单晶片腔室中的无辐射率变化泵送板套件的制作方法

文档序号:3416030阅读:143来源:国知局
专利名称:单晶片腔室中的无辐射率变化泵送板套件的制作方法
技术领域
本发明概括地说涉及半导体制造领域。更具体地说,本发明涉及在单个晶片腔室中的无辐射率变化的泵送板(pumping plate)套件。
背景技术
化学气相沉积通常被称为“CVD”,是用于在半导体晶片上沉积薄层材料的多种工艺中的一种,它可以基于热、等离子体、或光辅助分解、或化学反应。例如,为了以CVD工艺加工晶片,在腔室中设置一个基座,该基座被配置成用以安放晶片。晶片通常借助自动机械叶片(robot blade)放置在基座上和从其上移开,并且晶片在加工期间由基座所支撑。在这些典型的现有技术的系统中,基座和晶片在加工前被加热到200-650℃间。一旦晶片被加热到合适的温度,加工流体(通常为气体)就通过气体歧管被引入到腔室中,该气体歧管通常位于晶片上方。加工气体在与被加热的晶片表面接触时有热分解并且在其上沉积一薄层材料。
晶片加工的主要目的是从每个晶片上获得尽可能多的有用电路小片(dies)。有许多因素影响到从被加工的每个晶片上所获得的电路小片的最终产量。这些因素包括加工变量(其影响到沉积在晶片上的材料层的厚度和均匀度)以及颗粒污染物(其附着到晶片上并污染一个或多个电路小片)。在CVD和其它工艺中,这些因素都必须受到控制以令得自每个晶片的电路小片产量最大化。
在沉积过程中,黄色或黑色粉末易于在腔室内部积累(如在泵送板和面板上),这将引起腔室内辐射率的变化并进而引起温度变化。在加工一定数量的晶片后,辐射率的变化将使得工艺从一个晶片到另一个晶片不连续。因此,现有技术缺乏有效的能防止辐射率变化、从而改进工艺均匀性的装置或加工系统,因而是有缺陷的。此外,现有技术缺乏有效的设置晶片加热器周围均匀的热边界条件的手段、从而改善优化的膜厚均匀度,因而是有缺陷的。本发明则满足了本技术领域中这些长久以来的需要和需求。

发明内容
在此提供的本发明的一个方面是一种用于单个晶片腔室中的无辐射率变化的泵送板套件(kit)。该套件包括一种顶部开口泵送板,其中对气流没有限制。该套件可进一步包括裙板和/或第二级阻塞板(secondstage choking plate)。该裙板可绕晶片加热器安装,处于晶片加热器的下方,或在腔室内部沿着腔室主体,而阻塞板则顺着吹扫用气流安装于顶部开口泵送板的下游。
此处公开的无辐射率泵送板套件可以部分地通过提供吹扫用气体以防止在腔室上形成残余物或粉末、从而防止在该腔室中的辐射率变化,而被用来防止腔室内的辐射率变化。更具体地说,气体吹扫可从底部吹扫或从喷射头开始流动。而且,即使有气体吹扫,也可能发生粉末的形成。因此,为了减少在泵送板和面板上的粉末的形成,希望使得对于气体的暴露最小化,即通过使用上述顶部开口的泵送板套件,从而可便利地使气体在泵送板和面板之间流出。该套件也被用于在加工过程中提供最佳的膜厚均匀度。
本发明进一步揭示了一种具有后部裙板的泵送板,该后部裙板用于吸收从基座辐射出来的热量。所述泵送板在裙板上具有晶片加载槽口,其面对加工腔室中的晶片加载结构(狭缝阀)。从基座辐射出的热量穿过所述泵送板中的晶片加载槽口而进入狭缝阀。狭缝阀的作用是与腔室内部的其它区域相比吸收更多的来自基座的热。基座在狭缝阀的区域内接收到较少的反射热,作为一个结果,就是基座在该区域内较冷。未被均匀加热的基座可以影响到在晶片上的膜沉积,并且为了补偿而将一裙板附加到泵送板上。该裙板被开有窄槽即具有孔,以便通过裙板改善对从基座辐射出的热量的吸收。裙板减少从腔室壁反射回到基座的热量,而且这具有平衡损失到狭缝阀中的热量的效果。借助热平衡的基座,可以导致在晶片上有均匀沉积的膜。
