加工热轧带钢的方法

文档序号:3038884阅读:237来源:国知局
专利名称:加工热轧带钢的方法
技术领域
本发明涉及加工热轧不锈钢带钢,特别是奥氏体不锈钢带钢的方法,目的是减小厚度,增加机械强度和提供良好的表面光洁度。
不锈钢带钢可以热轧至最终厚度为3毫米的数量级。在带钢经过包括除了其它东西之外,还有带钢酸洗的表面处理之后,热轧带钢可以不需要进一步减小厚度而在某些应用中使用。然而,在许多其他应用场合,热轧带钢还需要后续的冷轧。这个冷轧过程力图达到一个或更多或全部的以下效果,即进一步减小带钢的厚度,增加机械强度和/或改善带钢的表面。
在冷轧之前,热轧带钢要退火和酸洗,并且在带钢的两个末端上要焊接边角料端。实际的冷轧过程通常是通过冷轧机,在几个轧道中进行的,使厚度可以减少大约80%以下,通常为10~60%,例如,对于用作建筑材料的冷轧带钢,在滑入较窄的轧道后的情况。在带钢最后绕成盘状之前,必需除去边角料端。
冷轧可以大大增加钢的机械强度,这点对许多应用场合是所希望的,而且这点特别与奥氏体不锈钢的冷轧有关。然而,带钢实际上也变成不可能加工,例如弯曲,模锻,压花等,而这些性质,在许多情况下,为了使带钢能够用作建筑材料是必需的。因此,必需在完成冷轧过程之后,通过将带钢加热至钢的再结晶温度以上,即1050℃温度以上,对带钢进行退火。这种处理使带钢的机械强度大大降低,通常,降至250兆帕屈服点的数量级。根据现行标准,在建筑工作中必需考虑190~220兆帕的屈服点。
虽然,通常的技术在若干方面是不合理的,但是用通常技术获得的性质,例如较低的屈服点,在大多数情况下是理想的性质。但是,为了使制造合理化,已经提出了一些改进措施。例如,在SE 467 055(WO 93/19211)中提出了与退火过程一起,通过拉伸热带钢,使厚度减小。然而,较高的机械强度在某些应用中,例如建筑应用,是理想的性质。当使用上述方法时,在这个后一方面,最终的冷轧带钢的性质没有改善,并且这种所期望的改善也得不到。
本发明的目的是要生产一种不锈钢的带钢,特别是不锈钢的奥氏体带钢,这种带钢具有理想的薄的厚度和比用通常的冷轧不锈钢奥氏体带钢的制造方法得到的机械强度较高的机械强度,同时可以得到可接受的表面光洁度。这些和其他一些目的可以通过对热轧带钢进行冷轧,使其厚度至少减小10%,达到比光整加工完毕的产品的期望最终厚度至少大2%,最多大10%的厚度而实现,采用的方法是使这样冷轧出来的带钢在1050℃和1200℃之间的温度中退火,并且在所述退火过程之后,对带钢进行冷拉伸,使带钢增塑和永久伸长,厚度减小2~10%。
根据本发明经受冷轧的带钢可以由除了在热轧后冷却和绕成盘状之外,没有经受任何处理的热轧带钢构成。这样,在这种情况下,冷轧是在表面上还残留有氧化皮的热轧带钢上进行的。然而,冷轧过程的开始材料也可以由经过包括热轧带钢酸洗在内的过程技术表面处理过的带钢组成。
虽然,冷轧过程最好在单一轧道内进行,但原则上,冷轧过程可以通过相应数目的相互顺序排列的轧机,在几个轧道内进行。在一个单一轧道中能够得到的厚度的最大减小量决定于钢的等级,带钢的初始尺寸和轧机的容量。一般可以说,单一轧道产生的厚度最大减小约为30%,通常最大为25%。这意味着,在大多数情况下,当利用本发明时,热轧带钢的厚度减小10~60%,最好减小10~40%,这个减小量决定于带钢的初始厚度和所希望的最终厚度。带钢在1050℃和1200℃之间的温度下退火,然后,在冷拉伸之前冷却至室温。
