通过大气压力下的原子层沉积(ald)制造光学膜的方法

文档序号:3376368阅读:1022来源:国知局
专利名称:通过大气压力下的原子层沉积(ald)制造光学膜的方法
技术领域
本发明一般性涉及薄膜器件和元件,例如电子发光显示器、传感器阵列和其它电子器件、环境阻隔层、光学薄膜层,其中薄膜层通过气相沉积尤其是大气压力下的原子层沉积形成。特别地,本发明涉及可用于电子设备尤其是显示器中用来改善光输出和寿命的薄膜材料层如光学涂层、彩色滤光层和保护薄膜材料层的制造方法。
背景技术
膜材料用于多种应用。实例包括研究、开发和生产应用,尤其在化合物半导体、显示器、LED、光学元件和眼科设备等领域。薄膜材料也常用于生产用于传感器、平板显示器、 微机电系统(MEMS)、微电路、生物医学设备、光学仪器、微波通讯、集成电路和微电子器件的定制涂层和图案化基底。光学涂层是置于例如透镜、显示器或传感器的器件或光学元件上的材料薄层,其改变光线反射或透射的路径。一类光学涂层是用于产生反射99%以上入射光的镜面的高反射涂层。另一类光学涂层是抗反射涂层,其减小表面上不必要的反射并且常用于眼镜镜片和摄影镜头。多层抗反射涂层,例如由SiN或者SiN和SiO2构成的双层抗反射涂层,可用于高效太阳能电池,如Wright等,Double Layer Anti-reflective Coatings for Silicon Solar Cells, 2005 IEEE,1237-1240页中所述。这种类型的光学涂层阻挡紫外线同时透射可见光。复合光学涂层在一些波长范围内表现为高反射,而在其它波长范围内表现为抗反射,从而允许制造分色薄膜滤光器,例如美国专利No. 6,859,323 (Gasloli等)中所描述的。干涉滤光器是一种反射一个或多个光谱波段并透射其它波段的滤光器,同时其对所关心的所有波长保持接近零的吸收系数。这种滤光器由基底上的多层涂层(通常是介电层或金属层)构成,所述多层涂层具有不同的折射率并且其光谱性质是由于在薄膜边界处不同波长的入射光和反射光之间发生的波长干涉效应所致。干涉滤光器可以用作滤色器并且以阵列形式用作改变和控制反射光和透射光的组成的滤色器阵列,用于显示器、光波导、光开关、照相机机背的光传感器等。美国专利 5,999, 321 (Bradley)中描述了这种多层薄膜滤色器的一个实例,其通过引用并入本文。在电子器件中,滤色器布置成滤色器阵列(CFA)。在传感器例如照相机上使用的传感器中,在全色传感器前方使用CFA以允许探测颜色信号。CFA通常是以一定图案排列的红、绿和蓝色区域的阵列。用于数字式照相机的常规阵列是Bayer图案阵列。通过使用2X2单元来尽可能地不降低每种颜色的分辨率,在三种颜色当中,选择绿色在每个单元中感光两次,因为它是眼睛最敏感的颜色。类似的阵列可用于显示器,其中CFA精确叠合在白光像素前方,以允许检视颜色信息。例如,美国专利N0.4,877,697(V0llmarm等人)描述了一种用于液晶显示器(LED) 的阵列,美国专利申请公报No. 2007/0123133 (Winters)描述了一种用于OLED器件的阵列。阵列可以采取多种方法制造,包括喷墨彩墨、利用光刻法将不同颜色的材料以期望方式图案化等。滤色器阵列也可构建成干涉(或分色)滤光器的图案。例如,美国专利 No. 5,120,622 (Hanrahan)描述了一种利用光刻技术的方法,其中沉积两种不同的光刻胶材料层,将其曝光和显影以图案化用于后续沉积介电层的基底,然后利用剥离工艺移除不需要的材料。美国专利No. 6,342,970 (Sperger等)描述了一种生产用于LCD显示器和CCD阵列的介电干涉滤光器系统的方法。