根据下面用于揭示本发明的实施例的描述,本发明的其它进一步的方面、特征和优点将会更加显而易见。


因此为了使本发明(其中包括上述的和将变得清楚的其它特征、优点和本发明的目标)能够被详尽理解,参考特定实施例而对以上简单概述的本发明进行特别的描述,其中特定实施例以附图进行说明。这些附图构成本说明书的一部分。然而应该指出,附图是说明本发明的实施例的,因此不能被认为是限定了本发明的范围。
图1显示使用标准泵送板的30微米掺杂的多晶硅循环,表明清除大约滞后10微米。
图2显示使用标准泵送板时均匀度为1.37%。现有技术的泵送板没有顶部的开口而只有孔。吹扫用的气体在泵送过程中穿过这些孔。
图3显示一个顶部开口泵送板,其厚度均匀度为0.79%。该图表明使泵送板开口改善了均匀度。
图4是POLYGen腔室100的横断面视图,该腔室包括泵送板通道环101、面板102、阻隔板103、腔室盖104、腔室主体105、具有顶部开口的泵送板106。所述泵送板通道环起到第二级阻塞板的作用。吹扫用气体从腔室的底部或顶部进入泵送板。气体借助于上述顶部开口而自由地流出腔室。
图5是顶部开口泵送板106的三维视图。
图6是一个均匀的阻塞板的三维视图,其中孔是均匀隔开的101。
图7是表1中所包含数据的曲线图,该图表明在晶片加工过程中使用本发明所公开的泵送板套件,随着硅的总沉积接近21微米,均匀度和厚度保持相同。
图8A是加工腔室的一个实施例的横断面视图,该加工腔室包含一个具有裙板的泵送板。
图8B是一个基座和邻近一个狭缝阀(slit valve)的泵送板区域的横断面视图。
图8C是邻近所述泵送板的一个晶片装载槽口的裙板边缘的例图。
图8D是一个泵送板的实施例的例图,该泵送板在裙板上具有不均匀的窄槽。
图8E是在泵送板裙板中的孔的一个实施例的例图。
图8F是在泵送板裙板中的孔的另一个实施例的例图。
图8G是在泵送板裙板中的孔的又一个实施例的例图。
图9A是一个具有短裙板的泵送板的实施例的三维视图。
图9B是所述具有短裙板的泵送板的实施例的横断面视图。
图10A是一个窄槽的例图,该窄槽是底部尖削的孔。
图10B是一个窄槽的例图,该窄槽是平底孔。
图10C是一个窄槽的例图,该窄槽是有螺纹的平底孔。
具体实施例方式
此处公开的是无辐射率变化的泵送板套件,其用于防止晶片加工过程中的辐射率变化,该辐射率变化会导致工艺偏差和颗粒。在此同样解决了诸如在腔室内形成粉末和粉末堵塞泵送孔的问题。
在用于硅沉积的现有技术中,使用了标准泵送板,其具有泵送孔以使气体流过。图2显示使用标准泵送板时均匀度为1.37%。在沉积过程中,黄色或黑色粉末倾向于在泵送板和面板上积累,这会引起腔室内辐射率的变化,进一步引起温度变化。为了改善均匀度并且同时防止辐射率变化,在本发明中采用了顶部开口的泵送板(参见图5)。在该泵送板的顶部完全打开时,吹扫用的气体可以容易地流如泵送通道,并进一步从腔室内除去粉末。图3显示借助顶部开口泵送板,厚度均匀度为0.79%。该图表明使泵送板开口改善了均匀度。
而且在沉积过程中,晶片加热器倾向于和腔室主体相互作用,这引起热损失。为减少热损失从而改善加热器的可靠性和寿命设置了裙板,其围绕加热器、在加热器下方或在腔室内部沿着腔室主体。裙板防止加热器和腔室主体直接相互作用,且使得从一个腔室到另一个腔室的工艺条件更加均匀,因此在晶片加热器周围提供相同的热边界条件,并导致最优的膜厚均匀度。
