基于碲化镉的薄膜光伏器件所用的导电透明氧化物膜层的形成方法

文档序号:3413757阅读:81来源:国知局
专利名称:基于碲化镉的薄膜光伏器件所用的导电透明氧化物膜层的形成方法
技术领域
本文公开的主题一般涉及形成导电透明氧化物膜层。更特别是,本文公开的主题涉及形成用于碲化镉薄膜光伏器件的导电透明氧化物膜层的方法。
背景技术
基于碲化镉(CdTe)与硫化镉(CdS)作为光敏成分配对的薄膜光伏(PV)模块(也被称为“太阳电池板”)在工业上得到广泛的接受和关注。CdTe为具有特别适用于太阳能转化成电的性质的半导体材料。例如,CdTe具有约1.45eV能带隙,这使得与过去在太阳能电池应用中使用的较低带隙半导体材料(例如对于硅约1. IeV)比较,能够从太阳光谱转化更多能量。此外,与较低带隙材料比较,CdTe在较低或漫射光条件转化辐射能,因此与其他常规材料比较在一整天或阴天条件具有较长的有效转化时间。在CdTe PV模块曝露于光能时,如日光,η型层和ρ型层的结一般担负产生电压和电流。特别是,碲化镉(CdTe)层和硫化镉(CdS)形成ρ-η异质结,其中CdTe层作为ρ型层(即,正的电子接受层),CdS层作为 η型层(即,负的给电子层)。透明导电氧化物(“TC0”)层一般用于窗玻璃和结形成层之间。例如,可通过两种方法任一种热溅射或冷溅射从锡酸镉(即,Cd2SnO4)靶溅镀TCO层。在热溅射时,一般在一步溅射方法中在高于约150°C的溅射温度沉积TCO层。在冷溅射时(例如,在约室温), 必须在层溅镀后在第二步骤使TCO层退火(annealed),以使层从无定形层转化成结晶层。尽管热溅射法更精简(即,只需要单一步骤),但热溅射TCO层可具有比冷溅射 TCO层更高的电阻率-甚至在溅镀相同材料(例如,锡酸镉)时-这使热溅射TCO层对最终用途不太有吸引力。虽然,不希望受任何具体理论限制,相信热溅射层和冷溅射层之间的这种电阻率差异可能源于原沉积化学计量的差异。例如,在从锡酸镉靶溅镀时,目前相信冷溅射产生具有化学计量Cd2SnO4W层,这是锡酸镉的所需化学计量。另一方面,目前相信在一定升高的温度从锡酸镉靶热溅射产生具有接近CdSn03+Sn02K学计量的层,虽然层的精确化学计量可能为某种温度的函数。因此,需要通过冷溅射形成TCO层,以得到所需的化学计量。然而,存在的其他处理问题是妨碍冷溅射形成TCO层的可行性,尤其是从锡酸镉靶。首先,退火处理可能使镉原子升华出TCO层,改变TCO层的化学计量,尤其是沿着其外表面。其次,退火处理可导致TCO层在基体上裂纹和/或脱层,在使基体温度从溅射温度升高到退火温度,在从退火温度冷却返回到室温时和/或从非晶到结晶相变(也可导致密度/ 体积变化)时这些都可能形成。这两个处理问题可导致所得PV器件TCO层的稳定性问题, 而这些问题在用热溅射形成的TCO层制成的PV器件中不存在。另外,以精简制备的观点, 需要进行一步方法。因此,需要一种TCO层,该TCO层具有那些冷溅射层的电导率和在那些热溅射层中发现的处理和器件稳定性以及制备容易性。

发明内容
本发明的各方面和优点将部分在以下描述中阐述,或者可从描述中明显看到,或者可通过实施本发明认识。本发明一般提供在基体上形成导电氧化物层的方法。在一个具体实施方案中,所述方法可包括在约50°C至约250°C的溅射温度在基体上溅镀透明导电氧化物层,并在约 450°C至约650°C的退火温度使所述透明导电氧化物层退火。本发明也一般提供制备基于碲化镉的薄膜光伏器件的方法。例如,所述方法的一个具体实施方案可包括在约50°C至约250°C的溅射温度在基体上溅镀透明导电氧化物层, 并在约450°C至约650°C的退火温度使透明导电氧化物层退火。最后,可在透明导电氧化物层上形成阻性透明缓冲层,在阻性透明层上形成硫化镉层,在硫化镉层上形成碲化镉层。通过参考以下描述和附加权利要求,本发明的这些和其他特征、方面和优点将变得更好理解。附图结合到本说明书并形成本说明书的一部分,阐述本发明的实施方案,并与文字描述一起用于解释本发明的原理。


