底表面之间并且指向该表面。图3还显示出口22,通过它泵吸出残留和离解的气体。图3的其它特征在下面参照图l所示的设备描述。其它特别感兴趣的注入设置描述于我们在与本申请相同日期提交并且题为"Methodandapparatusforformingafilmbydepositionfromaplasma"的共同待决的申请中(我们的巻号G28331EP(欧洲专利申请No.06301115.9)),它描述了不同注入设置的优缺点。等离子体室装配有衬底支架10,它显示为该设备的固定部件。衬底支架的一个作用是加热衬底至所需的沉积温度。这通常为室温与600。C之间,在沉积无定形硅的情况下优选超过200°C,更优选为225。C-350X:。这里提及的温度是实际的衬底温度,与可以通过测量衬底支架的温度而测得的标称衬底温度不同。该区别的重要性进一步论述于上面提及的我们在与本申请相同日期提交并且题为"Methodforformingafilmofamorphoussiliconbydepositionfromaplasma"的共同待决的申请中(我们的巻号G27558EP(欧洲专利申请No.06301114.2))。将其上具有至少一个衬底14、任选具有多个所述衬底的栽板12可移动地安装在支架10上,以便可以将它与要涂覆的衬底一起带进室内,并在进行涂覆之后将其与衬底一起从室中取出。然而,作为替代可以用导热胶将衬底直接粘在衬底支架上。这改善衬底与衬底支架之间的热接触,否则在低压条件下难以实现该热接触。这进一步论述于我们在与本申请相同日期提交并且题为"Methodforformingafilmofamorphoussiliconbydepositionfromaplasma"的共同待决的申请中(我们的巻号G27558EP(欧洲专利申请No.06301114.2))。12在这种情况下需要在沉积过程之前将支架与其衬底一起引入軍壳中并且事后从中取出。不用胶粘的话,一种设法改善衬底加热的方式是在低压膜沉积步骤之前存在其中用相对高压力(通常约100-200Pa)的气体填充罩壳的步骤。该高压气体提供跨越衬底与加热支架间可能存在的任何间隙的热传递,确保衬底的初始加热。另一种可能性是在衬底与衬底支架间放置导热碳膜。可以通过使热流体在衬底支架内循环而加热它,但是作为替代可以通过衬底支架中内嵌的电加热电阻器实现加热。然而,作为替代,可以直接加热衬底,例如通过使用红外灯加热。衬底支架的另一个作用是容许衬底表面的极化以便控制朝向衬底的离子的能量。极化可以用RF电压源或用DC电压实现而且需要衬底支架对地电绝缘。通过将电绝缘的衬底支架与合适的RF或DC发生器16相连而实现极化,在RF极化的情况下使用合适的匹配电路。当在绝缘衬底上或在预先沉积于衬底(其可以是绝缘的或非绝缘的)上的绝缘层上沉积时,优选使用RF发生器。当在导电衬底或在预先沉积于导电衬底(可以导电或不导电)上的导电层上沉积时,可以通过与衬底表面具有合适电连接的RF或DC发生器施加偏压。在一种具体实施方案中,用经由自动调谐盒与衬底支架相连的13.56MHzDressier发生器施加RF偏压。即使当使用RF发生器时,由于等离子体中的环境,衬底表面上所得的偏压也包含DC偏压分量。关于这如何发生的解释可以参见以下文献中完全不同的等离子体工艺的说明内容Suzuki等人,"Radio-frequencybiasedmicrowaveplasmaetchingtechnique:AmethodtoincreaseSi02etchrate",J.Vac.Sci.Technol.B3(4),1025-1033,七月//^月1985。等离子体产生设备I具有一系列彼此隔开并位于衬底附近的独立等离子体激发装置E,从而一起运行以产生对于衬底均匀的等离子体。各个独立的等离子体激发装置E包含细长的微波能量施加器4。每个施加器4一端与各自的微波能量源相连,所述微波能量源位于罩壳1外部。然而,作为替代,单个微波能量源可以向所有的施加器4供给微波,或者可以存在数量上少于施加器数目的多个能量源。例如,一排十六个施加器可以方便地由两台2.45GHz微波发生器供给,该发生器各自具有2kW最大功率并且各自经由功率分配器和各自的铁芯调谐器供给八个施加器。每个施加器4有利地是被同轴管4,环绕的管形式,从而使得微波能量能够传播到其自由端同时避免辐射微波和避免施加器之间的微波耦合。为了确保微波能量适当传递到等离子体中,每个施加器优选配备使等离子体激发装置的反射功率减到最少或至少减小该反射功率的匹配装置。每个微波施加器4的自由端与至少一个永磁体5相连。每个磁体的磁轴优选与磁体本身的长轴平行。在这种设置的一种特定形式中,所有等离子体激发装置的磁体在相同方向上定向(单极构造),也就是它们所有的北极在顶部且它们所有的南极在底部,反之亦然。