通过经皮导管导向的血管内阻塞装置的制作方法

文档序号:3040710阅读:174来源:国知局
专利名称:通过经皮导管导向的血管内阻塞装置的制作方法
本申请是申请序号为08/272,335,申请日为1994年7月8日名称为“制造医疗装置的方法;血管内阻塞装置”的申请的部分继续申请。
背景技术
本发明一般涉及用于治疗某些医疗症状的血管内装置,更具体地说,涉及用于对房间隔缺损(ASD)和动脉导管未闭(PDA)治疗的血管内阻塞装置。根据本发明制造的装置特别适合于通过导管之类输送到病人血管系统或病人体内的与血管相似的组织的远端。
现在技术描述在各种医疗程序中使用各种各样的血管内装置。某些血管内装置例如导管和导线的使用是为输送液体或其它医疗装置到病人体内特定位置,例如,在血管系统中选择的位置。其它更复杂的是在治疗特定症状时使用该类装置,例如用在消除血管阻塞的或用于治疗瓣膜缺损之类的装置。
在某些情况下,可能需要阻塞病人的血管,例如中止通过动脉向肿瘤或其它损伤部位的血液流动。目前,通常将Ivalon颗粒(用于血管阻塞颗粒的商标名称)加入和将线圈弹簧中的短段插入血管中的所需位置可以简单地实现这一点。这些“栓塞剂”最终在血管中积聚,经常浮动在阻塞血管之前被通开的位置的下游侧。这种手术经常在操作中受到限制,特别是由于不能将栓塞剂精确地定位。
与由Landymore等人在第4,836,204号美国专利中公开的相似的各种气囊导管已由外科医生用来临时阻塞瓣膜缺陷,直到病人在打开心脏的外科手术后足够稳定为止。还将可分离的气囊导管用于阻塞病人的血管。当使用这种导管时,一可扩展的气囊被携带至导管的远端。当将该导管导入所需位置时,气囊充满液体,直到其填满血管并积聚在其中。将固化在气囊内侧的树脂例如丙烯腈可以用于永久性地固定气囊的尺寸和形状。然后可以将气囊由导管的端部卸下并留在原地。
然而这种气囊栓塞作用易于引起某些安全问题。如气囊未被充满,就不能牢固地固定在血管中,可以旋转或在血管内移动到另一位置,很可能失去如上所述的栓塞作用。为避免这一问题,外科医生可以过量填充气囊,而导致气囊可能破裂和使树脂流入病人的血流中,这是常出现的。
过去已经提出机械式栓塞装置,过滤器和活门,其中某些公开在King等人的第3,874,388号美国专利;Das的第5,334,217号美国专利以及Marks的第5,108,420号美国专利中。这些装置是预先装入引导器或输送导管中的并且不能由外科医生容易地装入。此外,在使用这些装置的过程中,再置入输送导管是困难的,因此限制了这些装置的有效使用。
此外,即使某些这类装置证明能有效阻塞,它们也是相当昂贵的,制造是耗时的。例如,某些血管内血液过滤器是由多个特定形状的支臂构成的,它们适于填满血管并插到血管壁上。在制造大量的这种过滤器时,各支壁必须单独地形成,然后费力使之彼此固定,经常需要用手来固定以便组装成最终的过滤器。这样作不仅要使用技术人力,而且增加这种装置的成本,原因在于每一件都必须用手来制作,导致更难以进行质量控制。这种制造困难和费用高并不限于这类过滤器,而是在很多其它的血管内装置中都同样经历。
当使用这类装置来阻塞ASD时,压力以及由此装置移动的概率随通道的尺寸的平方增加。因而,这些装置必须具有很大的固位裙部。通常,ASD的位置限定了固位裙部的尺寸。因此,需要利用相对小的固位裙部可制造ASD阻塞器。此外,在先装置的形状(例如方形、三角形、五角形、六角形和八角形,都需要较大的接触面积,各个角伸到动脉的游离壁。每欠动脉收缩时(每天约100,000次),在该现有技术的装置内的内部金属丝被弯曲,使所有表层中金属丝约30%产生结构性的疲劳断裂。此外,在先的装置需要一French14-16引导导管,不可能利用这些装置来治疗患有先天性缺陷的儿童。
因此,最好提供一种可靠的栓塞装置,其既易于通过一6-7French导管使用,又能够易于准确地置于血管中。还希望提供一种可重复使用的用于病人体内血管中的装置,其既经济又能产生持久的可重现的效果。
发明概述本发明提供一种可靠的血管内阻塞装置,其可治疗房间隔缺损(下文简称ASD)和动脉导管未闭(下文简称PDA)。当由多个弹性金属丝形成的弹性金属纤维制品构成这类血管内装置时,将各线编织以形成一种弹性材料,其能通过热处理确定所需的形状。然后将这种编织的纤维制品变形使之与模制元件的模制表面相一致,在与模制元件的该表面相接触的情况下和在升高的温度下对编织的纤维制品进行热处理。选择热处理的时间和温度,以便将编织的纤维制品确定在其变形的状态下。在热处理之后,将纤维制品取下与模制元件脱离接触,维持在变形状态下的形状。这样热处理的编织的纤维制品形成扩展状态的医疗装置,可以通过导管展开使用在病人体内的管道内。
本发明的一些实施例还提供医疗装置特定的形状,根据本发明构成的装置的形状可适于预定的医疗程序。本发明的这些装置是由编织的金属纤维制品构成的,并且具有扩展的形状和压缩的形状。在使用中,可以将一导向管定位于病人体内的管道内,并将装置推进到与用于治疗生理症状的处置部位相邻近的导管的远端。按照上面概括介绍的方法制造的和按预定形状构成的医疗装置可以被压缩并插入到导管的内腔。推动该装置通过导管并伸出其远端,同时由于它的记忆特性,其接近处置部位会返回到原扩展的状态。根据第一个实施例,一细长形的医疗装置具有管状的中部和一对扩展的直径部分,每个扩展的直径部分位于该中部的一端。在另一个实施例中,该医疗装置呈钟形,其细长的主体具有带锥度的第一端和较大的第二端,第二端形成一纤维制品盘状部,其朝向为当在管道中使用时垂直于管道的轴线。
附图简要说明

图1A和图1B表示一种适用于本发明的金属纤维制品;图2A是一模制元件的分解侧视图,该元件上有插入一定长度的适用于构成本发明的医疗装置的金属纤维制品;图2B是图2A中所示模制元件的分解透视图;图3A是表示处于局部组装状态的图2A和图2B中的模制元件的透视图;图3B是图3A中重点区域的一个部分的靠拢状态示意图,表示在其中一个模制元件腔内的金属纤维制品的压缩状况;图4是表示处于组装状态的图2A和图2B中的模制元件的剖面图,具有的金属纤维制品形成在模制元件腔内;图5A是根据本发明的医疗装置的侧视图;图5B是根据本发明的医疗装置的端视图;图6A是根据本发明的另一实施例的医疗装置的侧视图;图6B是根据本发明的另一实施例的医疗装置的端视图;图6C是根据本发明的另一实施例的医疗装置的透视图;图7是一适用于构成图6A~图6C中所示的医疗装置的模制元件的一侧的剖视图;图8是一示意图,表示在病人的血管系统中的中心分路(Shunt)中采用的图6A~图6C中的装置;图9A是根据另一优选实施例的医疗装置的侧视图;图9B是图9A中所示医疗装置的端视图;图10A是一适用于构成图9A和图9B中的实施例的一种模制元件的侧视图;图10B是一适用于构成图9A和图9B中的实施例的另一种模制元件的剖视图;图10C是一适用于构成图9A和图9B中的实施例的再一种模制元件的剖视图;图11是表示一拉伸的和由输送导管的内腔中部分向外伸出的ASD装置的放大的局部剖视图;图12是图6A~图6C中所示类型的PDA装置的局部剖视图,其中所示的PDA装置是表示拉伸的和由输送导管的内腔向外部分伸出的;图13是一ASD装置的放大的侧立体图,是表示其预先成形形状的;图14是图13中的ASD装置的侧立体图,是表示轻微拉伸的和填充有聚酯纤维;图15是图13中的ASD装置的侧立体图,是表示拉伸的和填充有聚酯纤维;图16是图13中的ASD装置的局部断面的侧立体图,所示位置处在病人心脏的一ASD内部;图17是另一ASD装置的放大的侧立体图,是表示其预成形形态的;以及图18是图16中的ASD装置的侧立体图,是表示拉伸的和填充有聚酯纤维。