本发明的完全和确保公开内容,包括其最佳方式(针对本领域的技术人员),参考附图阐述于本说明书,其中图1显示根据本发明的一个实施方案的示例性碲化镉薄膜光伏器件的一般横截面示意图;图2显示制备光伏模块的示例性方法的流程图,所述光伏模块包括碲化镉薄膜光伏器件;图3显示根据本发明的一个实施方案的示例性DC溅射室的一般横截面示意图;和图4显示在基体上形成透明导电氧化物层的示例性方法的流程图。在本说明书和附图中参考字符的重复使用将表示相同或类似的特征或元件。
具体实施例方式现在详细论述本发明的实施方案,其中一个或多个实例在附图中说明。各实例通过本发明的解释提供,不是本发明的限制。实际上,对本领域的技术人员显而易见,可在不脱离本发明的范围或精神下在本发明中作出各种修改和变化。例如,作为一个实施方案的部分说明或描述的特征可与另一个实施方案一起使用,以得到更进一步的实施方案。因此, 本发明将覆盖附加权利要求书及其等同权利要求范围内的这些修改和变化。在本公开中,在将一个层描述为在另一个层或基体“上”或“之上”时,应理解,这些层可直接相互接触,或在层间具有另一个层或特征。因此,这些术语简单描述层的相互相对位置,并且不一定指“在...顶上”,因为之上或之下的相对位置取决于器件相对于观察者的方向。另外,虽然本发明不限于任何具体膜厚度,但描述光伏器件的任何膜层的术语“薄” 一般指小于约10微米(“微米”或“μπι”)厚度的膜层。应理解,本文提到的范围和限度包括在规定限度内的所有范围(S卩,子范围)。例如,范围约100至约200也包括范围110至150、170至190、153至162和145. 3至149. 6。
4另外,最高约7的限度也包括最高约5、最高3、最高约4. 5的限度和在此限度内的各范围, 例如约1至约5和约3. 2至约6. 5。本发明一般公开在基体上溅镀透明导电氧化物层(“TC0层”)的方法。TCO层一般包含至少一种导电氧化物,如氧化锡、氧化锌或氧化锡铟或其混合物。另外,TCO层可包含其他导电透明材料。TCO层也可包含锡酸镉。在一个具体实施方案中,可通过在基体上用靶(例如,包含锡酸镉和/或锡酸锌的靶)溅射(例如,DC溅射或RF溅射)形成TCO层。 例如,通过使热压靶溅射于基体上,可形成锡酸镉层,所述热压靶含锡酸镉(Cd2SnO4)和/或约1 约2比的化学计量的SnA和CdO。在一个具体实施方案中,形成TCO层的溅射温度可在热溅射法温度和冷溅射法温度之间。例如,溅射温度可以为约50°C至约250°C,例如约75°C至约200°C。在一个具体实施方案中,溅射温度可以为约100°C至约200°C,例如约125°C至约175°C。在这些溅射温度,相信可达到冷溅射层的原沉积化学计量,同时限制退火需要的温度提高。退火方法一般包括将TCO层加热到退火温度(例如,约450°C至约650°C,如约575°C至约630°C )。在某些实施方案中,所述基体可在退火温度退火约1分钟至约30分钟,例如约5分钟至约20分钟。相信TCO层退火使TCO层的性质从其原沉积结构(例如,无定形)物理改变成更多结晶的层。根据一个具体实施方案,为了在溅射温度溅射基体后使任何温度损失最大限度地减小,可在溅射TCO层后立即使基体退火。因此,只需要将基体和TCO层从溅射温度加热到退火温度。