根据该方法,利用基底涂层、掩蔽、通过例如光刻工艺、等离子体蚀刻和剥离技术制备不同的滤光元件。有机发光二极管(OLED)是用于平板显示器和区域照明灯的技术。该技术依赖于涂覆在基底上的有机材料薄膜层。OLED器件一般可具有两种已知格式,分别是例如美国专利No. 4,476,292 (Ham等)公开的小分子器件和例如美国专利No. 5,247,190 (Friend等)公开的聚合物OLED器件。每种类型的OLED器件均可依次包括阳极、有机EL元件和阴极。置于阳极和阴极之间的有机EL元件一般包括有机空穴传输层(HTL)、发光层(EL)和有机电子传输层(ETL)。空穴和电子在EL层中复合并发光。Tang等人(Applied Physics Letter, 51,913(1987), Journal of Applied Physics, 65, 3610 (1989)和美国专利 No. 4,769,292) 说明了利用这种层结构的高效0LED。从那时起,包括聚合物材料的具有交替层结构的多种 OLED已被公开并且器件特性也得到了改进。但是,包括有机EL元件的材料是敏感的,尤其是容易被水汽和高温(例如高于140°C )所损坏。有机发光二极管(OLED)显示器件通常需要湿度水平低于约1000份/百万 (ppm)以防止在器件的特定操作中和/或贮存寿命内器件性能过早劣化。在包装装置内将环境控制在该湿度水平范围内通常是通过用包封层包封该器件和/或通过密封该器件和/或在护套内提供干燥剂来实现的。使用干燥剂例如金属氧化物、碱土金属氧化物、硫酸盐、金属卤化物和高磷酸盐来保持湿度水平在上述水平以下。参见例如美国专利 No. 6,226,890 (Boroson等),其描述了用于湿气敏感的电子设备的干燥剂材料。这种吸湿材料通常置于OLED器件的边缘周围或者OLED器件本身上方。在替代方法中,用抗湿材料的薄多层涂层包封OLED器件。例如,可以使用由有机聚合物层分隔开的诸如金属或金属氧化物的无机材料层。这种涂层已在例如美国专利 No. 6,268,695 (Affmito)、6,413,645 (Graff 等)、6,522,067 (Graff 等)和美国专利申请公报No. 2006/0246811 (Winters等)中都有描述,最后一篇参考文献通过引用全文并入本文。这种包封层可以通过多种技术沉积,包括原子层沉积(ALD)。一种该原子层沉积的设备在WO 01/82390 (Ghosh等)中进一步描述,其描述了使用由不同材料制成的第一和第二薄膜包封层,其中薄膜层之一利用下面讨论的原子层沉积法沉积50nm。根据本公开内容,还使用例如聚对二甲苯的单独保护层。这种薄多层涂层通常试图提供小于5X10_6g/m2/ 天的透湿率以充分保护OLED材料。相反地,常规聚合物材料具有约0. lg/m2/天的透湿率, 并且在没有另外的湿气阻挡层的情况下不足以保护OLED材料。如果增加无机湿气阻挡层, 则可以获得0. 01g/m2/天的透湿率,据报道使用相对厚的具有无机层的聚合物平滑层可以提供所需的保护。通过常规沉积技术如溅射或真空蒸发所施加的厚无机层如5微米以上的ITO或ZnSe也可以提供充分的保护,但是较薄的常规涂层只能提供0.01g/m2/天的保护。美国专利申请公报No. 2007/0099356 (Park等)类似地描述了一种利用原子层沉积来薄膜包封平板显示器的方法。WO 04/105149 (Carcia等)描述了可通过原子层沉积法沉积在塑料或玻璃基底上的气体渗透屏障。