抗菌镀膜件及其制备方法

文档序号:3413185阅读:123来源:国知局
专利名称:抗菌镀膜件及其制备方法
技术领域
本发明涉及一种抗菌镀膜件及其制备方法。
背景技术
有害细菌的传播和感染严重威胁着人类的健康,尤其是近年来SARS病毒、禽流感等的传播和感染,使抗菌材料在日常生活中的应用迅速发展起来。将抗菌金属(Cu、Zn、Ag等)涂覆于基材上形成抗菌镀膜件在目前市场上有着广泛的应用。该抗菌镀膜件的杀菌机理是抗菌镀膜件在使用过程中,抗菌金属涂层会缓慢释放出金属离子如Cu2+、Zn2+,当微量的具有杀菌性的金属离子与细菌等微生物接触时,该金属离子依靠库伦力与带有负电荷的微生物牢固吸附,金属离子穿透细胞壁与细菌体内蛋白质上的巯基、氨基发生反应,使蛋白质活性破坏,使细胞丧失分裂增殖能力而死亡,从而达到杀菌的目的。但是该类金属抗菌涂层厚度通常比较薄,抗菌金属离子流失较快,且表面硬度较低容易磨损,从而降低了金属抗菌涂层的抗菌持久性。

发明内容
有鉴于此,有必要提供一种抗菌效果较为持久的抗菌镀膜件。另外,还有必要提供一种上述抗菌镀膜件的制备方法。—种抗菌镀膜件,其包括基材、形成于基材表面的打底层,该打底层为镍铬合金层,该抗菌镀膜件还包括形成于打底层表面的若干镍铬氮层和若干铜锌合金层,该若干镍铬氮层和若干铜锌合金层交替排布,该抗菌镀膜件中与所述打底层直接相结合的是镍铬氮层,且该抗菌镀膜件的最外层为镍铬氮层。一种抗菌镀膜件的制备方法,其包括如下步骤
提供基材;
在该基材的表面形成打底层,该打底层为镍铬合金层;
在该打底层的表面形成镍铬氮层;
在该镍铬氮层的表面形成铜锌合金层;
重复交替形成镍铬氮层和铜锌合金层以形成最外层为镍铬氮层的抗菌镀膜件。所述抗菌镀膜件在基材表面交替溅镀镍铬氮层和铜锌合金层,镍铬氮层形成为疏松多孔的结构,可使铜锌合金层的部分嵌入到该镍铬氮层中,对铜锌合金层中铜和锌离子的快速溶出起到阻碍作用,从而可缓释铜和锌离子的溶出,使铜锌合金层具有长效的抗菌效果;同时镍铬氮层具有良好的耐磨性、耐腐蚀性能,因而在整个膜层的最外层镀上镍铬氮层有助于提升抗菌镀膜件的耐磨性,可延长抗菌镀膜件的使用寿命。



图I为本发明一较佳实施例的抗菌镀膜件的剖视 图2为本发明一较佳实施例真空镀膜机的俯视示意图。·[空泵防
如下具体实施方式
将结合上述附图进一步说明本发明。
具体实施例方式请参阅图1,本发明一较佳实施方式的抗菌镀膜件10包括基材11、形成于基材11表面的打底层13,形成于打底层13表面的若干镍铬氮(NiCrN)层15和若干铜锌合金(Cu-Zn)层17,该若干镍铬氮层15和若干铜锌合金层17交替排布,其中与所述打底层13直接相结合的是镍铬氮层15,抗菌镀膜件10的最外层为镍铬氮层15。所述若干镍铬氮层15和若干铜锌合金层17的总厚度为2 3. 2 ii m。本实施例中,所述若干镍铬氮层15和若干铜锌合金层17的层数分别为15 20层。该基材11的材质优选为不锈钢,但不限于不锈钢。该打底层13可以磁控派射的方式形成。该打底层为一镍铬合金层。该打底层13的厚度为150 250nm。该若干镍铬氮层15可以磁控溅射的方式形成。所述每一镍铬氮层15的厚度为40 80nm。所述镍铬氮层15中镍的原子百分含量为30 45%,铬的原子百分含量为40 55%,氮的原子百分含量为5 15% ;该种质量百分比例的镍铬氮层15具有较高的硬度和良好的耐磨性。溅镀该镍铬氮层15时采用较低的沉积温度和沉积偏压,使镍铬氮层15具有更好的疏松多孔的结构,可使所述铜锌合金层17的部分嵌入到该铜锌合金层17中。该若干铜锌合金层17可以磁控溅射的方式形成。所述每一铜锌合金层17的厚度为40 80nm。在每一铜锌合金层17与相邻的每一镍铬氮层15的界面处,有部分铜锌合金层17嵌入到镍铬氮层15中,从而使铜锌合金层17固持于镍铬氮层15中,可缓释铜锌合金层17中铜和锌离子的溶出,使铜锌合金层17具有长效的抗菌效果。本发明一较佳实施方式的抗菌镀膜件10的制备方法,其包括如下步骤