例如,基体可在溅射1小时内开始退火,例如在溅射后约5秒至约30分钟。在具体实施方案中,基体可在溅射后5秒至约5分钟内开始退火,例如在溅射后约10秒至约 1分钟。溅射沉积涉及从为材料源的靶喷射材料,并使喷射的材料沉积于基体上,以形成膜。DC溅射一般涉及将直电流施加到溅射室内接近基体(S卩,阳极)放置的金属靶(即,阴极),以形成直流放电。溅射室可具有反应气氛(例如,氧气氛、氮气氛、氟气氛),反应气氛在金属靶和基体之间形成等离子体场。也可存在其他惰性气体(例如,氩气等)。对于磁控管溅射,反应气氛的压力可在约1毫托和约20毫托之间。对于二极管溅射,压力可甚至更高(例如,约25毫托至约100毫托)。在施加电压从靶释放金属原子时,金属原子沉积于基体的表面上。例如,当气氛包含氧气时,从金属靶释放的金属原子可在基体上形成金属氧化物层。根据源材料的大小、溅射室的大小、基体表面积的量和其他变量,施加到源材料的电流可以变化。在一些实施方案中,施加的电流可以为约2安至约20安。相反,RF溅射涉及通过在靶(例如,陶瓷源材料)和基体之间施加交流(AC)或射频(RF)信号激励电容性放电。溅射室可具有惰性气氛(例如,氩气氛),该惰性气氛可包含或可不包含反应物质(例如,氧气、氮气等),对于磁控管溅射,可具有约1毫托和约20毫托之间的压力。同样,对于二极管溅射,压力可甚至更高(例如,约25毫托至约100毫托)。图3显示根据本发明的一个实施方案的示例性DC溅射室60的一般横截面示意图。DC电源62构造成控制DC功率(power)并将其提供到室60。如所示,DC电源对阴极64 施加电压,以在阴极64和室壁形成的阳极之间产生电势,使得基体处于阴极和阳极之间。 玻璃基体12分别通过线68和69保持在顶部载体66和底部载体67之间。玻璃基体一般位于溅射室60内,以便在面对阴极64的表面上形成TCO层14。
5
一旦点燃溅射气氛,就产生等离子体场70,并响应阴极64和作为阳极的室壁之间的电势维持等离子体场70。电势使等离子体场70内产生等离子体离子,以向阴极64加速, 使来自阴极64的原子向玻璃基体12上的表面喷射。因此,阴极64可被称为“靶”,并且作为源材料用于在面对阴极64的表面上形成TCO层14。阴极64可以为金属合金靶,如元素锡、元素锌或其混合物。另外,在一些实施方案中,可利用许多阴极64。许多阴极64可特别用于形成包含几种类型材料的层(例如,共溅射)。由于溅射气氛包含氧气,等离子体场70 的氧粒子可与喷射的靶原子反应,在玻璃基体12上的TCO层14上形成氧化物层。虽然只显示单一 DC电源62,但可通过使用连接在一起的多个电源达到电势。另外,所示示例性溅射室60具有垂直取向,虽然可利用任何其他结构。在离开溅射室60后, 基体12可进入相邻的退火烘箱(未显示),以开始退火处理。例如,可在规定的溅射温度从锡酸镉靶通过溅射形成TCO层,以在基体上形成锡酸镉TCO层。锡酸镉靶可包含其他材料(例如,锡酸锌等)。不希望受任何具体理论限制, 目前相信在这些温度从锡酸镉靶溅射可形成具有Cd2SnO4化学计量的锡酸镉TCO层。然后, 退火处理可使原沉积层(例如无定形层)转化成更多结晶的结构,同时减少退火期间裂纹和/或脱层的发生。图4显示例如在基体上形成TCO层的示例性方法100。在102,在溅射温度在玻璃基体上溅镀TCO层。然后,在104,在退火温度使TCO层退火。溅镀TCO层的目前提供方法可用于形成利用TCO层的任何膜堆叠层,特别是包括锡酸镉TCO层的那些。