原子层沉积也被称为原子层外延(ALE)或原子层CVD(ALCVD),本文中提到的ALD是指所有这些等同工艺。使用几十纳米厚且涂层缺陷浓度低的ALD涂层可以使渗透率降低很多个数量级。这些薄涂层保留了塑料基底的柔性和透明度。这种制品可用于容器、电气和电子应用。但是,这种保护层也导致其它的问题,即由于这种保护层可能具有低于发光有机层的折射率而导致在该层中光捕获的问题。尽管对于OLED显示器的阻挡层的需求还没有完全阐明,但Park等(Park等, Ultrathin Film Encapsulation of an OLED by ALD,Electrochemical and Sol id-State Letters,8 (2),H21-H23,2005)指出透水率小于10_6g/m2/天和透氧率小于10_5cc/m2/天的阻挡特性可以认为是足够的。通常,已经发现特定的无机介电层和聚合物层的多层组合可比无机单层的透水率和透氧率低三个数量级以上,推测是由于渗透的滞后时间增加所致(G.L. Graff等, Mechanisms of Vapor Permeation through Multilayer Barrier Films :Lag Time Versus Equilibrium Permeation, J. App 1. Physics, Vol. 96,No. 4,2004,第 1840-1849 页)。所报道的具有多达12个单层的交替无机/有机层的屏障接近OLED所需的性能(M. S. Weaver等, Applied Physics Letter 81,2929,2002)。结果,尽管纯的无机或有机包封是已知的,但是很多现有的薄膜包封技术关注于创建多层薄膜,大部分是有机/无机组合。当涉及无机材料时,高阻挡性的无机层的沉积被认为是整个包封过程中最重要的技术,这是因为对包封层的渗透主要受无机膜缺陷的控制。虽然多层为OLED显示器提供更好的保护,但较厚的层使透明度减小,从而降低显示器的亮度和颜色饱和度。因此,存在开发具有有利光学特性的包封和阻挡层的薄膜沉积工艺和方法的需要。在各种技术中,广泛用于薄膜沉积的是化学气相沉积(CVD),其使用化学活性分子在反应室中反应以在基底上沉积期望的膜。用于CVD应用的分子前体包括待沉积的膜的元素(原子)组成,通常也包括另外的元素。CVD前体是挥发性分子,其以气相递送至反应室以在基底上反应,从而在其上形成薄膜。该化学反应沉积具有期望的膜厚度的薄膜。对于大多数CVD技术而言,常见的应用要求是良好控制进入CVD反应器的一种或多种分子前体的流量。将基底保持在良好控制的温度和受控的压力条件下以促进这些分子前体之间的化学反应,同时有效移除副产物。获得最佳CVD性能需要获得和保持在整个过程中的气流、温度和压力的稳态条件的能力以及最小化或消除瞬态变化。尤其在半导体、集成电路和其它电子器件领域中,要求薄膜特别是更高品质更致密的膜具有优异的保形涂覆性能,这超出了常规CVD技术的实现极限,尤其是对于在较低温度下制造的薄膜而言。原子层沉积(ALD)是一种替代性的膜沉积技术,与其之前的CVD技术相比,可提供改善的厚度分辨率和保形能力。ALD工艺将常规CVD的常规薄膜沉积过程分段为单原子层沉积步骤。有利的是,ALD步骤是自终止的并且可以在进行到或超过自终止暴露时间时沉积一个原子层。原子层通常是约0. 1至约0. 5的分子单层,一般尺寸为不超过几个埃的量级。在ALD中,沉积的原子层是反应性分子前体和基底之间的化学反应的产物。在每个单独的ALD反应-沉积步骤中,净反应沉积期望的原子层并且基本上消除原来包括在分子前体中的“多余”的原子。