用于沉积硅的现有技术方法的另一个问题是由于高沉积温度,腔室总是处于高压下,这使得难以控制出口气流的均匀度。因此为了解决这个问题,本发明采用了具有被减小的开口的第二泵送板,其顺着吹扫用气流安装在顶部开口泵送板的下游(参见图4中的泵送板通道环)。该第二泵送板起到阻塞作用,以便使出口气体泵送均匀,从而确保在晶片上有最佳厚度均匀度。该阻塞板可以是均匀的(参见图6)或非均匀的。均匀的阻塞板具有均匀间隔开的孔,而非均匀的板则在一个区域的孔较多,而在另一个区域的孔较少。
作为一个特定的示例,在本发明的一个方面公开了包含上述无辐射率变化泵送板套件的加工腔室。所述腔室被称作POLYGen腔室100,其包括腔室主体105、腔室盖104、顶部开口泵送板106、泵送板通道环101(即第二级阻塞板)、面板102、和阻隔板103(参看图4)。裙板(未示出)可绕晶片加热器(未示出)安装,位于该晶片加热器的下面,或是在腔室100内沿着腔室主体105安装,并位于泵送板106的下面。所述无辐射率变化泵送板套件允许两级泵送在第一级,顶部开口泵送板106使得泵送过程与标准泵送板相比更自由并更快捷。借助于从腔室100的底部流进顶部开口泵送板106的吹扫用气体,减少了在泵送板106上和面板102上的粉末形成。在第二级,则通过第二泵送板对于出口气体泵送起到阻塞作用,从而确保了晶片上的最佳厚度均匀度,其中该第二泵送板减少了顶部开口。可使用标准的吹扫用气体,如氮气、氩气和氦气。
此外,所设计的泵送通道提供了更大的区域来收集粉末,该更大的区域显著地减少了粉末堵塞泵送孔的可能性。而且,所述无辐射率变化泵送板套件提供了在晶片加热器(特别包括裙板)周围的均匀的热边界条件,因此而使得在加热器和周围区域之间的条件一致。这导致有最佳的膜厚均匀度。
表1显示得自一个无辐射率变化泵送板的测试结果,该泵送板具有顶部开口和第二级阻塞板。厚度均匀度的百分比越小,则均匀度就约好(0等于完全均匀)。图7是包含在表1中的数据绘出的曲线。
表1得自泵送板(顶部开口具有第二级阻塞)的测试结果

简略符号Dep.——沉积;U.——均匀度;Th.——厚度这显示随着总的硅沉积接近21微米,均匀度和厚度均保持相同。在晶片加工过程中使用此处公开的泵送板套件,对P型掺杂的多晶硅加工来说生产率得到了显著提高,从每个干法清洁的腔室(每次腔室清洁90分钟)5微米的总沉积达到每个清洁腔室的超过25微米的总沉积(参看图1和7进行比较)。随着清洁频率降低,系统产量得到提高。此处公开的泵送板套件防止了导致工艺偏差的辐射率变化。而当无工艺偏差时,清洁就是不必要的。
如上所述,此处提供的本发明的一个方面是用于单个晶片腔室的无辐射率变化的泵送板套件。该套件包括顶部开口泵送板(泵送板),其中此处对气流无限制。该套件可进一步包括裙板和/或第二级阻塞板。裙板可以绕晶片加热器安装,位于晶片加热器下面,或在腔室内部沿着腔室主体安装,并且可以和泵送板是整体的。阻塞板可以顺着吹扫用气流安装在泵送板的下游。阻塞板可具有均匀的或不均匀的孔。
晶片加工腔室的内部会具有这样的局部区域其反射热的方式与其它区域不同。在加工腔室内这种不对称的热反射对于将膜沉积到晶片上而言具有不利的影响。这种不对称热反射的一个后果可以是沉积到晶片上的膜具有不均匀的材料特性或不均匀的厚度。为使这些困扰晶片薄膜沉积的可能问题减至最少,可以将一个主体设置到晶片加工腔室的内部。为此目的,本发明公开了一种主体,其具有特殊的几何结构如不对称形状以便以不均匀方式反射热,从而在恰当地相对于上述局部区域调整后,可以补偿这种内部的不均匀热反射。