优选实施例的详细说明本发明提供一种用在病人体内的各种管道(例如血管、泌尿道、胆管等)分路中的经皮导管导引的血管内阻塞装置。在利用本发明的方法制造医疗装置时,提供一种金属纤维制品10。该纤维制品是由多条金属丝构成的,在各金属丝之间按预定的相对取向。图1A和图1B表示在本发明的方法中适用的金属纤维制品的两个实例。
在图1A的纤维制品中,各金属丝形成两组基本上平行的总体呈螺旋状的金属丝,一组金属丝在其旋转方向与另一组相反。这样形成一总体呈管状的纤维制品,在纤维制品业称之为管状编织物。这种管状编织物在纤维制品技术领域是公知的,并且在医疗装置领域中作为管状纤维制品找到某些应用,例如在加强导向用或诊断用导管壁时使用。由于这些编织物是公知的,在这里不必详细讨论。
在特定的使用情况,金属丝的螺距(Pitch)(即在各金属丝和编织物的轴线之间形成的角度)以及纤维制品的纬密(Pick)(即单位长度的圈数)可以按照需要调节。例如,所制成的医疗装置要用于阻塞管道(Channel)(且置于其中),则纤维制品的螺距和纬密将往往会比如果简单地将该装置对通过其中的体液过滤时更高。
例如,在利用如图1A中所示的管状编织物来构成如在图5A和图5B中所表示的装置时,直径约4毫米,螺距约50°以及纬密约74(每英寸线段)的管状编织物可适合于装配在阻塞内径约2到4毫米量级的管道中使用的装置,下面结合图5A和图5B中的实施例详细介绍。
图1B表示适用于本发明的方法的另一种类型的纤维制品。这种纤维制品是一种更常用的纤维制品,可以按平的编织片层、针织的片层等的形式构成。在图1B所示的编织纤维制品中,也有两组平行的金属丝14和14’,其中一组金属丝相对于另一组成一定角度,例如相互垂直(按约90°的螺距)。正如上面指出的,这种纤维制品的螺距和纬密(或在粘接纤维制品的情况下,针织物的纬密和图形,例如Jersey或双面针织品)可以选择,以便使最终的医疗装置的所需性能达到最佳。
应用于本方法中的金属纤维制品的金属丝应由一种既要有弹性又能通过热处理确定所需的形状的材料构成。适合于这一目的材料包含在领域被称为Elgeloy的以钴为基础的低热膨胀合金、按商标名称为Hastelloy可由Haynes International购得的以镍为基础的高温高强度“超级合金(Superalloys)”、由International Nickel按商标名称Incoloy销售的以镍为基础的可热处理的合金,以及一些不同品牌的不锈钢。在选择适用作金属线的材料时一个重要的因素是当进行预定的热处理时,金属线保持适当量值的由模制表面(如下面介绍)引起的变形。
能满足这些条件的其中一类材料是所谓的形状记忆合金。这些合金往往具有一引起相变的温度,使材料具有优选的构造,通过将该材料加热超过某一转变温度使材料引起相变可以将这种优选构形确定。当该合金冷却降温时,合金将“记忆”其在热处理的过程中呈现的形状,并且如果由于这样作不受约束,其将采取该形状。
一种特别优选的适用于本发明方法的形状记忆合金是镍钛金属互化物,即一种镍和钛的近于理想配比的合金,其还可以包含其它少量金属,以便达到预期的性能。在本技术领域包含适当成份和按适当处理要求的NiTi合金例如镍钛金属互化物是公知的,对这类合金这里不需要再讨论。例如第5,067,489号(Lind)和4,991,602号(Amplatz等人)的美国专利公开了在导线中采用NiTi形状记忆合金,其中的论述这里引用可供参考。这种NiTi合金至少一些方面是优选的,因为它们是可市售的,并且比其它形状记忆合金来说对于处理这类合金更熟悉,NiTi合金还具有很大的弹性,被称为是“超弹性的”或“假塑性的”。这种弹性将有助于使本发明的装置返回到预先确定的扩展的形状,展开使用。
在形成本发明制造的医疗装置时,由例如通过编织各金属丝以形成长的管状编织物形成的大件纤维制品截成适当尺寸的金属纤维制品段。被截成的纤维制品段的尺寸很大程度上取决于要由其制成的医疗装置的尺寸和形状。
当将纤维制品截为预期的尺寸时,应小心进行,以保证纤维制品不致松散。在例如由NiTi合金构成管状编织物的情况下,除非加以限制,各个金属丝往往会返回到它们的热定形时的构形。如果对编织物进行热处理,以便将各金属丝确定到已编制的构形,它们就会维持在编织的形状,并且仅端部松散。然而,不对编织物进行热处理以简单方式制成编织物可以更经济,这是由于下面将指出的,在制造医疗装置的过程中,该纤维制品还要再次热处理。
在这种未加处理的NiTi纤维制品中,各金属丝往往会返回到它们的未编织时的状态,如果不使被截断编织物长度方向的端部(以便制造该装置)彼此约束起来,否则编织物就可能很快地完全松散。按照已经证明能防止编织物松散的方法是在两个位置夹紧该编织物,并且截断编织物时要留下在端部处被夹紧的编织物的一定长度(在图5A中的15),以此,有效地限定形成在纤维制品的封口长度范围内的空间。这些夹具15将被截断的各端部保持在一起,并防止编织物松散。
另外,在截断编织物之前可以将预期长度的端部低温焊、钎焊、焊接或其它方式(例如利用所适应生物的有机粘接材料)固定在一起。虽然低温焊和钎焊NiTi合金已证明是很困难,但通过点焊利用激光焊接机可以将各端点焊在一起。
当使用平片的纤维制品例如图1B中所示的编织的纤维制品时,也存在相同的问题。使用这种纤维制品,在将纤维制品截开之前可以将纤维制品本身反转,以形成一凹槽或凹部,并且可以围绕这一凹槽将纤维制品夹紧,形成一个空袋。如果希望将该纤维制品通常保持在平整状态,可在该片从更大的片料上截下之前将所需纤维制品单件中相邻周边的各金属丝的结合部焊在一起。通过将各金属丝的端部连接一起,防止由未经处理的形状记忆合金等形成的纤维制品片层。
一旦得到适当尺寸的单件金属纤维制品,将该纤维制品产生变形,以便总体与一模制元件的表面形状一致。结合图2~图10下面的讨论将会更充分地认识到,纤维制品这样变形将使金属纤维制品中的各金属丝的相对位置由它们的起始排列重新取位,成为第二重新取位的构形。模制元件的形状应加以选择,以便使该纤维制品变形基本上成为医疗装置所需的形状。
模制元件可以是单件的,或者可以由一系列的模制用件构成,各模制元件一起限定该使纤维制品总体与之一致的表面。模制元件可以定位在由纤维制品包围的空间内部,或者在这一空间的外部,或者甚至在这一空间的内侧和外侧。
为了说明怎样可以构成一个模具和怎样根据本发明的方法加以使用,必须参阅图2~图5。在图2~图4中,模制元件20是由一些分离的单件构成的,这些单件可以彼此固定在一起以便形成该模制元件20。在使用这样一种多件式的模制元件时,该模具可以围绕截成一定长度的纤维制品10来组装,以此使纤维制品变形,以便总体与模制元件的模制表面(或一些表面)相一致。