例如,在形成利用碲化镉层的任何碲化镉器件期间可使用TCO 层,如Murphy等人的美国公布号2009/0194165中公开的碲化镉薄膜光伏器件,其标题为 “Ultra-high Current Density Cadmium Telluride Photovoltaic Modules. ”(超高电流密度碲化镉光伏模块)。图1表示可根据本文所述方法形成的示例性碲化镉薄膜光伏器件10。图1的示例性器件10包括用作基体的玻璃上片12。在此实施方案中,可将玻璃12称为“覆盖层 (superstrate) ”,因为在此基体上形成随后的层,即使在碲化镉薄膜光伏器件10使用中它面向辐射源(例如,太阳)。玻璃上片12可以为高透射玻璃(例如,高透射硼硅酸盐玻璃)、 低铁浮法玻璃或其他高度透明玻璃材料。玻璃一般厚得足以提供用于随后膜层的载体(例如约0. 5mm至约IOmm厚),并且基本上是平的,以提供用于形成随后膜层的优良表面。在一个实施方案中,玻璃12可以为含小于约0.015%重量铁(Fe)的低铁浮法玻璃,并且可在目标光谱(例如约300nm至约900nm波长)具有约0. 9或更大的透射率(transmissiveness)。 在另一个实施方案中,为了更好地经受高温处理,可利用硼硅酸盐玻璃。透明导电氧化物(TCO)层14显示在图1的示例性器件10的玻璃12上。TCO层14 允许光以最小吸收通过,同时也允许器件10产生的电流向侧面传到不透明金属导体(未显示)。例如,TCO层14可具有小于约30欧姆/平方的薄层电阻,例如约4欧姆/平方至约 20欧姆/平方(例如,约8欧姆/平方至约15欧姆/平方)。在某些实施方案中,TCO层 14可具有约0. 1 μ m和约1 μ m之间的厚度,例如约0. 1 μ m至约0. 5 μ m,例如约0. 25 μ m至约 0. 35 μ m。阻性(resistive)透明缓冲层16 (RTB层)显示在示例性碲化镉薄膜光伏器件10 上的TCO层14上。RTB层16 —般比TCO层14更具阻性,并且可帮助保护器件10在器件
610处理期间在TCO层14和随后层之间没有化学相互作用。例如,在某些实施方案中,RTB 层16可具有大于约1000欧姆/平方的薄层电阻,例如约IOkOhm/平方至约IOOOMOhm/平方。RTB层16也可具有宽光学带隙(例如,大于约2. 5eV,如约2. 7eV至约3. OeV)。不希望受具体理论限制,相信在TCO层14和硫化镉层18之间存在RTB层16可允许通过减少界面缺陷(即,硫化镉层18中的“针孔”)的可能性在器件10中包括相对较薄的硫化镉层18,所述界面缺陷导致在TCO层14和碲化镉层22之间产生分路(shunt)。因此,相信RTB层16允许TCO层14和碲化镉层22之间改善的粘着和/或相互作用,从而允许在上面形成相对较薄的硫化镉层18,而没有由直接在TCO层14上形成这种相对较薄硫化镉层18导致的显著不利影响。RTB层16可包含例如氧化锌(SiO)和氧化锡(SnO2)的组合,可将其称为氧化锡锌层(“ΖΤ0”)。在一个具体实施方案中,RTB层16可包含多于氧化锌的氧化锡。例如,RTB 层16可具有约0. 25和约3之间的SiO/SnA化学计量比的组成,例如约一比二(1 2)氧化锡比氧化锌的化学计量比。可通过溅射、化学气相沉积、喷雾热解或任何其他适合沉积方法形成RTB层16。在一个具体实施方案中,可通过在TCO层14上溅射(例如,DC溅射或RF 溅射)形成RTB层16 (如以下关于硫化镉层18沉积的更详细讨论)。例如,通过将DC电流施加到金属源材料(例如,元素锌、元素锡或其混合物),并在氧化气氛(例如,O2气体)存在下,使金属源材料溅射于T⑶层14上,可用DC溅射方法沉积RTB层16。在氧化气氛包含氧气(即,O2)时,气氛可以为大于约95%纯氧,例如大于约99%。