提供基材11,该基材11的材质优选为不锈钢,但不限于不锈钢。对该基材11进行表面预处理。该表面预处理可包括常规的对基材11进行抛光、无水乙醇超声波清洗及烘干等步骤。对经上述处理后的基材11的表面进行氩气等离子体清洗,以进一步去除基材11表面残留的杂质,以及改善基材11表面与后续镀层的结合力。结合参阅图2,提供一真空镀膜机20,该真空镀膜机20包括一镀膜室21及连接于镀膜室21的一真空泵30,真空泵30用以对镀膜室21抽真空。该镀膜室21内设有转架(未图示)、一镍铬合金靶23和一铜锌合金靶24。转架带动基材11沿圆形的轨迹25公转,且基材11在沿轨迹25公转时亦自转。该等离子体清洗的具体操作及工艺参数为将基材11放入一真空镀膜机20的镀膜室21内,将该镀膜室21抽真空至3Xl(T5torr,然后向镀膜室内通入流量为500sCCm(标准状态毫升/分钟)的氩气(纯度为99. 999%),并施加-200 -350V的偏压于基材11,对基材11表面进行氩气等离子体清洗,清洗时间为3 lOmin。采用磁控溅射法在经氩气等离子体清洗后的基材11的表面溅镀打底层13,该打底层13为一镍铬合金层。溅镀该打底层13在所述真空镀膜机20中进行。使用镍铬合金靶23,所述镍铬合金靶23中镍的质量百分含量为20 40%,其采用直流磁控电源。溅镀时,开启镍铬合金靶23,设置镍铬合金靶23的功率为7 llkw,通入工作气体氩气,氩气流量为350 500sccm,对基材11施加-100 -150V的偏压,镀膜温度为70 90°C,镀膜时间为5 lOmin。该打底层13的厚度为150 250nm。
继续采用磁控溅射法在所述打底层13的表面溅镀镍铬氮层15。继续使用镍铬合金靶23,所述镍铬合金靶23采用直流磁控电源。溅镀时,开启镍铬合金靶23,设置镍铬合金靶23的功率为7 I lkw,通入反应气体氮气,氮气流量为45 120sccm,通入工作气体氩气,氩气流量为400 500SCCm,对基材11施加直流偏压,直流偏压大小为-50 -100V,镀膜温度为70 90°C,镀膜时间为5 7min。该镍铬氮层15的厚度为40 80nm。溅镀该镍铬氮层15采用较低的沉积温度和较低的沉积偏压,可使镍铬氮层15达到较好的疏松多孔的结构。继续采用磁控溅射法在所述镍铬氮层15的表面溅镀铜锌合金层17。使用铜锌合金靶24,所述铜锌合金靶24中铜的质量百分含量为65% 76%,其采用直流磁控电源。溅镀时,开启铜锌合金靶24,设置铜锌合金靶24的功率为8 10kw,通入工作气体氩气,氩气流量为400 500SCCm,对基材11施加直流偏压,直流偏压大小为-50 -100V,镀膜温度为70 90°C,镀膜时间为5 7min。该铜锌合金层17的厚度为40 80nm。参照上述步骤,重复交替溅镀镍铬氮层15和铜锌合金层17,且使抗菌镀膜件10的最外层为镍铬氮层15。交替溅镀的次数总共为15 20次。所述若干镍铬氮层15和若干铜锌合金层17的总厚度为2 3. 2 ii m。下面通过实施例来对本发明进行具体说明。实施例I
本实施例所使用的真空镀膜机20为磁控溅射镀膜机。本实施例所使用的基材11的材质为不锈钢。等离子体清洗氩气流量为500SCCm,基材11的偏压为-200V,等离子体清洗时间为 5min ;