这样的主体可以是一种具有裙板的泵送板,其中裙板的几何形状是不对称的。本发明公开了一种不对称的裙板,其可以提供围绕基座的均匀的径向热边界条件(均匀的径向热边界),以及在整个基座内的均匀温度。基座可以是中心加热式的,使得热可以流向基座边缘,基座温度随着靠近边缘而下降。均匀的热边缘意味着一个圆形的基座在任何径向位置、对于任何处于该半径上的圆周点来说,具有均匀的温度,即均匀的径向热分布曲线。此外,泵送板可具有在整体上即在整个泵送板上下降的热分布曲线,并且在该热分布曲线中的温度在加工过程中具有改善的均匀度。
在一个实施例中,所述泵送板可具有集成的裙板(即泵送板和裙板是一体的),其包含孔如穿过裙板的槽以及减小的裙板长度(短裙板),而且其中可从晶片装载区(晶片通道槽口)完整地除去一部分裙板。在裙板中的通孔可以是圆的、椭圆的(窄槽),或者各种其它形状。泵送板被设置在加工腔室中而使得裙板被正确地对准,以便平衡从被加热基座到狭缝阀的辐射的作用(相对于基座对不邻接该狭缝阀的区域的辐射)。
图8A是包含泵送板的加工腔室的一个实施例的横断面视图,该泵送板有裙板,裙板上有窄槽。图8B是一个基座和邻近一个狭缝阀的泵送板的横断面视图。图8C是该泵送板的裙板的边缘的例图。参考图8A,在加工腔室800例如POLYGen腔室内,可借助工艺例如CVD将薄膜涂层沉积在晶片802上。可利用掩埋在基座806中的加热元件804/或定位在基座底部810附近的加热棒808,由基座806来加热晶片802。结果作为薄膜沉积工艺的一部分,晶片802在加工过程中被加热。在晶片加工之后,基座806和基座底部810可被降低并且浮置在基座806内的定位销(未示出)可被平移,从而使晶片802抬高脱离基座806,以便从加工腔室800中拆卸自动机械叶片(未示出)。
在加工过程中,热可通过传导而向外朝着表面和朝着基座806的外径方向流动,从而辐射到腔室内部816。这种来自基座806朝向外部的热流的任何不均匀度都会产生对于晶片802来说不均匀的加热环境。而在晶片802上的不均匀加热会使得所施加的涂层不均匀。
加工腔室816的内部容积并不具备均匀的几何形状来接收来自基座806的辐射热。正因为如此,加工腔室内部816在不同的位置可以吸收不同的辐射热,该加工腔室内部可从这些不同的位置提供不同的热量来反射回到基座806上。结果,热会以在基座806上一点位置与另一点位置彼此不同的速率来离开基座806。泵送板812的一个用途是绕基座806提供一种热约束,其使得在基座806的边缘807处或其附近离开的热量总和更为均匀。泵送板812的形状被设计用来补偿加工腔室800内不同的几何形状,其设计为在围绕泵送板812的不同位置处,吸收、传递或反射来自基座806的不同的热辐射。结果是使来自基座的净热损失因辐射到加工腔室内部816的不同区域而平衡,其中为了补偿,泵送板812的几何形状沿着周边是不同的。