在某些实施方案中,RTB层16可具有约0.075μπι和约Iym之间的厚度,例如约 0. 14 111至约0.54 111。在具体实施方案中,RTB层16可具有约0. 08 μ m和约0. 2 μ m之间的厚度,例如约0. 1 μ m至约0. 15 μ m。硫化镉层18显示在图1的示例性器件10的RTB层16上。硫化镉层18为η型层,一般包含硫化镉(CcK),但也可包含其他材料,如硫化锌、硫化锌镉等及其混合物和掺杂剂及其他杂质。在一个具体实施方案中,硫化镉层可包含最高约25%原子百分率的氧,例如约5%至约20%原子百分率。为了允许最多辐射能(例如,太阳辐射)通过,硫化镉层18 可具有宽带隙(例如,约2.25eV至约23eV,如约23eV)。因此,将硫化镉层18视为器件 10上的透明层。通过溅射、化学气相沉积、化学浴沉积和其他适合沉积方法,可形成硫化镉层18。 在一个具体实施方案中,通过在阻性透明层16上溅射(例如,直流(DC)溅射或射频(RF) 溅射),可形成硫化镉层18。溅射沉积一般涉及从为材料源的靶喷射材料,并使喷射的材料沉积于基体上,以形成膜。DC溅射一般涉及将电压施加到溅射室内接近基体(S卩,阳极)放置的金属靶(即,阴极),以形成直流放电。溅射室可具有反应气氛(例如,氧气氛、氮气氛、 氟气氛),该反应气氛在金属靶和基体之间形成等离子体场。对于磁控管溅射,反应气氛的压力可在约1毫托和约20毫托之间。在施加电压从靶释放金属原子时,金属原子可与等离子体反应,并沉积于基体的表面上。例如,当气氛包含氧气时,从金属靶释放的金属原子可在基体上形成金属氧化物层。相反,RF溅射一般涉及通过在靶(例如,陶瓷源材料)和基体之间施加交流(AC)或射频(RF)信号激励电容性放电。溅射室可具有在约1毫托和约20 毫托之间压力的惰性气氛(例如,氩气氛)。由于存在阻性透明层16,硫化镉层18可具有小于约0. Iym的厚度,例如,在约IOnm和约IOOnm之间,例如约50nm至约80nm,并且在阻性透明层16和硫化镉层18之间最低限度地存在针孔。另外,具有小于约0.1 μ m厚度的硫化镉层18减小硫化镉层18吸收的任何辐射能量,从而有效增加达到下面碲化镉层22的辐射能量的量。碲化镉层20显示在图1的示例性碲化镉薄膜光伏器件10的硫化镉层18上。碲化镉层20为ρ型层,一般包含碲化镉(CdTe),但也可包含其他材料。作为器件10的ρ型层,碲化镉层20为光伏层,此层与硫化镉层18( S卩,η型层)相互作用,以便由于其高吸收系数通过吸收进入器件10的大部分辐射能并产生电子-空穴对,而从吸收的辐射能产生电流。例如,碲化镉层20 —般可从碲化镉形成,并且可具有适应吸收辐射能的带隙(例如,约 1. 4eV至约1. 5eV,如约1. 45eV),以在吸收辐射能时以最高电势(伏特)产生最多数目的电子-空穴对。电子可从P型侧(即,碲化镉层20)跨过结移到η型侧(即,硫化镉层18),相反,空穴可从η型侧移到ρ型侧。因此,在硫化镉层18和碲化镉层20之间形成的ρ-η结形成二极管,其中电荷不平衡导致跨ρ-η结产生电场。使常规电流只在一个方向流动,并使光诱导的电子-空穴对分离。可通过任何已知方法形成碲化镉层20,如气相传输沉积、化学气相沉积(CVD)、喷雾热解、电沉积、溅射、密闭空间升华(CSQ等。在一个具体实施方案中,通过溅射沉积硫化镉层18,通过密闭空间升华沉积碲化镉层20。在具体实施方案中,碲化镉层20可具有约 0. Iym和约IOym之间的厚度,例如约Iym至约5μπι。在一个具体实施方案中,碲化镉层 20可具有约2 μ m和约4 μ m之间的厚度,例如约3 μ m。