在另一形式中,各极中的一些在顶部以及各极中的一些在底部(多极构造)。后者的一个实例为如下阵列,如图2从一端观看并且沿着装置的任何给定的行或列,相继遇到交替极性的极。另一实例为给定行(或列)中的所有磁体具有相同极性,但是列(或行)具有交替极性。然而,还可以使用其中磁体的磁轴并不平行于磁体本身的长轴的设置,只要存在磁场的磁力线平行于微波传播矢量的显著区域即可。为了确保存在其中可以发生ECR衰减的显著区域,这是必要的。进行实验以确定膜前体流量与沉积的无定形材料的带隙之间的关系。用硅烷作为膜前体气体而不用任何等离子体气体进行该实验,尽管认为得到的结论对于其它前体气体、以及对于当与等离子体气体组合使用时的前体气体是有效的。所用设备如图3所示。除了从60变到90sccm的硅烷流量外,在恒定条件下(MW功率2kW,16根天线,由RV电压源供给的-100V偏压,标称温度275'C)进行沉积。另外,在30sccm下但是关闭闸门阀以显著提高气体压力而进行试验。温度称为标称温度;它实际上是在衬底支架上测得的温度。认为(进一步的论述参见我们在与本申请相同日期提交并且题为"Methodforformingafilmofamorphoussiliconbydepositionfromaplasma"的共同待决的申请中(我们的巻号G27558EP(欧洲专利申请No.06301114.2)))实际的衬底温度显著更低。数据示于下表l。表l<table>tableseeoriginaldocumentpage15</column></row><table>更特别地注意材料带隙Eg,显然即使人为提高压力,带隙也受硅烷流量的影响。这同样适用于通过Tauc-Lorentz模型从椭圆偏光数据得到的介电函数虚部的最大值si(max),该值在最后一列中给出。基于前体气体流量与带隙之间关系的这种观察结果,沉积NIP电池,其中通过在沉积期间改变流量而形成本征层以具有渐变带隙。图6是显示三种不同NIP电池的本征层厚度上本征层带隙如何变化的曲线图,这三种电池才示为电池l、电池2和电池3。如下形成这些电池首先通过常规RF-PECVD,在由Asahi型U玻璃即涂覆900nm厚的织构化Sn02层的玻璃所构成的玻璃衬底上同时沉积它们各自的p层,该Sn02层充当要沉积p层的表面上的透明前接触部。该p层本身厚10-12mn。然后通过DECR在各个p层上分别沉积各自的i层。接着通过常规RF-PECVD在i层上同时沉积15-20nm厚的n层。最后,将大约300nm厚的铝接触部蒸发至n层和后接触部上。所述工艺确保三种电池的性能差异基本上只是归因于其各自i层之间的差异。如下沉>积三种电'池的本征层电池l:用恒定硅烷流量沉积的本征层(100sccm持续90s)。电池2:开始时用100sccm、然后珪烷流量以每15s降低10sccm的步幅降至30sccm(即总的沉积时间为120s)而沉积的本征层。电池3:开始时用100sccm、然后珪烷流量以每20s降低10sccm的步幅降至30sccm(即总的沉积时间为160s)而沉积的本征层。因此根据本发明的电池2和3渐变,而电池1没有。带隙构形示于图6。由于硅烷流量降低时沉积速率降低,因而带隙阶跃因恒定的沉积时间而变得越来越小。因此带隙渐变集中在本征层厚度的末端,靠近n层。由于在那里生成的空穴因它们在到达p层之前必须穿过整个本征层厚度而最难汇集,因此这是有利的。正如在给出电池经受100mW/cW强度的白光时的性能的下表2中所示,具有渐变带隙的电池具有更好的填充系数和更高的效率。尽管短路电流由于渐变而减小,但是电池产生的电压保持相同。然而,在第三种电池中,带隙渐变对短路电流的不利影响得到更厚的本征层补偿,同时填充系数仍然显著高于恒定带隙电池。表2<table>tableseeoriginaldocumentpage16</column></row><table>为了进一步证实本发明,制成另外四种电池以进一步研究带隙渐变和层厚度的影响。除了在三种电池中在本征层沉积过程中改变硅烷流量以使带隙渐变外,在相同条件(MW功率2kW,标称温度2"。C,偏压-60V,16根天线)下沉积PIN电池(字母PIN的顺序示出各层的沉积顺序)。电池4:用恒定硅烷流量沉积的本征层(100sccm持续90s)。电池5:开始时用100sccm、然后硅烷流量以10sccm的步幅降低而;冗积的本征层。电池6:本征层电池5,但是具有更长的初始100sccm阶段。电池7:本征层电池5,但是具有更短的初始100sccm阶段。带隙构形在图9a和图9b中分别相对时间和厚度绘出。如下表3中所示,比较电池4和电池5,具有渐变带隙的电池具有好得多的填充系数,即使归因于渐变的较大光学带隙导致较低的光学吸收。