在图2~图4中所示的模制元件中,金属纤维制品10产生变形以便总体与模制元件20的表面一致,模制元件包含一中心段部分30和一对端板40。首先来讨论中心段部分30,该中心段部分希望由相对的两半部32,32构成,它们可以彼此移动分离,以便将金属纤维制品10引入该模具。虽然这两半部32、32在图上是按照彼此完全分开表示的,但应理解,如果需要这两半部是例如利用铰链之类可以相互连接的。在图2和图3中所示的模制元件20的相对的两半部每个都包含一对半圆形凹槽,它们在一形成总体呈半圆以开口的隆起部的一侧是相对的。当两半部组装在一起形成该装置时,如图3可以清楚地看出,在相对的两半部32,32中的半圆形并相互配合形成一通过中心段部分30的总体为圆形的成形用孔口36。与之相似,在该两半部中的两半圆形凹槽一起形成一对总体为圆形的中心凹槽34,这一凹槽形成在中心段部分的一侧表面上。
中心段的总体形状和尺寸可以随要求而变化,一般由该中心凹槽34和成形用孔口36的尺寸来限定最终完成的装置的中部的尺寸和形状,正如下面所解释的。如果希望这样,每个半部32可以设有一可手动抓住的凸起38。如附图中所示的实施例中,这一凸起38所在位置远离各自半部的相互贴合的表面。这样一种可手动抓住的凸起38使操作者能容易地将两半部连接起来,形成凹槽34和成形用孔口36。
中心段部分适合于与一对端板以相互配合方式结合,以便形成所需的装置。在图2和图3所示的实施例中,中心段部分30具有一对平整外表面39,每个外表面都适合与两个端板40其中之一的内表面42相结合。每一端板包含一加压盘44,其由端板的内表面42横向向内整体延伸。这一加压盘44的尺寸应使其能容纳在中心段部分30中的一个表面上形成的一个中心凹槽34。下面为了更充分地解释,每个加压盘44包含一内腔46,用于容纳金属纤维制品10的一定长度的端部。
还可以贯通每一端板和中心段部分30形成一或多个管道48,用以容纳螺栓之类。通过将螺栓穿过这些管道,可以将模制元件20组装起来,并且在热处理的过程中正如下面概括介绍的将金属纤维制品约束在所需的形状下。
在使用图2~图4所示的模制元件20时,可以将一定长度的金属纤维制品10定位于中心部分30的相对的两半部32之间。在图2~图4的模制元件20的附图中,金属纤维制品10是一管状编织物例如图1A中所示的。应当提供足够长度的管状编织物,以使该纤维制品与模制元件表面相一致,如下面所解释的。此外,如上面指出的,应固紧形成管状编织物的各金属丝的端部,以防止金属纤维制品松散。
可以将金属编织物一定长度的中心段部分定位在两半部成形用孔口36其中之一的内部,以及中心段部分的两相对的半部32可以彼此贴靠连在一起,以便将金属编织物的中心部分约束在通过该中心段部分的中心成形用孔口36的内部。
当管状编织物制成时,该管状编织物往往会自然松驰,即在其大部分处形成直径方向上的松弛。如果不使该管状编织物以另外方式产生变形,当各金属丝处于其松驰状态时,它们往往会形成一具有预定直径的中空管。松弛的编织物的外径例如约4毫米。模制元件的中心段部分30中的成形用孔口36的相对尺寸和管状编织物的松驰的外径可以按照需要变化,以使所制成的医疗装置具有预期的形状。
在图2和图3所示的实施例中,成形用孔口36的内径最好稍小于管状编织物10的自然松弛的外径。因此,当将两半部32、32组装形成中心段部分30时,管状编织物10将在成形用孔口36内受到轻微压缩,这将有助于保证管状编织物与该形成为模制元件20的模制表面一部分的成形用孔口36内表面相一致。
如果需要,还可以提供一总体为圆柱形的内模制用部分(未示出)。这一内模制用部分的直径稍小于成形用孔口36的内径。在使用时,将该内模制用部分置于金属纤维制品的一定长度范围内,例如通过手动移动纤维制品的一些金属丝使之分开,令该内模制用部分可以通过开口部分。这内模制用部分应当定位在管状编织物内部的一定位置,即当组装模制元件时该位置处于中心段部分的成形用孔口36内部。在内模制用部分外表面和成形用孔口36的内表面之间要有足够的空间,以使纤维制品10的各金属丝能容纳在其间。
通过这样一种内模制用部分,可以非常精确地控制最终完成的医疗装置的中心部分的尺寸。在管状编织物10的自然松弛的外径小于成形用孔口36的内径的情况下,可能需要这样一种内模制用部分,以保证编织物的成形用孔口的内表面一致。然而,如果编织物的自然松弛的外径大于成形用孔口36的内径,就认为不需要这样一种内模制用部分。
正如上面所指出的,管状编织物的端部应当固住,以防止编织物松散。金属纤维制品10的每一端部最好分别容纳在两个端板40中之一内形成的内腔46中。如果使用一夹具(图2中的15),为了有效地将纤维制品的端部附着到端板40上,该夹具的尺寸选择应使之可以相对尚可地容纳在这两个内腔46中之一内。然后可以将两端板推向中心段部分30和彼此相向推动,直到每一端板中的加压盘44容纳在中心段30的中心凹槽34内。然后利用通过模制元件的通道48中的贯通螺栓之类,将模制元件可以夹紧就位,并且通过固紧装在螺栓(未示出)上的螺母加紧。
如图3A所示,当将端板推向中心段部分30时,将沿管状编织物10的轴线对其加压。当管状编织物处于其松驰状态时,如图1A所示,构成管状编织物的各金属丝将彼此相对处于第一预定的相对取位。而当管状编织物沿其轴线受到压缩时,纤维制品往往骤然远离该轴线,如图4所示。当纤维制品形成这样的变形时,金属纤维制品中的各金属丝的相对取位将变化。当模制元件最终组装时,金属纤维制品将与这一元件的模制表面总体一致。
在图2~图4中所示的模制元件20中,由成形用孔口的内表面,中心凹槽34的内表面和容纳在凹槽34中的加压盘44的表面一起形成模制表面。如果使用内模制部分,该部分的外圆柱表面可以认为是模制元件20的模制表面的一部分。因此,当模制元件20完全组装成时,金属纤维制品将会在某种程序上呈现哑铃形,在一对球之间具有相对窄的中心段部分,或许甚至成为盘形端部,如由图4可清楚看到的。
应当理解,在图2~图4中所示的该特定模制元件20的特定形状意在制成一个根据本发明的方法可使用的医疗装置,不过具有不同形状构造的其模制元件也可以采用。如果需要更复杂的形状,该模制元件可以具有更多个零件部分,不过要形成较简单的形状,该模制元件可以具有更少的零件部分。在一指定的模制元件中的零件部分的数目和这些零件部分的形状将几乎完全由所需的医疗装置的形状来确定,因为该模制元件需限定一总体上金属纤维制品要与之一致的模制表面。
因此,在图2~图4中所示的特定的模制元件20只不过意在作为一适用于构成一特定使用的医疗装置的模制元件的特定实例。下面结合图8和图10解释用于制成不同医疗装置的具有不同设计结构的其它模制元件,取决要制成的医疗装置的所需形状,可以由本技术领域的普通技术人员易于设计其它特定模制元件的形状和构造。