可对碲化镉层20的暴露表面施加一系列形成后处理。这些处理可适应碲化镉层 20的功能性,并使其表面准备用于随后粘着到一个或多个后接触层22。例如,碲化镉层20 可在升高温度(例如,约350°C至约500°C,如约375°C至约424°C)退火足以产生一定品质ρ 型碲化镉层的时间(例如,约1至约10分钟)。不希望受理论限制,相信使碲化镉层20 (和器件10)退火使一般轻微ρ型掺杂或甚至η型掺杂的碲化镉层20转化成具有相对低电阻率的更强P型碲化镉层20。另外,碲化镉层20可在退火期间重结晶并经过晶粒生长。为了用氯离子掺杂碲化镉层20,可在氯化镉存在下使碲化镉层20进行退火。例如,碲化镉层20可用含氯化镉的水溶液洗涤,然后在升高的温度下退火。在一个具体实施方案中,在氯化镉存在下使碲化镉层20退火后,可洗涤表面,以去除表面上生成的任何镉氧化物。通过从表面去除氧化物,如Cd0、CdTe03、CdTe205等,此表面制备可在碲化镉层20上留下富含Te的表面。例如,表面可用适合溶剂(例如乙二胺,也被称为1,2_ 二氨基乙烷或“DAE”)洗涤,以从表面去除任何镉氧化物。另外,铜可加到碲化镉层20。与适合的蚀刻一起,将铜加到碲化镉层20可在碲化镉层20上形成碲化铜表面,从而在碲化镉层20 (即ρ型层)和一个或多个后接触层之间得到低电阻电接触。特别是,加铜可在碲化镉层20和后接触层22之间产生碲化亚铜(Cu2Te) 的表面层。因此,碲化镉层20的富Te表面可促进电流的收集,所述电流由所述器件通过碲化镉层20和后接触层22之间的较低电阻率产生。铜可通过任何方法施加到碲化镉层20的暴露表面。例如,可在具有适合溶剂(例如,甲醇、水等或其组合)的溶液中,在碲化镉层20的表面上喷铜或洗涤铜,随后退火。在具体实施方案中,可在溶液中以氯化铜、碘化铜或乙酸铜的形式提供铜。退火温度足以允许铜离子扩散进入碲化镉层20,例如约125°C至约300°C (例如,约150°C至约200°C ),保持约5分钟至约30分钟,例如约10分钟至约25分钟。后接触层22显示在碲化镉层20上。相对于作为前电接触的相对的TCO层14,后接触层22 —般作为后电接触。后接触层22可形成于碲化镉层20上,在一个实施方案中, 与碲化镉层20直接接触。后接触层22适合由一种或多种高导电材料制成,如元素镍、铬、 铜、锡、铝、金、银、锝或其合金或混合物。另外,后接触层22可以为单层,或者可以为多层。 在一个具体实施方案中,后接触层22可包含石墨,例如沉积于ρ层上的碳层,随后为一个或多个金属层,如上述金属。后接触层22,如果由一种或多种金属制成或包含一种或多种金属,适合通过例如溅射或金属蒸镀的技术施加。如果由石墨和聚合物共混物或由碳糊制成,共混物或糊通过使共混物或糊铺展的任何适合方法施加到半导体器件上,如丝网印刷、 喷涂或“刮刀”。在施加石墨共混物或碳糊后,可加热所述器件,以使共混物或糊转化成导电后接触层。如果使用,碳层可以为约0. Iym至约IOym厚度,例如约Iym至约5 μ m。如果用于后接触层22或作为后接触层22的部分,后接触金属层可以为约0. 1 μ m至约1. 5 μ m 厚度。包封用玻璃M也显示在图1的示例性碲化镉薄膜光伏器件10中。在示例性器件10中可包含其他元件(未显示),如汇流条、外部接线、激光蚀刻器等。例如,在器件10形成光伏模块的光伏电池时,为了达到所需电压,例如通过电线连接, 可串联连接多个光伏电池。串联连接电池的各端可连接到适合导体上,如线或汇流条,以将光伏产生的电流引到用于连接到使用产生电的器件或其他系统的方便位置。达到此串联连接的方便方法是对器件激光划线,以将器件分成互连连接的一连串电池。