特别参考图8B,在没有供补偿用的泵送板812几何形状时,借助到达标记为狭缝阀818(其为一个在晶片加工腔室内部816、用以从加工腔室800装载或卸载晶片802的开口)的局部区域的辐射,可从基座806更快速地放出热量。穿过晶片装载槽口821、然后到达狭缝阀818的从基座806辐射的热,可在两个相对的狭缝阀表面824和825之间反复地反射。这样反射的结果可以导致狭缝阀818内部的热吸收因一定程度上的黑体吸收而增加。在狭缝阀区域818内增加的热吸收会导致反射到基座806上的辐射减少。由于吸收更大而反射更小,就会发生在邻近狭缝阀818的基座806区域的热流速率更高的现象。
对泵送板812附加裙板822可以吸收热并提供针对来自基座806的热辐射的圆形屏障,即热边界。具有窄槽828的裙板822可以吸收甚至更多的来自基座806的辐射热,并进一步限制基座的热量从腔室内壁814反射回到基座806。正因为如此,在邻近裙板822的区域,热会以更高的速率离开基座806。因此如果裙板的窄槽828被设置在与狭缝阀818大致轴向上相同的位置(但不邻近狭缝阀818,这是因为晶片装载槽口821邻近狭缝阀818),裙板822因此就可以为基座806实质上补偿损失到狭缝阀818中的热量。
为泵送板812所吸收的热可通过成形为环状的泵送板凸缘817而传导至腔室外壳814中的温度较低的区域(即水冷却区域815)。应记住,裙板822是围绕泵送板812周边设置的,除了在狭缝阀818处之外(在此处要求可到达晶片802)。因此开有窄槽的裙板822可以增加对来自基座806的热的吸收,从而在狭缝阀818处平衡黑体吸收效应,导致在基座806周边有更均匀的热边界。
通过利用裙板822中的开口或孔828——其中图示为垂直的椭圆形通孔(垂直窄槽)828,可以增大裙板822的吸收效率。垂直的椭圆形指的是上述窄槽的椭圆长轴位于垂直(轴向)方向。一部分从基座806辐射出的热可以穿过垂直窄槽828传递。穿过垂直窄槽828的辐射热可以由形成窄槽828的侧壁表面831吸收。一部分投射到侧壁表面831的热会被吸收而有一部分则被反射。有些从侧壁表面831反射的热会投射到对面的侧壁831上从而被进一步吸收和反射。这种未被吸收的热在窄槽侧壁表面831上的连续反射的结果,仍然会是一种供裙板822增大吸收热的黑体效应。
为了有效地补偿,垂直窄槽828的总面积可以近似等于狭缝阀818的局部面积,其中狭缝阀818是连通加工腔室内部816的开口。对于圆形的加工腔室内部816,这样一种狭缝阀818的面积可以由两个狭缝阀表面824和825之间的距离来限定,此时该面积可在从腔室轴832到狭缝阀818形成的半径R、30°-120°范围的弧度上变化,其中狭缝阀818与腔室内壁814相匹配。
参考图8C,在一个加工300毫米晶片的实施例中,窄槽828的几何形状可具有长轴(垂直轴840)和短轴(水平轴842),其中长轴对短轴的比率可以等于或大于1(即长轴/短轴=1)。窄槽828可以环绕裙板822均匀地分隔开,其中窄槽828之间的间距844可以在约0.1-0.5英寸的范围内。对于垂直窄槽而言,窄槽的长轴(垂直轴)可近似等于0.50英寸,而窄槽的短轴则约为0.25英寸。窄槽828可被设置在裙板822中,而使得当泵送板812被安装在加工腔室800内的时候,窄槽828可以近似与狭缝阀818在同一水平上(相同的轴向位置)。也就是说,每个垂直窄槽的后端827和前端829分别与从表面824及825延伸出的直线833及834在同一水平上(图8B)。裙板822的内径范围约为12-15英寸,而晶片通道槽口的范围约在30-120度之间。裙板822的厚度约为0.25英寸,且裙板的轴向长度(L)约为1.0英寸,其中该裙板长度要长到足以允许窄槽828的位置与狭缝阀818处于同一水平上(图8A和8B)。