一旦利用总体与模制元件的模制表面相一致的金属纤维制品组装成模制元件20,可以在其与模制表面接触的同时,对纤维制品进行热处理。这种热处理很大程序上取决于所要形成金属纤维制品的金属丝的材料,不过对热处理的时间和温度应进行选择,以便使该纤维制品基本上确定在其变形状态,即其中各金属丝处于它们重新取位的相对构形,并且纤维制品总体与模制表面相一致。
热处理的时间和温度在很大程度上随用于构成金属丝的材料改变。正如上面指出的,用于构成金属丝的一种优选类别的材料是形状记忆合金,镍钛金属互化物、镍钛合金是特别优选的。如果在制造纤维制品中的金属丝时使用镍钛金属互化物,当该材料处于奥氏体的相态,金属丝往往会具有很大的弹性;这种很大的弹性的相态经常称之为“超弹性的”或“假塑性的”相态。通过将镍钛金属互化物加热到一定的相转变温度之上,当处于奥氏体的相态时,镍钛金属互化物的晶体结构可以被确定。这样将会“确定”纤维制品的形状以及处于各金属丝在热处理过程中所保持的位置下的相对位形。
在本技术领域中对镍钛金属互化物进行适当的热处理以固定所需的形状是公知的。螺旋形卷绕的镍钛金属互化物线圈应用在很多医疗场合中,例如在构成围绕各种导丝的末端长度通常附有的线圈。关于形成在这些医疗装置中的镍钛金属互化物已有各种各样的资料,所以这里不需要对优选用于本发明的镍钛金属互化物纤维制品的热处理的参数进行更详细的介绍。
简而言之,尽管已发现根据所要形成的装置的软度或硬度,将镍钛金属互化物纤维制品保持在约500℃至550℃持续约1至30分钟,将会使纤维制品固定在它的已变形的状态,即其中纤维制品与模制元件的模制表面相一致。在较低的温度下热处理时间就更长(例如在约350℃下约1小时),而在较高温度下时间会缩短(例如在900℃下时间约30秒)。这些参数可按需要变化,以适应镍钛金属互化物的严格成份变化、镍钛金属互化物的前期热处理、在最终制品中镍钛金属互化物的所需特性和其它因素方面的变化,这对本领域的技术人员是公知的。
取代依靠常规的加热方法,在本技术领域还公知向镍钛金属互化物通电流将其加热。在本发明中,通过将电极夹紧在如图5A中所示的金属纤维制品的两端处带有夹具15上来实现。为了实现所需的热处理利用该金属丝的电阻发热,于是可以将该金属丝加热,这样将不需要将整个模制元件加热到所需的热处理温度,从而将金属纤维制品加热到所需的温度。
在热处理后,将纤维制品取出不再与模制元件相接触并将基本上维持在已变形的状态。当使用图2~图4所示的模制元件20时,可以将螺栓(未示出)取下,并且按与组装模制元件的过程相反的顺序将模制元件的各种零件部分拆卸。如果使用内模制用部分,这一模制用部分可以按压组装模制元件20时将其放置在管状金属纤维制品中的相同方式取下。
图5A和图5B所示可利用图2~图4中的模制元件制成的医疗装置60的一个实施例。正如下面介绍的,图5A和图5B中的装置特别适用于阻塞在病人体内的一个管道,这类结构在用作血管阻塞装置时具有特殊的优点。
图5A中所示的血管阻塞装置60包含总体为管状的中间段部分62和一对扩展直径部分64。一个扩展直径的部分位于在总体为管状的中间段部分62的一端。在图5A和图5B所示的实施例中,扩展直径的部分64位于沿其长度约在中间的隆起部66。
管状中间段部分和扩展直径的部分的相对尺寸可以按需要变化。在这一特定实施例中,该医疗装置意在用作一种血管阻塞装置,以便止住通过病人血管的血液流动。当该装置60在病人的血管中展开使用时,它的轴线总地与血管的轴线相一致。本装置的哑铃形状意在限制血管阻塞装置60能够相对于血管轴线产生角度转动,从而基本上保证在操作者将其维持在血管内部的同一位置。
为了相对强地贴住血管的内腔,扩展直径的部分64的最大直径(在本实施例中其沿中间隆起部66形成)应当进行选择,以便其与要使用在其中的血管的内径至少一样大,并且最好比该直径较大一些。当将其使用在病人血管中时,该血管阻塞装置60将在两个隔开的位置处贴住该内腔。最好该装置60沿其轴线方向长度长于其最大直径尺寸。这样将防止血管阻塞装置60在内腔内部相对其轴线产生角度旋转,从而防止该装置变位和由于通过血管流动的血液而翻倒。
血管阻塞装置60的总体为管状的中间部分62和扩展直径的部分64的相对尺寸可以按需要变化,以适于任一特定应用场合。例如,中间部分62的外径可以处在扩展直径的部分64的最大直径的约1/4到1/3,中间部分62的长度可以为装置总长度的约20%~50%。尽管该装置60仅是用于阻塞血管,这些尺寸是适合的,但应理解,如果该装置要用于其它场合,这些尺寸可以变化,例如在打算将该装置仅用作血管过滤器而不是阻塞整个血管的情况下,或者将该装置应用在病人体内的不同管道中的情况下。
图5A和图5B中所示的装置60的直径长度比(即装置的长度与其最大直径或宽度之比)希望至少约为1.0,范围约1.0到3.0是优选的,直径长度比约2.0是较为优选的。较大的直径长度比将能防止该装置在与其轴线垂直的方向上旋转,这可以称之为逐个颠倒端部的翻滚(an end over end roll)。只要该装置中的扩展直径的部分64的外径足够大,足以将该装置适当牢固地靠紧其中使用该装置的管道的内腔,使该装置不能颠倒端部形成转动,这将有助于使该装置精确地保持在病人血管系统或在病人体内的其它管道中就位的位置。另外,由于具有这样的扩展直径的部分即它们的自然松弛的直径明显大于其中使用了该装置的血管的内腔,还应足以将该装置楔入血管中使之就位,而不会不适当地按装置的直径长度比安放。
在确定一些装置的性能时,在形成装置60时所采用的金属纤维制品10的纬密和螺距以及某些其它因素例如在管状编织物中使用的线数都是重要的。例如,纤维制品的纬密和螺距越大,纤维制品中金属丝的密度越大,则装置刚性就越大。线密度越大还将使装置线表面面积越大,这将总体上增强装置阻塞该使用装置的血管的趋势。通过涂覆一种溶血栓(Thrombolytic)剂可以使这种血栓作用增强,或者通过涂覆一种润滑的防血栓塞化合物可使该作用削弱。
当将该装置应用于病人的血管中时,血栓往往会汇集在金属丝的表面上。通过采用更大的线密度,金属丝的总表面积将增加,增加装置的血栓形成活动,使其能相对快地阻塞其中使用该装置的血管。由4毫米直径的管状编织物按至少约40的纬密(Pick)和至少约30°的螺距构成的该阻塞装置将形成足够的表面积,能在适当的一段时间内完全阻塞内径为约2~4毫米的血管。如果希望在使用装置60的血管中增加阻塞该血管的速率,可以将各种已知的血栓塞剂涂覆到该装置上。
图6A~图6C所示根据本发明的医疗装置的另一实施例。这种装置80具有总体为钟形的主体82和前侧向外扩展的端部84。这种装置特别适用的一种场合是阻塞在本技术领域称之为中心分路或动脉导管未闭(PDA)的缺陷。PDA是这样一种状态,即其中两个血管最普遍是主动脉和邻近心脏的肺动脉在它们的内腔之间产生分路。血液可以通过该分路在这两个血管之间直接流动,阻碍血液通过病人血管的正常流动。
下面结合图8更充分地解释,适于在各血管之间的分路中应用钟形主体82,同时前侧端部84则适于定位在主动脉内部,从而有助于该主体安放在分路中。该主体82和端部84的尺寸可根据需要变化以适于不同尺寸的分路。例如,该主体沿其总体圆柱形中部86的直径约为10毫米,沿其轴线的长度约25毫米。在这一装置中,主体的底部88可以径向向外张开,直到它的外径达到等于前侧端部84的外径,可以使直径处于约20毫米的量级。