带钢在带钢拉伸机中进行冷拉伸,带钢拉伸机可以为任何已知的形式,例如,在酸洗之前,用于去除热轧带钢表面氧化皮的那种。带钢最好是通过高度的延展和围绕辊子的弯曲的综合作用进行冷拉伸。冷拉伸过程进行至这个程度,即使带钢永久性地伸长,并因此使厚度减小2~10%。作为带钢高度延展和围绕着较小直径的辊子弯曲的综合作用结果,带钢宽度的减小是极小的,实际上可以忽略。因此,带钢厚度的减小实质上与所达到的伸长程度相适应。作为冷拉伸过程的结果,材料被增塑化,屈服点增加100兆帕的数量级,但在某些等级钢的情况下,仍然较高。
本发明方法的特点是,它可以连续地进行,这意味着该方法不包括任何反向的工序,例如,在不同工序之间的反向滚轧,重新绕卷或类似的反向工序,为了使连续过程成为可能,制造线最好以已知的方式,在制造链的开始和末端处,即在带钢的冷轧和接着的冷拉伸之前包括若干个带钢料仓,即所谓的打环装置。
本发明的方法通常还包括退火带钢的酸洗。虽然带钢也可以在冷拉伸过程以后进行酸洗,但最好是在冷拉伸之前酸洗。带钢最好在酸洗之前进行喷丸清理。
本发明的其他特点和它具有的优点,与所生产的产品性质一起将从下述对本发明的详细说明中清楚地了解。
现在,参照附图对本发明进行较详细的说明,其中

图1非常示意性表示根据第一个优选实施例的本发明的原理。
图2较详细地表示根据优选实施例的制造线。
图3以较大的比例和较详细地表示本发明方法中所采用的冷拉伸机。
图4为柱状图,它表示在冷拉伸之前和之后所达到的0.2试验应力值。
图5表示用相应方法得到的最终的抗拉强度。
图6为柱状图,它表示用不同的冷拉伸程度所得到的厚度的减小情况。
图7表示以相应的方法,在不同的冷拉伸程度下,宽度减小的情况,和图8非常示意性表示使用本发明方法的改良的制造线。
非常示意性地表示在图1中的制造线包括一台要开卷的绕成盘状(卷取机)的热轧带钢开卷纹盘1,由单一的所谓Z-高度形的辊子台架2组成的冷轧机2,退火炉3,冷却箱4,喷丸机16,酸洗池5,冷拉伸机6和容纳光整加工过的带钢的重绕机7。
图2更详细地表示制造线,其中,对于与图1相应的部件采用同一参考数字标注。除了上述的部件之外,制造线还包括剪切部件8,焊接机9,将从卷取机1取出的热轧带钢11A送往剪切部件8和焊接机9的带钢送料器10,一般用12表示的热轧带钢打环装置,测量辊轧机2上游热轧带钢11A的厚度的厚度测量装置13和测量冷轧机2下游的冷轧带钢11B的厚度的厚度测量装置14,喷丸机16,在酸洗池5下游的擦拭和冲洗箱17,一对导向滚子18,冷拉伸机6,用于存贮冷轧和冷拉伸光整过的带钢11F的,一般用20表示的打环装置,前送料器21和用于操作重绕机7的,合在一起用22表示的驱动马达和动力传动装置。
制造线还包括大量的导向滚子,方向改变滚子和包括二个或四个轧辊的S-轧机组件。S-轧机组件由在焊接机9下游的两轧辊S-轧机25,在冷轧机2上游的两轧辊S-轧机26,在冷轧机2和退火炉3之间的四轧辊S-轧机27,在冷拉伸机6上游的四轧辊S-轧机28,在冷拉伸机6下游的两轧辊S-轧机29,带钢中心导向装置19,带钢料仓20和在打环装置20与重绕机7之间的终端两轧辊S-部件31组成。S-轧机的原本功能为增加或减小带钢的张力和保持带钢在拉紧状态。