在其最纯的状态下,在没有其它的一种或多种反应前体时,ALD包括每种前体的吸附和反应。实际上,在任何体系中都难以避免引起少量化学气相沉积反应的不同前体的一些直接反应。任何声称执行ALD的系统的目的是获得与ALD系统相当的装置特性和属性,同时认识到少量CVD反应是可以容许的。在ALD应用中,通常两个分子前体在不同阶段引入ALD反应器中。例如,金属前体分子MLx包括金属元素M,金属元素M与原子或分子配体L键合。例如,M可以是但不限于 Al、W、Ta、Si、Zn等。当基底表面制备为与分子前体直接反应时,金属前体与基底反应。例如,基底表面通常制备为包括与金属前体可反应的含氢配体AH等。硫(S)、氧(0)和氮(N) 是一些典型A材料。气体金属前体分子与基底表面上的所有配体有效反应,导致金属单原子层的沉积基底-AH+MLX—基底-AMLjri+HL(1)其中HL是反应副产物。在反应期间,初始表面配体AH被消耗,表面变为被L配体覆盖,从而不能进一步与金属前体MLx反应。因此,当表面上的所有初始AH配体被AMLjri物质置换时,反应自终止。反应阶段之后通常是惰性气体吹扫阶段,其在单独引入第二反应物气体前体材料之前将多余的金属前体从反应室中清除。然后利用第二分子前体来恢复基底对金属前体的表面反应性。这通过例如移除L 配体和重新沉积AH配体来完成。在这种情况下,第二前体通常包含期望的(一般是非金属)元素A (即0、N、S)和氢(即H20、NH3> H2S)。下一步反应如下基底-A-ML+AHY—基底-A-M-AH+HL(2)该反应将表面转化回到其AH-覆盖状态(此处为简洁起见,化学反应未配平)。期望的添加元素A被引入膜中,而不需要的配体L作为挥发性副产物除去。再一次地,反应消耗活性位点(这次是L终止位点)并且在基底上的反应位点完全耗完时自终止。然后,通过在第二吹扫阶段吹入惰性吹扫气体从沉积室中除去第二分子前体。总的来说,接着,基础ALD过程需要依次交替地使化学品流入基底。如上讨论的代表性ALD过程是具有四个不同操作阶段的循环LMLx 反应;2. MLx 吹扫;3. AHy 反应;禾口4. AHy吹扫,然后回到阶段1。恢复基底表面到其初始反应状态并伴随中间的吹扫操作的这种交替表面反应和前体移除的重复顺序是典型的ALD沉积循环。ALD操作的关键特点是使基底恢复至其初始表面化学条件。利用这一组重复步骤,可在基底上层叠在化学动力学、每次循环沉积、组成和厚度都相同的等计量的层的膜。ALD可以用作形成多种类型的薄膜电子器件的制造步骤,所述薄膜电子器件包括半导体器件和支持电子元件如电阻和电容器、绝缘体、总线及其它导电结构。ALD尤其适用
7于在电子器件元件中形成金属氧化物薄层。可利用ALD沉积的一般类别的功能材料包括导体、电介质或绝缘体、和半导体。导体可以是任何有用的导电材料。例如,导体可以包括透明材料如氧化铟锡 (ITO)、掺杂氧化锌ZnO、31102或111203。导体的厚度可变化,根据特定实例其变化范围为约 50nm 到约 1 OOOnm。有用的半导体材料的实例是化合物半导体,例如砷化镓、氮化镓、硫化镉、本征氧化锌和硫化锌。介电材料使图案化电路的各个部分间电绝缘。介电层也可称为绝缘体或绝缘层。 用作电介质的材料的具体实例包括锶酸盐、钽酸盐、钛酸盐、锆酸盐、铝氧化物、硅氧化物、 钽氧化物、铪氧化物、钛氧化物、硒化锌和硫化锌。另外,这些实例的合金、组合和多层可用作介电层。在这些材料中,优选铝氧化物。介电结构层可包括具有不同介电常数的两个或多个层。在美国专利No. 5,981,970 (Dimitrakopoulos等)和其共同未决的美国专利申请 No. 2006/0214154(Yang等)中讨论了这种绝缘体并且通过引用将上述公开内容并入本文。 