底部88相对快地向外张开,以便形成一由主体的中部86径向向外带锥度的肩部。当将该装置应用在血管中时,这一肩部将贴靠具有较高压力待处置的血管内腔。该前侧端部84约束在血管内部并推动该主体底部88张开,以保证该肩部与血管壁相贴合,防止该装置80在分路中产生变位。
如上所述,本发明的装置能将形成金属纤维制品10的各金属丝的端部彼此固住,以防止纤维制品松散。在图6A~图6C中,夹具15用于将邻近装置的前侧端部84的各金属丝的端部固在一起。夹具15只不过是一种示意性描述。这些端部可以按另外的方式固定起来,例如通过焊接、钎焊、低温焊、利用可适应生物的粘接材料,或者按其它适当的方式固定。
利用另一种夹紧装置90将各金属丝朝后侧端部如图所示彼此固定起来。这一夹具90用于与示意性表示的夹具15相同的目的,即将各金属丝的端部相互连接。然而,夹具90还用于将装置80连接到输送装置(未示出)。在所示实施例中,夹具90总体呈圆柱形并具有用于容纳各线端部的一个凹槽,以防止各金属丝彼此相对移动,以及具有带螺纹的外表面。带螺纹的外表面适于容纳在输送装置的远端上的一圆柱形凹槽(未示出)内,并与输送装置凹槽的带螺纹的内表面相啮合。
输送装置(未示出)可以取任何适宜的形状,不过其最好包含一在远端具有凹槽的细长挠性金属柱身。该输送装置可以用于推动PDA阻塞装置80通过导管的内径,该导管用在病人体内的管道中,正如下面介绍的。当将该装置使用在导管的远端以外时,该装置仍由输送装置所限制。一旦确认装置80在分路中处于适当的位置,输送装置的柱身可以围绕其轴线旋转,以便由在输送装置中的凹槽松下夹具90。
通过使PDA装置80保持固定到输送装置上,操作者可以再拉回该装置,用以当确定在初步尝试中未能将该装置适当地定位时,重新进行定位。这种螺纹连接方式还使得操作者能控制导管远端以外采用的装置80的使用方式。正如下面将要解释的,当从装置取出导管时,其会因弹性返回到当纤维制品热处理时固定的优选的扩展形状,装置弹性返回到这一形状时,其可能会作用于导管的远端,其本身有效地朝外推动导管的该端。如果该装置在导管内部处于临界位置,则这种弹性作用可能导致该装置不适当地就位,例如在该装置位于在两个血管之间的分路中的情况下就会如此。由于在使用过程中,带螺纹的夹具90能使操作者握住该装置,装置的弹性作用可以得到控制,操作者可以控制使用保证适当就位。
根据上面介绍的方法可以便利地制造一本发明的这一实施例的PDA阻塞装置80,这种方法即使金属纤维制品总体与模制元件的模制表面相一致,并对该纤维制品热处理以便基本上将纤维制品固定在变形的状态。图7表示一可适用于构成PDA阻塞装置例如在图6A~图6C中所示的装置的模制元件100。
模制元件100总的包含一主体部分110和端板120。主体部分110适用于容纳并形成装置80的主体82,而端板适于压靠金属纤维制品以便形成正向端部84。主体部分110包含一细长的总体呈管状的中央部分112,其尺寸适于容纳装置的细长主体82。模制元件100的中央部分112最好其内径稍小于要形成该装置的管状编织物的外径。对编织物的这种压缩将有助于形成具有可重现尺寸的主体82的装置。主体部分110的正向端部包含一后板114,其具有由其向下悬垂的环形侧壁116。该侧壁形成一圆形的凹槽118。
模制元件100的端板120具有一盘形端面122,其中具有一接近中心的夹紧用孔124,用以容纳如上指出的附着到金属纤维制品上的夹具15。该端板还具有一环形侧壁126,其由端面122竖直向上延伸,在端板120中形成一圆柱形凹槽128。主体部分110中的侧壁116的尺寸要适合于容纳在端板的凹槽128中。
在使用中,将金属纤维制品置于在模制元件中,主体部分110和端板120彼此相向。后板114的内表面将贴住纤维制品并对其加压径向向外推挤。于是纤维制品被密封在该主体部分中的凹槽118内部,与凹槽内表面相一致。如果操作者为防止整个夹具15通过夹紧用孔124,该纤维制品将与端面122的内表面稍微隔开,从而该装置的前侧端部84稍形成圆顶形,如图6A~图6C所示。虽然,所述实施例包含这样一种圆顶形的前侧端部,但该前侧端部可以基本上是平的(除了夹具15以外),通过使该夹具整体容纳在端板中的夹紧用孔124内部可以实现。
一旦将纤维制品压入模制元件100,使其与模制元件的模制表面相一致,就可以对纤维制品进行上述的热处理。当通过取下主体部分110和端板120彼此再次分离,就可再次打开模制元件,纤维制品将维持其变形的压缩状态。然后,通过沿轴线推动夹具15、90使彼此分离,就能压缩该装置,对该装置沿轴向向前压缩。于是经压缩的装置80就能通过一导管,用在病人血管系统中的一个管道中。
图8示出上面介绍的医疗装置怎样可以阻塞动脉导管未闭。在这一实例中,有一个上面称之为PDA的分路,其延伸在病人的主动脉A和肺动脉P之间。通过使该装置在一导管(未示出)内保持压缩状态,可以将装置通过PDA,可使装置的前侧端部84能弹性扩展基本上复原到其通过热处理的热固定的“记忆”形状,例如通过将该装置向远推延伸到导管的远端之外就可实现。这一前侧端部84应大于PDA的分路的内腔。
然后可以将该装置拉回,使得前侧端部84贴合肺动脉P的血管壁。如果继续拉回该导管,该装置与PDA的壁的贴合将自然由导管中拉动装置的主体部分82,这将使该主体部分能返回到其扩展的形状。主体部分的尺寸应选择得使其以摩擦方式贴合PDA分路的内腔。然后利用主体部分和分路的内腔之间的摩擦以及动态血液对于装置的前侧端部84的加压的综合作用,使装置保持就位。在相对短的一段时间内,血栓塞将形成在装置80之内和之上,血栓塞将阻塞PDA。本技术领域的技术人员将会认识到,为了加速PDA或ASD装置的阻塞作用。可以将该装置涂覆适当的血栓塞剂,用增加金属丝数的聚酯纤维或编织物来编织。
图9A和图9B分别是本发明的再一实施例的侧视图和端视图。这一装置180可以用于病人血管中的各种不同的情况。例如在制造该装置时使用具有相对高的纬密(Pick)的纤维制品(即纬密度较大),则该装置可用于阻塞血管。在其它应用场合中,可以用作在病人体内的导管内部的过滤器,或者在血管中或者在另一种管道中,例如在泌尿道中或在胆管中。为了进一步增强或削弱装置阻塞导管的趋势,根据该装置的应用场合,可以将一种适当的已知的抗血栓塞剂涂覆到该装置上。
这种过滤器180呈圆锥形,由其后端182向其前侧端部184径向向外形成锥度。装置上邻近其前侧端部的长度适于与管道的内腔壁相贴合。因此过滤器装置180的最大直径至少与其中定位该装置的导管的内径一样大,使得至少该前侧端部贴合管道壁,从而将该装置锁定就位。
邻近装置前侧端部有一系列的未固住的金属丝端185,这有助于装置安放于管道中,因此当装置的前侧端部本身推向其在血管中的充分扩展的状态时,各线的端部将轻微伸入到血管中。在向外推的装置的前侧端部和趋于伸入导管中金属丝端部之间的摩擦的综合作用将有助于使该装置保持在其使用位置,而不是处在血管中未达到预期位置的自由浮置状态。