开路电压基本上相同,然而短路电流由于渐变而减小。<table>tableseeoriginaldocumentpage17</column></row><table>电池5、6和7提供关于改变初始阶段持续时间的影响的信息,以便改变总的本征层厚度。在较厚的初始本征层的情况下,长波长光子的光学吸收得到促进。因此,带隙渐变的影响得到较厚的本征层补偿,同时填充系数仍然显著高于恒定带隙电池。<table>tableseeoriginaldocumentpage17</column></row><table>从上表4中可以看出,归因于较大"初始"子层(在称为初始步骤的期间沉积),短路电流随着总的层厚度而增大。另外非常重要强调的是不管电池中渐变部分由于初始子层的变动如何,填充系数相对于标准电池都保持相当高,而且电池6达到4.08%效率。由于带隙渐变,实现了高达11%的相对效率改进(电池6与电池4相比)。从图7和8中可以进一步理解电池4、5、6和7的性能。图7是比较四种电池在反向偏压下的量子效率的坐标图。量子效率定义为特定光子能量下光电流密度j(A/cm2)与入射光子通量f之比。因此,比较不同厚度的试样会使人误解,当施加负(反向)偏压同时进行QE测量时更明确地看出。施加-lV偏压导致电场的4艮大提高,在-1V反向偏压下,QE主要受层吸收控制。将会观察到恒定带隙电池(电池4)具有最大的吸收,即使电池6厚得多。显然,光学吸收随较薄的电池减少而且在长波长中变化特别明显,因为吸收效率随波长而降低。另一方面,施加正向偏压导致电场的部分衰减。正向偏压的影响示于图8,其描绘同样的四种电池在正向和反向偏压下的量子效率的比率。衰减程度将会是电池中存在的初始电场以及正向偏压的大小的函数。带隙渐变的有利影响在正向偏压(+0.5V)和反向偏压(-1V)下汇集的电流之间的比率上非常明显。渐变带隙使得即使由较大的波长、因此更加远离P/I界面产生载流子时也可以在正向偏压下保持良好的载流子汇集。在图8中可以清楚,除非在正向偏压条件下,当远离P/I界面产生电荷时,在长波长下电荷汇集很差。权利要求1.一种通过从等离子体沉积而在衬底上形成无定形材料膜的方法,该方法包括将衬底放在罩壳中,将膜前体气体以一定流量连续引入罩壳内,并从罩壳内抽出未反应的和离解的气体以便在罩壳内提供低压力,以及将微波能量引入罩壳内的气体中,从而通过分布式电子回旋共振(DECR)在其中产生等离子体并使材料从等离子体沉积至衬底上,其中在材料的沉积过程中改变所述流量,以便使带隙在沉积材料的厚度上变化。2.权利要求l的方法,其中所述沉积的膜是氢化的无定形硅。3.权利要求2的方法,其中所述膜前体气体包含硅烷。4.权利要求3的方法,其中所述膜前体气体包含SiH4。5.权利要求l的方法,其中所述沉积的膜是无定形硅合金。6.前述权利要求任一项的方法,其中通过设置形成二维网络的装置产生等离子体。7.权利要求6的方法,其中通过矩阵DECR产生等离子体。8.前述权利要求任一项的方法,其中在所述衬底上连续沉积多个层,每一层具有比前一层更大的带隙。9.权利要求1-7任一项的方法,其中在所述衬底上连续沉积多个层,每一层具有比前一层更小的带隙。10.权利要求l-7任一项的方法,其中沉积所述层以便使得带隙在与要沉积的第一层和最后一层都隔开的点处具有最小值。11.权利要求l-7任一项的方法,其中通过以连续、无阶跃方式改变流量使所述膜的带隙在全部或部分的膜厚度上连续且无阶跃地变化。12.—种制造太阳能电池的方法,其中在n掺杂材料的衬底上通过前述权利要求任一项的方法形成无定形材料的膜,并在该无定形材料的膜上形成P掺杂材料层。13.—种制造太阳能电池的方法,其中在p掺杂材料的衬底上通过前述权利要求任一项的方法形成无定形材料的膜,并在该无定形材料的膜上形成n掺杂材料层。全文摘要描述一种通过从等离子体沉积而在衬底上形成无定形材料膜的方法。将衬底放在罩壳中,将膜前体气体引入罩壳内,并从罩壳内抽出未反应的和离解的气体以便在其中提供低压力。将微波能量引入罩壳内的气体中,从而通过分布式电子回旋共振(DECR)在其中产生等离子体并使材料从等离子体沉积至衬底上。在材料的沉积过程中改变所述膜前体气体流量,以便使带隙在沉积材料的厚度上变化。文档编号H01J37/32GK101681784SQ200780040795公开日2010年3月24日申请日期2007年10月26日优先权日2006年11月2日发明者D·戴纳卡,P·布尔金,P·狄斯坎普,P·罗卡艾卡巴罗卡斯,P·里波尔,T·科尔恩德米尔伦德尔申请人:陶氏康宁公司;巴黎综合理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1