溅镀打底层13 :镍铬合金靶23中镍的质量百分含量为35%,镍铬合金靶23的功率为7kw,氩气流量为420SCCm,基材11的偏压为-100V,镀膜温度为80°C,镀膜时间为6min ;该打底层13的厚度为185nm ;
溅镀镍铬氮层15 :镍铬合金靶23的功率为8kw,氩气流量为400SCCm,氮气流量为60SCCm,基材11的偏压为-80V,镀膜温度为80°C,镀膜时间为7min ;该镍铬氮层的厚度为75nm。溅镀铜锌合金层17 :铜锌合金靶24中铜的质量百分含量为66%,铜锌合金靶24的功率为8kw,基材11的偏压为-80V,氩气流量为400SCCm,镀膜温度为80°C,镀膜时间为7min ;该铜锌合金层17的厚度为70nm。
重复交替溅镀镍铬氮层15和铜锌合金层17的步骤,溅镀镍铬氮层15的次数为17次,溅镀铜锌合金层17的次数为16次。实施例2
本实施例所使用的真空镀膜机20和基材11均与实施例I中的相同。等离子体清洗氩气流量为500SCCm,基材11的偏压为-200V,等离子体清洗时间为 5min ;
溅镀打底层13 :镍铬合金靶23中镍的质量百分含量为40%,镍铬合金靶23的功率为7kw,氩气流量为420SCCm,基材11的偏压为-100V,镀膜温度为80°C,镀膜时间为5min ;该打底层13的厚度为185nm ; 溅镀镍铬氮层15 :镍铬合金靶23的功率为7kw,氩气流量为400SCCm,氮气流量为lOOsccm,基材11的偏压为-80V,镀膜温度为80°C,镀膜时间为5min ;该镍铬氮层的厚度为60nmo溅镀铜锌合金层17 :铜锌合金靶24中铜的质量百分含量为74%,铜锌合金靶24的功率为8kw,基材11的偏压为-80V,氩气流量为400SCCm,镀膜温度为80°C,镀膜时间为5min ;该铜锌合金层17的厚度为65nm。重复交替溅镀镍铬氮层15和铜锌合金层17的步骤,溅镀镍铬氮层15的次数为17次,溅镀铜锌合金层17的次数为16次。抗菌性能测试
将上述制得的抗菌镀膜件10进行抗菌性能测试,抗菌测试参照HG/T3950-2007标准进行,具体测试方法如下取适量菌液滴于实施例所制得的抗菌镀膜件10和未处理的不锈钢样品上,用灭菌覆盖膜覆盖抗菌镀膜件10和未处理的不锈钢样品,置于灭菌培养皿中,在温度为37±1°C,相对湿度为RH>90%的条件下培养24h。然后取出,用20ml洗液反复冲洗样品及覆盖膜,摇匀后取洗液接种于营养琼脂培养基中,在温度为37土1°C下培养24 48h后进行活菌计数。将6种霉菌制成孢子悬液,将抗菌镀膜件10浸泡在所述孢子悬液中,在温度为280C,相对湿度RH>90%的条件下培养28天。测试结果实施例I和2所制得的抗菌镀膜件10对大肠杆菌、沙门氏菌、金黄色葡萄球菌的杀菌率均达到99. 5%,长霉等级均为I级。抗菌持久性测试经过在温度为37±1 °C的恒温水溶液中浸泡3个月后的抗菌抗菌镀膜件10,再次进行抗菌性能测试,实施例I和2所制得的抗菌抗菌镀膜件10对大肠杆菌、沙门氏菌、金黄色葡萄球菌的杀菌率依然达到99. 3%,长霉等级均为I级。所述抗菌镀膜件10在基材11表面交替溅镀镍铬氮层15和铜锌合金层17,镍铬氮层15形成为疏松多孔的结构,可使铜锌合金层17的部分嵌入到该镍铬氮层15中,对铜锌合金层17中铜和锌离子的快速溶出起到阻碍作用,从而可缓释铜和锌离子的溶出,使铜锌合金层17具有长效的抗菌效果。同时镍铬氮层15具有良好的耐磨性、耐腐蚀性能,因而在整个膜层的最外层镀上镍铬氮层15有助于提升抗菌镀膜件10的耐磨性,可延长抗菌镀膜件10的使用寿命。