介电材料通常表现出大于约5eV的带隙。有用的介电层的厚度可变化,并且根据特定实例其变化范围为约IOnm到约300nm。利用上述功能层可制造多种器件结构。可以通过选择具有中等到差的电导率的导电材料来制造电阻器。可以通过在两个导体之间放置电介质制造电容器。可以通过在两个导电电极之间放置两个补偿载体型半导体来制造二极管。在补偿载体型半导体之间也可以设置固有的半导体区域,这是指该区域的自由载流子数少。也可以通过将单个半导体放置于两个导体之间来构建二极管,其中一个导体/半导体界面产生在一个方向上强烈阻挡电流的肖特基势垒(Schottky barrier)。可以通过在导体(栅极)上放置绝缘层然后放置半导体层来制造晶体管。如果两个或多个另外的导体电极(源极和漏极)分开放置并与顶部半导体层接触,则可形成晶体管。任何上述装置都可以形成为多种构型,只要产生必要的界面即可。在薄膜晶体管的典型应用中,需要能控制电流在器件中流动的开关。因而,希望当开关打开时高电流可流过器件。电流流动的程度与半导体载流子的迁移率有关。当关闭器件时,希望电流流动非常小。这与载流子浓度有关。此外,通常优选可见光对薄膜晶体管响应的影响很小或没有。为此,半导体带隙必须足够大(>3eV)以使得暴露于可见光不会引起带间跃迁。能够产生高迁移率、低载流子浓度和高带隙的材料是ZnO。此外,为了在移动网格上大量制造,高度期待的是工艺中使用的化学品廉价且低毒,这可以通过使用ZnO以及大部分它的前体而得到满足。自饱和表面反应使得ALD对于输送不均勻性相对不敏感,由于工程公差、流动系统的限制或与表面形貌有关(即沉积到三维高深宽比的结构中)的限制使得输送不均勻性可能进一步损害表面均勻性。一般而言,在反应过程中化学品的非均勻流量通常导致在表面区域的不同部分上存在不同的完成时间。但是,ALD允许在整个基底表面完成每个反应。 因此,完成动力学的差异对均勻性没有负面影响。这是因为首先完成反应的区域自终止反应;而其它区域能够继续反应直到全部处理表面完成预期的反应。通常,ALD过程在一个ALD循环(具有以上所列编号的步骤1到4的一个循环)中沉积约0. 1 0. 2nm的膜。必须实现适用和经济可行的循环时间,以为很多或大多数半导体应用提供约3nm到30nm的均勻膜厚,甚至对其它应用提供更厚的均勻膜厚。根据工业产量标准,基底优选在2分钟到3分钟内进行处理,这意味着ALD循环时间必须为约0. 6秒到约6秒。ALD为提供受控水平的高均勻薄膜沉积提供相当大的希望。然而,尽管其具有内在的技术能力和优势,但是仍然存在许多技术障碍。一个重要因素涉及所需的循环数目。因为其重复的反应物和吹扫循环,因此ALD的有效使用需要能够突然将流入的化学品从MLx 变为AHy并且迅速实施吹扫循环的设备。常规ALD系统设计为在基底上以需要的顺序快速循环不同的气体材料。但是,难以获得将所需系列气体配方以所需速度引入反应室中并且没有不需要的混合的可靠方案。此外,ALD设备必须能够将该快速序列有效和可靠地执行多次循环,以允许低成本地涂覆大量基底。为了最小化在任何给定的反应温度下ALD反应达到自终止所需的时间,一种方法是利用所谓的“脉冲”系统使流入ALD反应器的化学品流量最大化。为了使流入ALD反应器的化学品流量最大化,有利的是在惰性气体稀释最小化和高压下,向ALD反应器中引入分子前体。但是,这些措施与获得短循环时间和从ALD反应器中快速移除这些分子前体的需要相违背。快速移除反过来要求ALD反应器中的气体停留时间最小化。