热轧带钢打环装置12包括方向改变滚子34,35,36和37,其中,滚子35以已知的方式与带钢拉紧部件连接。相应地,冷轧带钢打环装置20包括方向改变滚子39,40,41,42,43和44,其中,滚子40也用已知的方式与带钢拉紧部件连接。
图2所示的制造线按下述方式工作。假如制造处在图中所示的阶段,即热轧带钢打环装置12和冷轧带钢打环装置20包含有给定数量的带钢,热轧带钢11A正在从卷取机1上开卷,而光整完毕的带钢11F正在绕缠在重绕机7上。该线由几个驱动滚子,原始驱动的S-轧机轧辊,以已知的方式驱动。当通过热轧带钢打环装置12以后,带钢的厚度由在冷轧机2上游的厚度测量装置13测量,并且在轧机2中,在单一的轧道内被冷轧,此后,冷轧带钢11B的厚度由厚度测量装置14测量。热轧带钢11A通常的初始厚度为3~4毫米,在冷轧机2中被减小10~30%,轧辊辊隙根据厚度测量结果进行调整,以便能得到理想厚度的冷轧带钢11B,该理想厚度相应于比在制造线的终端部分,冷拉伸带钢之后的期望的最终尺寸大2~10%。
冷轧过程使带钢11B的硬度大大增加,因此,在通过四轧辊S-轧机27以后,带钢进行退火炉3。带钢11B在退火炉3中使其厚度彻底加热至1050℃和1200℃之间的温度,即加热至奥氏体钢的再结晶温度以上的温度,并在这个温度下保持足够长的时间,使钢完全再结晶。然后,带钢在冷却箱4中冷却。当在退火炉3中加热带钢时,根据本实施例,加热不在保护气体氛围中进行(而这点本质上是可能的),因此在带钢的侧面上形成氧化物,部分是氧化皮形式的氧化物。带钢在喷丸机16中被完全除去氧化皮,然后,在酸洗池5中酸洗,酸洗池5包括有相应的酸洗化合物,其中,可用已知的方式影响酸洗过程,这样,经过冷轧,退火和酸洗的带钢11E被引导通过擦拭和冲洗箱17,此后,再通过在四轧辊S-轧机28和两轧辊S-轧机29之间的冷拉伸机6,而该轧机28和29的作用是保持带钢在拉紧状态,并防止带钢滑动。
图3表示冷拉伸机6的设计。冷拉伸机6包括三个带钢拉伸部件47,48和49。每一个拉伸部件包括相应的,以轴颈支承在静止基座53,54,55中的下辊子50,51,52和相应的以轴颈支承在相应的辊子夹头59,60,61中的上拉伸辊子56,57,58。辊子夹头相对于带钢和相对于下拉伸辊子50,51,52的位置可以利用动力油缸62,63,64分别进行调整。上带钢拉伸辊子56,57,58最初是处在上端位置(没有示出),这样,在S-轧机28和29之间保持拉伸状态的带钢11E将毕直地延伸通过冷拉伸机6。从这个起始位置开始,上拉伸辊子56,57和58利用动力油缸62,63,64降低至图3所示位置,从而带钢11E-11F将形成一弯弯曲曲的通道,如图3所示,同时,带钢11E-11F在其冷状态下被拉伸至这样大的程度,使得带钢被增塑化。根据图示实施例,下拉伸辊子50,51和52相应地具有直径为70,200和70毫米,而上拉伸辊子56,57和58相应地具有直径为70,70和200毫米。作为可调整的上带钢拉伸辊子56,57,58所选择的设定结果和由于辊子所选择的直径,当带钢连续被牵拉通过冷轧机6和围绕拉伸辊子弯曲时,带钢通过冷轧机的那部分将被增塑,这样可得到带钢永久的伸长和带钢厚度减小2~10%,通常为2~5%。同时,带钢的宽度也稍微减小,虽然减小量仅为伸长量的十分之一,并可以基本上忽略。带钢的永久伸长也会造成厚度减小,这个减小量基本上相应于带钢的伸长量。通过使在冷轧机2中冷轧带钢所得到的带钢厚度的减小与在冷拉伸机6中冷拉伸带钢所得到的厚度减小相适应即可得到理想的最终厚度的光整加工过的带钢11F,所述带钢在通过冷轧带钢打环装置20之后,卷绕在重绕机7上。上述集成制造线的驱动机械由与带钢重绕机7连接的驱动机械22组成。