权利要求
1.ー种抗菌镀膜件,其包括基材、形成于基材表面的打底层,该打底层为镍铬合金层,其特征在于该抗菌镀膜件还包括形成于打底层表面的若干镍铬氮层和若干铜锌合金层,该若干镍铬氮层和若干铜锌合金层交替排布,且与所述打底层直接相结合的是镍铬氮层,该抗菌镀膜件的最外层为镍铬氮层。
2.如权利要求I所述的抗菌镀膜件,其特征在于所述基材的材质为不锈钢。
3.如权利要求I所述的抗菌镀膜件,其特征在于所述打底层以磁控溅射的方式形成,该打底层的厚度为150 250nm。
4.如权利要求I所述的抗菌镀膜件,其特征在于所述若干镍铬氮层以磁控溅射的方式形成,姆ー镍铬氮层的厚度为40 80nm。
5.如权利要求I所述的抗菌镀膜件,其特征在于所述若干铜锌合金层以磁控溅射的方式形成,姆ー铜锌合金层的厚度为40 80nm。
6.如权利要求I所述的抗菌镀膜件,其特征在于所述若干镍铬氮层和若干铜锌合金层的总厚度为2 3.2 μ m。
7.ー种抗菌镀膜件的制备方法,其包括如下步骤 提供基材; 在该基材的表面形成打底层,该打底层为镍铬合金层; 在该打底层的表面形成镍铬氮层; 在该镍铬氮层的表面形成铜锌合金层; 重复交替形成镍铬氮层和铜锌合金层以形成最外层为镍铬氮层的抗菌镀膜件。
8.如权利要求7所述抗菌镀膜件的制备方法,其特征在于形成所述打底层的步骤采用如下方式实现采用磁控溅射法,使用镍铬合金靶,所述镍铬合金靶中镍的质量百分含量为20 40%,镍铬合金靶的功率为7 llkw,以氩气为工作气体,氩气流量为350 500sccm,对基材施加偏压为-100 -150V,镀膜温度为70 90°C,镀膜时间为5 lOmin。
9.如权利要求7所述抗菌镀膜件的制备方法,其特征在于形成所述镍铬氮层的步骤采用如下方式实现采用磁控溅射法,使用镍铬合金靶,所述镍铬合金靶中镍的质量百分含量为20 40%,镍铬合金靶的功率为7 llkw,以氮气为反应气体,氮气流量为45 120sccm,以氩气为工作气体,氩气流量为400 500sccm,对基材施加偏压为-50 -100V,镀膜温度为70 90°C,镀膜时间为5 7min。
10.如权利要求7所述抗菌镀膜件的制备方法,其特征在于形成所述铜锌合金层的步骤采用如下方式实现采用磁控溅射法,使用铜锌合金靶,所述铜锌合金靶中铜的质量百分含量为65% 76%,以氩气为工作气体,氩气流量为400 500sccm,对基材施加偏压为-50 -100V,镀膜温度为70 90°C,镀膜时间为5 7min。
11.如权利要求7所述抗菌镀膜件的制备方法,其特征在于所述交替形成镍铬氮层和铜锌合金层的次数总共为15 20次。
全文摘要
本发明提供一种具有持久抗菌效果的抗菌镀膜件,其包括基材、形成于基材表面的打底层,该抗菌镀膜件还包括形成于打底层表面的若干镍铬氮层和若干铜锌合金层,该若干镍铬氮层和若干铜锌合金层交替排布。本发明所述抗菌镀膜件利用镍铬氮层疏松多孔的结构,使铜锌合金层的部分嵌入到该镍铬氮层中,对铜锌合金层中铜和锌离子的快速溶出起到阻碍作用,从而可缓释铜和锌离子的溶出,使铜锌合金层具有长效的抗菌效果。此外,本发明还提供一种所述抗菌镀膜件的制备方法。
文档编号C23C14/18GK102691034SQ20111006854
公开日2012年9月26日 申请日期2011年3月22日 优先权日2011年3月22日
发明者张新倍, 李聪, 蒋焕梧, 陈文荣, 陈正士 申请人:鸿富锦精密工业(深圳)有限公司, 鸿海精密工业股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1