例如,在一个具体实施方案中,可用激光对半导体器件的沉积层划线,以将器件分成多个串联连接的电池。图2显示根据本发明的一个实施方案制备光伏器件的示例性方法30的流程图。根据示例性方法30,在32在玻璃基体上形成TCO层。在34,在TCO层上形成阻性透明层。在 36,在阻性透明层上形成硫化镉层,在38,在硫化镉层上形成碲化镉层。在40,碲化镉层可在氯化镉存在下退火,并在42洗涤,以去除表面上形成的氧化物。在44,可用铜掺杂碲化镉层。在46,可在碲化镉层上施加一个或多个后接触层,并且在48,可在后接触层上施加包封用玻璃。本领域的技术人员应认识到,可在方法30中包括其他加工和/或处理。例如,所述方法也可包括激光划线,以在器件中形成电绝缘的光伏电池。然后可使这些电绝缘的光伏电池串联连接,以形成光伏模块。也可使电线连接到光伏模块的正和负端,以提供引线, 从而利用光伏模块产生的电流。本书面说明用实例公开本发明,包括最佳方式,也用实例使本领域的技术人员能够实施本发明,包括制备和使用任何装置或系统并实施任何结合的方法。本发明的可取得专利范围由权利要求限定,并且可包括本领域的技术人员可想到的其他实例。这些其他实例将在权利要求的范围内,如果它们包括没有背离权利要求字面语言的结构元件,或者如果它们包括与权利要求字面语言无实质差异的等同结构元件。元件列表
权利要求
1.一种在基体上形成导电氧化物层的方法,所述方法包括在约50°C至约250°C,优选约75°C至约200°C的溅射温度,在基体上溅镀透明导电氧化物层(14),其中所述透明导电氧化物层(14)包含镉;和在约4500C至约650°C,优选约500°C至约650°C的退火温度,使所述透明导电氧化物层 (14)退火。
2.权利要求1的方法,其中从含锡酸镉的靶(64)溅镀所述透明导电氧化物层(14)。
3.权利要求1或2的方法,其中所述透明导电氧化物层(14)具有约IOOnm至约1μ m、 优选约150nm至约400nm的厚度。
4.前述权利要求中任一项的方法,其中所述透明导电氧化物层在含惰性气体的退火气氛中退火。
5.权利要求4的方法,其中所述退火气氛还包含硫化镉。
6.权利要求4或5的方法,其中所述退火气氛具有约0.5托至约50托的压力。
7.前述权利要求中任一项的方法,其中所述透明导电氧化物层(14)退火约1分钟至约 30分钟。
8.前述权利要求中任一项的方法,其中所述透明导电氧化物层(14)在含还原气体的退火气氛中退火。
9.权利要求8的方法,其中所述还原气体为硫化氢。
10.一种制备基于碲化镉的薄膜光伏器件(10)的方法,所述方法包括根据前述权利要求中任一项的方法在基体上形成透明导电氧化物层(14);在所述透明导电氧化物层(14)上形成阻性透明缓冲层(16);在所述阻性透明层(16)上形成硫化镉层(18);和在所述硫化镉层(18)上形成碲化镉层00)。
全文摘要
本发明一般提供在基体(12)上形成导电氧化物层(14)的方法。在一个具体实施方案中,所述方法可包括在约50℃至约250℃的溅射温度在基体(12)上溅镀透明导电氧化物层(14),并在约450℃至约650℃的退火(aneal)温度使透明导电氧化物层(14)退火。本发明也一般提供制备基于碲化镉的薄膜光伏器件(10)的方法。
文档编号C23C14/08GK102208485SQ20111009009
公开日2011年10月5日 申请日期2011年3月30日 优先权日2010年3月30日
发明者J·A·德雷顿, S·D·费尔德曼-皮博迪 申请人:初星太阳能公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1