泵送板812与开有窄槽的裙板822一起来定尺寸,可以使得从加工腔室内壁814反射回来的热最小化。这样就让邻近基座边缘807的区域内的增加的热损失不会接近狭缝阀818。结果由泵送板812、尤其是在裙板822中所吸收的热量可以平衡从基座806直接辐射到狭缝阀818中的热量的局部影响。
然而,裙板822和窄槽828的几何外形的设计可以经过处理,以便补偿加工腔室816(而不仅是狭缝阀818)内任何几何外形变化的影响。再参考图8A,本领域技术人员可以理解,应当保持垂直窄槽828之间的间隔。这样是为了提供足够的面积来传导在裙板822的后端(其围绕窄槽828并朝向泵送板凸缘817)处吸收的热,而没有瓶颈现象即不提升温度。进一步要求裙板822的厚度为侧壁表面831提供足够的面积,以便吸收穿过窄槽822的辐射热并且全面地通过裙板822向凸缘817传导热。
还是如图8B所示,当泵送板812被组装到加工腔室800的时候,可以定位裙板中的各孔(此图中为窄槽),使其大致与狭缝阀818在同一水平上(轴向)。这可能意味着裙板822中的垂直窄槽828的后端可以近似处于与狭缝阀818的底部表面(底面)824相同的轴向位置833。垂直窄槽834的前端可以被设置在大致处于与狭缝阀818的顶部表面825相同的轴832(图8A)上的位置。这样就使窄槽828整体上与狭缝阀818的开口处于同一水平上,然而,由于晶片装载要求(其首先产生这种局部热吸收条件),在邻近狭缝阀818的区域,从周边上除去裙板822和窄槽828从而形成晶片装载槽口821。
图8D是非均匀窄槽间隔的例图。为了补偿加工腔室内部816的任何非对称特征,在邻近那些局部内部特征的周边裙板822的位置上,可以均匀地增加或减小、或非均匀地增加或减小窄槽828的间隔。不同的特征可以是一种几何形状或一个表面温度。也就是说,在加工过程中出现于内部腔室壁814(图8A)而非狭缝阀818上的局部的热点或冷点,也可以用适当的裙板822的设计来补偿。
如图8E-8G所示,应认识到,用于裙板822中的热吸收孔的形状可以有多种不同形状或不同形状的组合,其中这些形状可以是通过综合考虑所需表面面积与加工成本来决定的。除了椭圆形835和圆形834外,也可考虑其它形状,如正方形836、矩形838、三角形840,或甚至是由非对称性的曲线形成的开口842。
图9A是具有短裙板的泵送板的一个实施例的三维视图。图9B是该具有短裙板的泵送板的一个实施例的横断面视图。裙板922和多个孔(此例中为垂直窄槽928)可以平衡由加工腔室内部816中的不均匀条件所导致的较高或较低的热吸收的局部影响(图8A)。然而,同样重要的是使加工过程中泵送板912内的温度最低。除了较低的泵送板912的温度之外,在加工过程中温度的均匀性也是重要的。在加工过程中降低泵送板912的温度可以减小泵送板912的材料将杂质添加到腔室加工800中(图8A)、从而污染晶片或正在沉积的晶片膜的可能性。泵送板912可以由铝制造,其可具有阳极氧化涂层,然而,本领域技术人员应该明白可以使用其它材料如不锈钢。泵送板912中的较高温度可使泵送板912上的涂层、如阳极氧化的涂层龟裂或剥落(如果使用的话)。而在下面无遮蔽的金属暴露时,某些金属可能就会飞落变为污染物。