气体停留时间τ 与ALD反应器中的反应器体积V和压力P成正比,与流量Q成反比,即τ = VP/Q(3)在典型ALD室中,体积(V)和压力(P)由机械和泵抽限制所独立限定,导致难以将停留时间精确控制到低值。因此,降低ALD室中的压力(P)有利于降低气体停留时间和提高化学前体从ALD反应器的移除(吹扫)速度。相反,最小化ALD反应时间需要通过在ALD 反应器中使用高压来最大化进入ALD反应器的化学前体流量。另外,气体停留时间和化学品利用效率都与流量成反比。因此,降低流量可以提高效率,同时也提高气体停留时间。现有的ALD方法已经在缩短反应时间以及改善化学品利用效率的需求与另一方面最小化吹扫气体停留和化学品移除时间的需求之间取得妥协和折衷。一种克服气体材料的“脉冲”输送的内在限制的方法是连续提供每种反应物气体并且移动基底连续经过每种气体。例如,美国专利No. 6,821,563 (Yudovsky)描述了一种真空处理室,其具有分别用于前体和吹扫气体的不同气体端口,在每个气体端口之间交替连接真空泵端口。每个气体端口使其气流垂直向下指向基底。分离的气流通过壁或隔板分离,并且在每种气流的两侧用真空泵排出气体。每个分区的下部延伸接近基底,如距离基底表面约0.5mm以上。以这种方式,分区的下部与基底表面间隔一定距离,所述距离足以允许气流在与基底表面反应之后围绕下部流向真空端口。提供旋转式转盘或其它输送装置用来容纳一个或多个基底晶片。用这种装置,基底在不同气流下方穿梭往返,由此进行ALD沉积。在一个实施方案中,基底以线性路径移动穿过反应室,其中基底来回通过许多次。美国专利No. 4,413,022 (Simtola等)示出了另一种使用连续气流的方法。气流阵列具有交替的源气口、载气口和真空排放口。基底在阵列上的往复运动反复进行ALD沉积而不需要脉冲操作。特别是在图13和14的实施方案中,通过基底在源口的固定阵列上的往复运动使基底表面与反应气之间连续相互作用。通过在排放口之间设置载气口来形成扩散屏障。尽管很少或没有提供工艺的细节或实例,但Simtola等的'022声称利用该实施方案的操作即使在大气压力下也可行。尽管如'563 (Yudovsky)和'022 (Suntola等)等公开内容所述的系统可避免脉冲气体方法固有的一些困难,但是这些系统具有其它缺点。‘563 (Yudovsky)公开内容中的气流递送单元和'022(SimtOla等)公开内容中的气流阵列都不能在接近基底小于约0.5mm时使用。‘563 (Yudovsky)和'022 (Suntola等)专利中公开的气流递送设备都不可能布置为与移动网格表面一起使用,例如不能用作柔性基底来形成电子线路、光传感器或显示器。均提供气流和真空的'563(YudOVsky)公开内容中的气流递送单元和'022(SimtOla等)公开内容中的气流阵列二者的复杂配置使得这些解决方案难以实现并且规模成本昂贵,因此限制了它们在受限尺寸的移动基底上的沉积应用的潜在使用性。 此外,很难在阵列中不同点处保持均勻的真空度和在补充压力时同步保持气流和真空度, 因而危及提供到基底表面的气体流量的均勻性。美国专利申请公报No. 2005/0084610 (Selitser)公开了一种大气压原子层化学气相沉积工艺。美国专利申请公报No. 2005/0084610声称通过将操作压力改为大气压力获得了反应速率的显著提高,这涉及反应物浓度以数量级地提高,以及随之提高表面反应物速率。美国专利申请公报No. 2005/0084610的实施方案涉及用于工艺中每个阶段的单独反应室,不过美国专利申请公报No. 2005/0084610中的附图10示出了移除了反应室壁的实施方案。一系列单独的注射器围绕旋转圆形基底支撑轨道放置。