使用本发明的装置180的方法可以根据需治疗处理的生理症状的性质而变化。例如在治疗动静脉的瘘管时,如上所述可以将该装置小心地定位,以便在准确特定的位置阻塞血液的流动。然而,在治疗其它症状(例如动静脉的畸形)时,则可以简单地将一些这样的装置展开于具有较大内腔的导管中畸形部位的下游侧以及使该装置由上游侧部位向下游侧移动进入较小的血管中。
对于是否应将该装置180精确地定位在病人体内的导管内的一个准确的位置处,或是更希望使装置浮动到它们最终中止的部位的决定,取决于所包含的导管的尺寸和需治疗的特定状况。这种决定应在个案的基础上根据操作者的经验确定留给专门操作者去做;在未具体了解各种病情的情况下使用装置180是没有正确或错误之分的。
在图9A和图9B所示的实施例中,该装置的壁从邻近夹具90的一个位置和装置的另一端直线延伸,近似为圆锥形。由于夹具90的存在,直接邻近夹具的装置的端部可能与圆锥形稍有偏差,如附图所示。另外,该壁可以呈曲线状,使得在邻近后侧端部的装置的直径比邻近其前侧端部更快地变化,其外观更像一个围绕其主轴按抛物线形状的旋转体而不是真正的圆锥。这些实施例中的每一个都应当使用装置180阻塞血管,例如阻塞一个血管。
在装置的后侧端部182处的各金属丝的端部例如利用如结合图6A~图6C上面介绍的带螺纹的夹具90使它们彼此相对夹紧。邻近前侧端部184的各金属丝部分也可以利用点焊金属丝使之彼此固紧防止相对运动,在点焊处它们交叉邻近该前侧端部。这种点焊在图9A和图9B中的186表示。
在图9A和图9B所示实施例处,在最终完成的装置中的前侧端部184附近的金属丝端部不再需要以任何方式使其彼此固定。在成形的过程中这些金属丝保持在固定的位置,在制成最终装置之前防止金属纤维制品松散。当邻近前侧端部的金属丝的端部保持相对固定时,可以对它们进行热处理。如上所述,热处理将会使各金属丝保持在它们产生的变形状况时的形状,其中装置与模制元件的模制表面相一致。当该装置与模制元件脱离接触时,各金属丝会维持它们的形状,试图保持互相交绕的状态。因此,当将装置与模制元件脱离接触,即使各金属丝端部由受约束的状态释开,该装置仍将基本维持其形状。
图10A~图10C所示用于制成图9A~图9B中的过滤器180时所用的3种适合的模具。在图10A中,模制元件是一单件,其形成为一对彼此贴住的圆锥形部分。在另一个相似的实施例中(未示出),模制元件200可以取卵形,其不同于美式足球或橄榄球。在图10A所示实施例中,模制元件小的夹端略呈圆弧形。这一模制元件包含两个圆锥形部分202,在它们的底部两者靠住,形成一在元件的中部204具有较大直径部分,其朝向元件200的端部206可形成相对均一的锥度。
当将管状编织物用于构成这种装置时,通过将模制元件放置在管状编织物内部并且在将编制物截取预期长度前将围绕模制元件的编织物的端部夹紧,就可以将金属管状纤维制品围绕到模制元件上。为了更便于将夹具90固紧到管状编织物的端部上,如图所示,模制元件的端部206可以是圆形的,而不是带锥度的,即在模制元件的端部为一较实的点。为了保证编织物更紧密地与模制元件200的外表面一致,即与模制元件的模制表面一致,编织物的自然松弛的直径应小于元件中在中部204处形成的最大直径。这样将使金属纤维制品处于张紧状态围绕该元件的中部,利用与在编织物端部的夹具的综合作用,使编织物与模制表面相一致。
图10B表示用于构成图9A和图9B中所示装置的另一种模制元件210。将模制元件200容纳在金属纤维制品中的内腔中,如在管状编织物一定长度的内腔中,但模制元件210也具有适于容纳纤维制品的内腔212。在这一实施例中,模制元件可以包含一对模制部分214、216,这些模制部分可以形状基本相同。每个模制部分214、216包含由壁222形成的圆锥形内表面220,每个部分还可形成有圆柱形轴向凹槽224,用以容纳由金属纤维制品携带的夹具15(或90)。
两个模制部分应当易于彼此固定,使两部分的较大的开口端部226彼此靠住。如利用一种可重复使用的夹具(未示出),其能用于使两个部分214、216彼此相对适当地定位,从而可以将两模制部分简单夹在一起。这样可形成一些螺栓孔228之类,以使得利用螺母和通过该孔的螺栓(或类似的固紧装置)将两部分214、216固定在一起。
在使用时,将适当尺寸的单件金属纤维制品,最好是一定长度的管状编织物置入模制元件的内腔212中,并将两个模制部分214、216彼此相向推动。纤维制品的松弛的轴向长度应长于内腔212的轴向长度,使得彼此相向的两部分将沿轴向压缩该纤维制品。这种轴向压缩将会推动编织物金属丝由编织物轴线径向向外分开并朝向模制元件210的模制表面与之贴合,这一表面是由于内腔212的表面形成的。
一旦金属纤维制品已产生变形与模制元件200或210的模制表面相一致,就可以对纤维制品进行热处理,以便将纤维制品的形状基本上确定在其已变形的状态下。如果使用模制元件200,则可以由金属纤维制品的内部取出。如果各弹性的金属丝之间具有足够的空间,则模制元件可以简单地通过张开各金属丝形成的网层取下,并且由金属纤维制品内部将模制元件拉出,如果使用模制元件210,可以将两个模制部分214、216彼此分开,可以由内腔212中拉出该经模制的纤维制品。根据模制表面的形状,利用夹具或在成形件的端部进行熔焊之类,可以将最终形成的成形件组装成一对靠住的中空锥体,或如上所述的美式足球形体。
这一成形体然后通过沿与锥体的共有轴线(或卵形件的主轴)垂直的方向在一沿其长度的大约中间的位置截断各金属丝,可以截成两半部。这样将形成如图9A和图9B中所示的两个单独的过滤器装置180。如果将邻近装置的前侧端部的各金属丝连接起来,(如利用在图9A和图9B中在186处所表示的焊接点),在将该圆锥形或卵形件分离成两半部之前,就可以实现这一点。通过将金属纤维制品截成两半部同时仍围绕模制元件200携带,就可以得到更相同的所需形状。然后可以将具有预期形状的各个半部彼此拉开,剩下该模制元件准备用于制造另外的装置。
在这种方法的另一实施例中,模制元件200的构成材料是经过选择的,以使得当由金属纤维制品的内部取下时被破碎。例如,模制元件可以由脆性的或易碎的材料例如玻璃构成。一旦该材料在与模制元件的模制表面相接触的情况下已经热处理,可以将模制元件击碎为更小的块,可以由金属纤维制品内部易于取出。如果这种材料是玻璃,模制元件和金属纤维制品可贴着硬的表面撞击,使玻璃击碎。然后可以由金属纤维制品的围层中取出玻璃碎片。最终的成形件可以按圆锥形使用,或者可以截成两半部,形成如图9A和图9B所示的装置。
另外,模制元件200可以由这样一种材料制成,该材料可以利用一种对金属丝特性不会产生有害影响的化学制剂进行化学溶解,或以其它方式分解。例如,模制元件可以用一种利用适当的有机溶液能溶解的耐高温塑料树脂构成。当模制元件和金属纤维制品可以浸入该溶剂时,可以对纤维制品和模制元件进行热处理,使纤维制品的形状确定与模制元件的表面相一致。一旦模制元件已溶解,就可取出金属纤维制品,或者按当时的形状加以使用或截成单独的两半部使用。