参考图9B,当与设置完整的水平槽口相反、在晶片通道槽口928处除去部分裙板926(以虚线表示)时,热量不必环绕窄槽924流经929到达凸缘917。这样的热流会在晶片通道槽口928附近的各窄槽930之间的瓶颈区域产生“热点”。除去裙板922的这一部分926,就使得热量不被该区域所吸收、且因此而不会附加到窄槽附近区域932的热流中——而这会提高温度。此外,在后端830处的晶片通道槽口821打开时,裙板的整个长度L可被缩短(短裙板)。这样就允许根据孔的尺寸来决定裙板的长度L,此处窄槽的长轴必须和狭缝阀818对齐(图8B)。这种裙板窄槽与狭缝阀在轴向上的对齐,以及窄槽的面积近似等于狭缝阀的面积,是一种经验法则,其可以为进入狭缝阀818内的热损失提供近似的补偿。
处于本领域技术人员能力范围之内的是确定在垂直窄槽930之间的距离s,从而使得热流令裙板922内的温度最低。该距离s可以是均匀的、均匀变化的、非均匀变化的,或者可以用各种其它方式来定间隔,以供裙板922均匀加热。
可以通过针对热吸收提供较小的表面积、并对于由基座806(前面的图8A)直接辐射到腔室部分内壁(未示出)的热提供屏蔽,来确定裙板922的长度L的尺寸,以便降低泵送板912内的温度。作为这种几何形状的一个结果,泵送板912可以被保持在近似低于250℃的温度,其中当加工腔室工作在大致为550-800℃温度范围内时,泵送板912的温度均匀地处于约±30℃之内。
图10A-10C是不穿透裙板1022的裙板窄槽的各可替换实施例的例图。图10A是窄槽1028的例图,该窄槽是一种底部尖削的孔。图10B是窄槽1030的例图,该窄槽是一种平底孔。图10C是一个窄槽的例图,该窄槽是一种带螺纹的平底孔1032。在一个实施例中,一个或多个窄槽1028、1030、和1032可以不完全穿透裙板1022,并且其中当泵送板被安装到加工腔室后,窄槽开口1028、1030和1032可面对基座(图8A)。对于裙板1022来说,有可能利用不穿透裙板1022的窄槽1028、1030和1032而起作用,然而,可制造性和获得最大侧壁表面积831(图8B)的益处,可能使得这种设计相反不如穿透裙板1022的孔的设计可取。
此处公开的无辐射率变化的泵送板套件,通过对腔室提供气体吹扫来防止残余物或粉末形成于泵送板和面板上、从而防止腔室中的辐射率变化,可用于防止在晶片加工过程中的辐射率变化。泵送板也可以被用于改善晶片加工过程中的薄膜厚度和薄膜材料特性均匀度,其中从被加热的基座上更为均匀地去除热量。这样的热均匀度可以由围绕基座所提供的均匀的热边界条件产生,其可导致在晶片上沉积均匀的膜。泵送板可具有降低的平均工作温度,以及对泵送板来说更为均匀的工作温度,而在加工腔室中,较少可能会有来自基底金属的金属污染。
本领域技术人员将易于理解的是,本发明良好地适应于实现所述目标,并获得所述的及那些其中固有的结果和优点。对本领域技术人员来说显而易见的是,在实践本发明的过程中可做出不同的修改和变化,而不偏离本发明的精神或范围。本领域技术人员将想到其中的改变和其它用途被包含在本发明的精神内,如权利要求的范围所定义的那样。
权利要求
1.一种装置,其包括具有裙板的泵送板,其中所述裙板包括多个孔和一个晶片通道槽口。
2.根据权利要求1所述的装置,其中所述晶片通道槽口在所述裙板的边缘开口。
3.根据权利要求1所述的装置,其中所述的多个孔是通孔。
4.根据权利要求1所述的装置,其进一步包括加工腔室;狭缝阀,其中所述泵送板被设置在所述加工腔室中,所述晶片通道槽口邻近所述狭缝阀,且所述的多个孔具有的轴向高度近似等于所述狭缝阀的轴向高度。
5.根据权利要求4所述的装置,其中所述的多个孔处在和所述狭缝阀相同的轴向位置。