当希望得到比只包括一台轧制机台和一台冷拉伸机的冷轧机所得到的减小量更大的减小量时,可将许多辊轧机台2A,2B等依次串联连接起来,如图8所示。这个图还表示了将酸洗池5放在冷拉伸机6下游的可能性。在这种情况下,冷拉伸机也可起清除带钢表面氧化皮的作用,从而有可能不需要在酸洗池上游的喷丸机。
在试验中使用了三种不同的标准化的奥氏体不锈钢等级,ASTM 304,316L和316Ti。在对早先经过冷轧和退火(再结晶处理的)的材料进行冷拉伸之前和之后,要决定材料的机械性质。试验的304材料的机械强度性质列在表1中,其中ε-名义的伸长率(%)Rp 0.2-在横向方向的0.2%试验应力,(兆帕);Rm-在横向方向的最终抗拉强度(兆帕
表2表示在带钢冷拉伸之前和之后的测量的带钢宽度和带钢厚度,并且也表示在冷拉伸过程中得到的厚度和宽度按百分比排列的减小量。
表1和表2所示的结果也用图形表示在图4和5及图6和7中。
权利要求
1.一种加工热轧不锈钢带钢, 特别是奥氏体不锈钢带钢的方法,目的是减小厚度和增加所述带钢的机械强度,其特征是,—对热轧带钢进行冷轧,使其厚度减小至少10%达到比光整加工完毕的产品的期望最终厚度至少大2%和至多大10%的厚度;—在1050℃和1250℃之间的温度下对这样冷轧出来的带钢进行退火;—在所述退火过程之后,冷拉伸带钢,使带钢增塑化和永久伸长,从而使厚度减小2~10%。
2.根据权利要求1的方法,其特征是冷拉伸过程受到当带钢拉伸时,带钢的拉伸和带钢围绕辊子的弯曲的综合作用的影响。
3.根据权利要求2的方法,其特征是带钢拉伸过程中,将带钢压紧在所述辊子上,并弯曲所述带钢,使其曲率半径小于200毫米,最好半径至少为20毫米,至多为150毫米。
4.根据权利要求1~3中任何一条的方法,其特征是,在所述退火处理之前,对热轧带钢进行冷轧,达到厚度减小10~60%。
5.根据权利要求4的方法,其特征是在所述退火处理之前,对热轧带钢进行冷轧,以得到厚度减小10~30%。
6.根据权利要求1~5中的任何一条的方法,其特征是,在所述退火处理之后,连续地冷拉伸带钢,使带钢永久伸长,并从而减小其厚度3~5%。
全文摘要
本发明涉及加工热轧不锈钢带钢,特别是奥氏体不锈钢带钢的方法,可减小带钢的厚度和增加其机械强度。方法为对热轧带钢进行冷轧,使其厚度减小至少10%,达到比光整加工完毕的产品的期望最终厚度至少大2%,至多大10%的厚度;在1050℃和1250℃之间的温度下,对这样冷轧出来的带钢进行退火;冷拉伸带钢,使带钢增塑化和永久伸长,从而使其厚度减小2~10%。
文档编号B21D25/00GK1135939SQ9610459
公开日1996年11月20日 申请日期1996年4月19日 优先权日1995年4月21日
发明者斯登·俊盖尔, 克里斯特·海尔 申请人:阿维达·谢菲尔德公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1