应当小心操作,以保证选择用于构成模制元件的材料能经受热处理而不会改变其形状,至少在已确定纤维制品的形状之前不变形。例如,模制元件可以由这样一种材料构成,该材料的熔点应高于为了固定金属丝的形状所需的温度,不过应低于构成金属丝的金属的熔点。这样就可对模制元件和金属纤维制品进行热处理,以便确定金属纤维制品的形状,当温度可升至将模制元件完全熔化时,以此由金属纤维制品中除去模制元件。
应当理解,上面所述的用于由模制元件200中取出金属纤维制品10的方法也可结合其形状利用。尽管模制元件是围绕在金属纤维制品的外部携带的(例如图2~图4中的模制元件20中的元件30~40),如果模制元件或它的某些部分被封闭在已成形的金属纤维制品内(例如模制元件中的内部模制用部分),可能不需要采用这些方法,但这些方法可以用于有效地取下模制元件,而不会对已形成的医疗装置产生有害的影响。
图10C表示可用于制成图9A和图9B中所示医疗装置的另一种模制元件230。这种模制元件包含形成有带锥度内表面234的外模制部分232和具有外表面238的内模制部分236,该内表面236与外模制用部分中的带锥度的内表面234具有相同的形状。内模制部分236的尺寸应适于容纳在外模制部分内部,一单件的金属纤维制品(未示出)置于在内外模制部分之间。这一使纤维制品产生与之一致的模制元件230的模制表面可以认为包含外模制部分中的内表面234和内模制部分中的外表面238。
这种模制元件230可以结合管状编织物形式的金属纤维制品使用。如果使用这样一种纤维制品以及装有夹具15(在此图中未示出)之类以便将邻近该装置一端的各线端部连接起来,可以形成一用于容纳夹具的,与模制元件20(图2~图4)中的加压盘44端面中的内腔46相类似的凹槽(未示出)。
然而,本模制元件230可以更易于与平的编织件的金属纤维制品例如在图1B中所示的结合使用。在使用这种纤维制品时,要截成适当尺寸和形状的单件纤维制品,在利用模制元件230制成与图9A和图9B中所示相似的装置180时,可以使用盘形的单件金属纤维制品10’。然后将该金属纤维制品置于在模制元件中的两个部分232、236之间,将这两部分移到一起,以便使其间的纤维制品产生变形。在经热处理后,可以将纤维制品取出,其将保持与在两模制部分之间产生变形时基本相同的形状。
由对于图10A~图10C中的各种模制元件200、210和230的讨论可以看出,很明显,一些不同的模制元件可以基本上形成相同的预期形状。这些模制元件可以整体容纳在纤维制品的封闭的部分内,并且依靠纤维制品的张力和/或压力使纤维制品与模制元件的模制表面一致,正象使用图10A中的元件200一样。图10B中的模制元件210基本上将纤维制品封装在模具的内腔中,并依靠对纤维制品的加压(在这一实施例中为管状编织物的轴向压力)使纤维制品变形处于所需的形态。最后,可以将纤维制品压迫在模制元件的两个模制用部分之间,例如在图10C中所示的模制元件230的两个部分232、236之间,以使该纤维制品变形。在获得具有所需形状的最终制品时可以采用这些技术中的一种或多种。
图11和图13~图15表示根据本发明的医疗装置的另一些优选实施例,该装置用于矫正房间隔缺损(ASD)。参阅图13和图15,处于松弛的非张紧状态的装置300具有两个由一短的圆筒部306连在一起的相互隔开但对准的圆盘302和304。已提出这种装置300还可以很好地适用于在本技术领域公知的各种阻塞缺陷,例如卵圆孔未闭(下文称PFO)。ASD是一种以动脉瓣膜的结构性缺陷为特征的动脉瓣膜的先天性异常。可以在动脉瓣膜中出现分路,使得血液在左右心房之间流动。在各种大的缺陷中,利用通过缺陷部位的由左到右的分路,右心房和右心室负荷过大,并且该增大的体积部分要注入到低阻的肺部血管中。
在成人会形成肺部血管阻塞疾病和肺动脉高压。根据ASD带有明显分路的(按照肺部血流对整个体系血流之比大于1.5定义)病人理想情况下应在五岁进行手术,或者在进行诊断后的几年内进行手术。随着二维超声心动描记仪和多普勒(Doppler)彩色超声心动图的出现,可以观察到确切的解剖图像。瓣膜缺损的程度范围将影响所要用的ASD的尺寸选择。
如图13中所示处于非约束或松弛状态的装置300适合于在包含ASD或PFO的分路的内部使用。下面将介绍在ASD手术操作中装置300的使用。首先介绍装置300的结构特征,ASD阻塞装置300的尺寸与要阻塞的分路尺寸成比例。在松弛取向的状态下,金属纤维制品的形状是这样的,即两种圆盘302和304轴向对准并且由一短的圆筒部306连接在一起。该圆筒部306的长度最好接近心房瓣膜的厚度,范围在2到20毫米之间。近侧盘302和远侧盘304最好外径充分大于该分路,以防止该装置翻倒。近侧盘302具有相对平的形状,而远侧盘304朝向该近端呈杯状,与近侧盘302轻微重叠。
这些编织的金属纤维制品装置300的端部利用夹具308和310夹紧或焊接,以防止松散。当然,各端部可利用为本技术领域的技术人员公知的其它简易方式固定在一起。夹具310将近端的各金属丝固定在一起,还用于将该装置连接到一输送系统(见图11)上。在所示实施例中,夹具310呈圆柱形并具有凹槽,用以容纳金属纤维制品的端部,以防止编织的纤维制品包含的各金属丝彼此相对移动。夹具310在凹槽内也具有螺纹表面。该带螺纹的凹槽适于容纳和啮合输送装置312的带螺纹的远端。
根据本发明的这一实施例的ASD阻塞装置300可以便利地按照上面所述的方法构成。装置300最好由0.005英寸的镍钛金属互化物线网目构成。可以使用Maypole型按72线载体的编织机按照每英寸28个纬密(Pick)和按照约64°的屏蔽(Shield)角进行编织该金属丝。通过改变纬密大小、屏蔽角度和线载体的数目或热处理的方法可增加或降低ASD装置300的刚性。
本领域的技术人员根据前面的讨论将会认识到,模具内腔形状必须与ASD装置的预期形状相一致。此外,某些所需的形状可能作为内腔的一些仿形的部分。图17和图18表示改进结构形状的ASD装置。近侧盘302是远侧盘304的镜像。近侧盘302和远侧盘304的分开距离小于圆筒部306的长度。如图13、图14、图16和图17所示的盘呈杯形能保证阻塞装置300和心房瓣膜之间的完全接触。因此内皮上的新近形成的血栓层在阻塞装置300上,以此降低了细菌性心内膜炎发生的概率。
下面参阅图11、图14~图16和图18,更详细地讨论装置的使用,利用二维超声波心动描记仪和Doppler彩色超声心动图就可以输送该装置并适当就位。如上所述输送装置312可以取任何适宜的形状,最好包含一与常规的导丝相似的细长挠性金属柱身。输送装置312为一输送导管用于推动ASD阻塞装置300通过小直径的圆筒管314的内腔,以备使用。通过拉伸该ASD装置300将其装入该小直径的圆筒管314,以使其处于细长的状态。在手术过程中或在制造设备预组装时,可以将该装置插入到管314的内腔中,在于本发明的装置当其维持在被压缩的状态时不会呈现永久性的固定形状。