6.根据权利要求4所述的装置,其中所述的多个孔具有的轴向高度对孔宽度的比率近似大于或等于1。
7.根据权利要求2所述的装置,其中所述的多个孔的总面积近似等于狭缝阀的面积,其中所述狭缝阀对加工腔室的内部开口。
8.根据权利要求1所述的装置,其中当基座加热器的温度处于约为550-800℃的范围内时,所述泵送板能够维持约在250℃以下、±30℃的温度。
9.根据权利要求1所述的装置,其中所述的多个孔是均匀地间隔开的。
10.根据权利要求1所述的装置,其中所述的多个孔是不均匀地间隔开的。
11.根据权利要求1所述的装置,其中所述的多个孔包括一个以上的形状。
12.根据权利要求11所述的装置,其中所述的多个孔中的一个以上的形状选自下列一组,其包括圆形、椭圆形、矩形、正方形和不均匀曲线。
13.一种装置,其包括晶片加工腔室;处于所述晶片加工腔室的内部的局部区域,其反射的热量小于所述内部的剩余部分;安装在所述内部的主体,其不对称地反射热量,从而当与所述局部区域对齐时,所述主体对所述局部区域的较低热反射提供热补偿。
14.根据权利要求13所述的装置,其中所述局部区域是狭缝阀,而所述主体是具有多个孔的裙板。
15.根据权利要求14所述的装置,其进一步包括基座;基座加热器;阻隔板,其中所述基座是由传导至该基座表面的热量来加热的,而且其中作为所述的多个孔的位置和裙板形状的结果,所述裙板不均匀地吸收被辐射的热,从而对来自所述狭缝阀的降低的热反射提供热补偿,并且提供围绕所述基座的均匀的热边界。
16.根据权利要求14所述的装置,进一步包括具有晶片通道槽口的裙板,该晶片通道槽口开口于所述裙板的后端,而使得加工过程中整个泵送板的温度均匀。
17.根据权利要求14所述的装置,进一步包括短裙板以使得整个泵送板的温度被降低。
18.根据权利要求15所述的装置,其中所述的多个孔经过成形以改善围绕所述基座的均匀的热边界。
19.根据权利要求18所述的装置,其中所述的多个孔具有多种形状。
20.一种装置,其包括加工腔室;基座;泵送板;裙板;以及通过补偿在所述加工腔室内的局部加热的影响而产生围绕所述基座的均匀边界的装置。
21.根据权利要求21所述的装置,其进一步包括用于降低在所述泵送板内的温度的装置。
22.根据权利要求21所述的装置,其进一步包括用于提供所述泵送板的温度均匀性的装置。
23.一种装置,其包括圆形基座;设置在所述基座上方的面板和阻隔板;基座加热装置;狭缝阀;泵送板;具有多个通孔的泵送板裙板;以及处于所述泵送板裙板内的晶片通道槽口,其开口于所述泵送板裙板的一段边缘上;所述裙板的长度被截短,以便在加工过程中使所述泵送板内的温度分布曲线下降。
24.根据权利要求23所述的装置,其中在所述裙板内的所述多个通孔是经过定位的,用于在加工过程中提供温度均匀性。
25.根据权利要求23所述的装置,其中所述裙板是短裙板。
全文摘要
一种装置,其包括泵送板(812),该泵送板具有裙板(822),其中该裙板包括多个孔(828)和水通道槽口,且其中这些孔取合适的尺寸并被安置以使得基座(806)被均匀地加热。
文档编号C23C16/455GK1610768SQ03801875
公开日2005年4月27日 申请日期2003年1月15日 优先权日2002年1月15日
发明者X·金, S·王, L·罗, H·胡, S·A·陈 申请人:应用材料有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1