由成人股静脉血管附近,将输送导管314通过ASD。将该装置300推动通过输送导管直到该远端304在导管出口端变得不受约束,这时其在左心房取盘状。然后将输送导管314沿向近方向向后拉经过ASD,并且输送装置312以相似方式沿向近方向拉动,推动远侧盘304靠住瓣膜318。然后进一步由瓣膜318拉远导管314,使近侧盘302伸出输送导管314,在该处其弹性返回到其预定的盘状(见图15)。按照这种方式,定位ASD装置300,使远侧盘304压靠瓣膜318的一侧,同时近侧盘302压靠瓣膜318的另一侧。为了增加其阻塞能力,该装置可以包含聚酯纤维316(见图15和图18)。在初步尝试装置未适当地打开使用的情况下,可以通过将输送装置312拉近,以此使该装置300拉回到输送导管314,然后再第二次尝试将装置300相对于缺损处定位。
当将ASD阻塞装置300适当地安置时,外科医生旋转该输送装置312,以便由阻塞装置300的夹具310上松下输送装置312。夹具310上的螺纹是这样的,即输送装置312的旋转能将输送装置312由阻塞装置300的夹具310上松下,而不是仅仅旋转阻塞装置300。正如在另一些实施例中所示的,带螺纹的夹具可以在使用过程中使操作者能维持握住该装置,或者使操作者在使用该装置的过程中,能控制弹性作用,保证适当就位。
本发明的方法还包含治疗病人的生理症状的方法。根据这种方法,选择一种适合于治疗该症状的医疗装置,其可以是根据上面概括介绍的其中一个实施例选择的。例如,若需治疗动脉导管未闭,可以选择图6A~图6C的PDA阻塞装置80。一旦选择了适当的医疗装置,可以将一导管定位在病人体内的一管道中,将导管的远端接近所需治疗的部位,例如直接邻近(或甚至在其之内)PDA的。
上面概括介绍的根据本发明的方法制造的医疗装置具有预定的扩展形状和压缩的形状,使得该装置能通过导管(见图12)。扩展的形状是由当使金属纤维制品与模制元件的模制表面一致时的形状所限定的。对金属纤维制品的热处理将当处于当纤维制品与模制表面相一致时重新取向的相对位置下的各金属丝的形状固定下来。当将金属纤维制品从模制元件上取下时,该纤维制品可以形成为处于其预定扩展状态的医疗装置。
可以将该医疗装置压缩到它的压缩位置,并插入到导管的内腔中。该装置的被压缩的形状可以是任一种形状,只要其适合易于通过导管的内腔并且适当地在导管的远端之处打开使用。例如,在图5A,图5B,图6A~图6C和图13中所示的装置具有相对细长的压缩形状。其中该装置被沿其轴线拉伸(见图11和图12)。这种压缩的形状可以通过手动抓住夹具15并将其拉开,将该装置沿其轴线拉伸,简单地形成,因拉动该夹具势必使装置60的扩展直径的部分64向内朝向该装置的轴线压缩。图6中的PDA阻塞装置80也可按相同的方式操作,并可以被压缩到其被压缩的形状,通过沿装置的轴线施加拉力,用以将其插入导管中。在这方面,这些装置60和80象“中国式手铐”,它们在轴向拉力下势必在直径方向上收缩。
一旦将医疗装置压缩并插入导管,就可以沿导管的内腔朝导管的远端推动。通过利用一导丝之类来贴靠该装置并沿导管将其推动,就可以实现这一点。当该装置伸出导管的远端时,即位置邻近该需治疗的部位时,该装置会由于弹性完全返回到其预定的扩展形状。各种超弹性合金如镍钛金属互化物特别适用于这种场合,因为它们能够易于返回到其在弹性变形到很大程度之后的特定形状。因此,只简单地将医疗装置推出导管的远端就会适当地展开在治疗部位使用该装置。
尽管该装置会由于弹性返回到最初扩展的形状(即在为了通过导管而被压缩之前的形状),但可以不总是完全返回到该形状。例如,图5中的装置60在其扩展形状下的最大外径至少与其中要使用的该装置的内腔的内径一样大,并且最好更大一些。如果在具有小的内腔的血管中使用该装置,该内腔将防止该装置完全返回到其扩展的形状。不过,该装置能够适当地使用,是因为其与内腔的内壁贴合,将该装置安放于其中。
如果要将该装置永久性地阻塞在病人体内的管道,例如可以是上面介绍的装置60和80,就可以由病人体内拉回该导管并取出。这样将使用的医疗装置留放在病人血管系统中,使得其可阻塞病人体内的血管或其它管道。在某些情况下,可以将医疗装置以这样一种方式附着在输送装置上,即将该装置附着到输送装置的端部,如当将图6和图9中所示的带螺纹的夹具90如上所述连接到输送装置的远端。在取出这种装置中的导管之前,可能需要在取走导管和输送装置之前将医疗装置由输送装置拆下。
虽然是对本发明的优选实施例进行介绍,但应理解,在不脱离本发明的构思和所提权利要求的范围的前提下,可以进行各种变化、修改和改进。
权利要求
1.一种可压缩的医疗装置,包括一具有近端和远端的管状编织金属纤维制品,每一端都含有用于固住每个端部的装置,所述管状编织金属纤维制品具有预先确定的扩展形状,以便形成人体器官中的异常开孔的阻塞物,所述预先确定的扩展的形状可变形为较小截面尺寸,用以输送通过病人体内的管道,该编织金属纤维制品具有形状记忆特性,因此,当该医疗装置不受约束时会返回到所述预先确定的扩展的形状。
2.如权利要求1所述的医疗装置,其特征在于该预先确定的扩展的形状包括两个扩展直径的部分以及一位于该两个扩展直径的部分之间的缩小直径的部分。
3.如权利要求2所述的医疗装置,其特征在于该缩小直径的部分的长度接近病人动脉瓣膜的厚度。
4.如权利要求1所述的医疗装置,其特征在于所述预先确定的扩展形状为钟形。
5.如权利要求1所述的医疗装置,其特征在于所述预先确定的扩展形状为哑铃形。
6.如权利要求1所述的医疗装置,其特征在于所述的用于固住每个端部的装置具有螺纹,用于旋转连接到输送装置上。
7.如权利要求1所述的医疗装置,其特征在于所述的金属纤维制品是由不锈钢、镍钛合金以及钴铬镍合金构成的组合中选出的一种合金制成的。
8.一种可压缩的医疗装置,其包括一金属纤维制品,其形状可压缩,用以输送通过病人体内的管道并且具有哑铃形的扩展形状,用以占满管道的内腔,该金属纤维制品处于扩展状态时,具有两个扩展直径的部分和一位于在该两个扩展直径的部分之间的缩小直径的部分。
9.如权利要求1所述的医疗装置,还包括约束在所述管状编织纤维制品内的阻塞用纤维。
10.如权利要求4所述的医疗装置,还包括约束在所述管状编织纤维制品内的阻塞用纤维。
11.如权利要求5所述的医疗装置,还包括约束在所述管状编织纤维制品内的阻塞用纤维。
12.如权利要求8所述的医疗装置,还包括约束在所述管状编织纤维制品内的阻塞用纤维。
全文摘要
本发明提供一种构成医疗装置的方法以及可根据该方法构成的医疗装置。在一个实施例中,该方法包括的步骤有:a)提供一种由多条金属线构成的金属纤维制品,其可进行热处理以便确定所需的形状;b)使金属纤维制品产生变形以与模制元件的表面相一致;c)在与模制元件表面相接触的情况下对金属纤维制品进行热处理,以便将纤维制品的形状,固定在其变形的形状;以及d)取下金属纤维制品与模制元件脱离接触。最终形成的金属纤维制品构成一医疗装置,其可压缩以便通过一导管展开使用在病人体内的管道内。
文档编号B21F45/00GK1218379SQ97194488
公开日1999年6月2日 申请日期1997年4月14日 优先权日1996年5月14日
发明者弗兰克·科土拉, 库尔特·安普拉兹, 柯蒂斯·安普拉兹 申请人:Aga医药有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1