每个注射器独立地引入操作反应物、吹扫气体和排放气体歧管,并且在每个基底经过注射器下方时,对其进行控制和进行一次完整的单层沉积和反应吹扫循环。美国专利申请公报No. 2005/0084610中几乎没有描述气体注射器或歧管的具体细节,但是他们声称注射器的间隔选择为使得通过并入每个注射器中的吹扫气体流和排放歧管来防止相邻注射器的交叉污染。综上所述,可见存在发展用于可提供改进特性以允许更精确控制薄膜材料层的密度、厚度、组成并因此其阻挡和光学特性的包括ALD沉积方法和设备的薄膜材料沉积的工艺和方法。

发明内容
简单来说,根据本发明的一个方面,一种制备光学膜或光学阵列的方法包括a) 沿着伸长的基本平行的通道同时导入一系列气流以在基底上形成第一薄膜;其中所述一系列气流依次包括至少第一反应性气体材料、惰性吹扫气体和第二反应性气体材料;其中第一反应性气体材料能够与经第二反应性气体材料处理过的基底表面反应以形成第一薄膜; b)重复步骤a)多次,以产生第一厚度的具有第一光学特性的第一膜层;其中该方法在大气压力下或在高于大气压力下实施;c)重复步骤a)和b)以产生第二膜层;其中该方法基本上在大气压力下或在高于大气压力下实施。本发明还涉及以下方面1. 一种制备光学膜或光学阵列的方法,包括a)沿伸长的基本平行的通道同时导入一系列气流以在基底上形成第一薄膜;其中所述一系列气流依次包括至少第一反应性气体材料、惰性吹扫气体和第二反应性气体材料;
10
其中所述第一反应性气体材料能够与经所述第二反应性气体材料处理过的基底表面反应以形成所述第一薄膜;b)重复步骤a)多次,以产生具有第一光学特性的第一厚度的第一膜层;其中所述方法在大气压力下或在高于大气压力下实施;c)重复步骤a)和b),以产生第二膜层;并且其中所述方法基本上在大气压力下或在高于大气压力下实施。2.根据项目1所述的方法,其中在沉积过程中所述基底的温度低于250°C。3.根据项目1所述的方法,其中所述第二膜层具有第二厚度。4.根据项目1所述的方法,其中使用第三反应性气体和第四反应性气体形成所述第二膜层。5.根据项目1所述的方法,其中所述第二膜层具有第二光学特性。6.根据项目1所述的方法,其中所述第一膜层和所述第二膜层包封所述基底。7.根据项目1所述的方法,其中所述基底包括OLED器件。8.根据项目1所述的方法,其中所述基底包括光伏器件。9.根据项目1所述的方法,其中所述基底包括传感器或传感器阵列。10.根据项目1所述的方法,其中所述第一反应性气体包括气体混合物。11.根据项目1所述的方法,其中所述第一膜层是干涉滤光器。12.根据项目1所述的方法,其中所述第一膜层选择性地反射环境紫外光。13. 一种制备光学膜或光学阵列的方法,包括a)沿伸长的基本平行的通道同时导入一系列气流以在基底上形成第一薄膜;其中所述一系列气流依次包括至少第一反应性气体混合物、惰性吹扫气体和第二反应性气体混合物;其中所述第一反应性气体混合物能够与经所述第二反应性气体混合物处理过的基底表面反应以形成第一薄膜;b)使用第三反应性气体混合物重复步骤a);和c)重复步骤a)和b)多次,以产生具有第一光学特性的第一厚度的第一膜层;其中所述方法在大气压力下或在高于大气压力下实施。14.根据项目13所述的方法,包括d)重复步骤a)、b)和C),以产生第二膜层。15.根据项目14所述的方法,其中在步骤d)之前,用第四反应性气体混合物替代所述第三反应性气体混合物。16.根据项目15所述的方法,其中在步骤d)之前,用第五反应性气体混合物替代所述第二反应性气体混合物。17.根据项目13所述的方法,其中所述第一气体混合物由第一浓度的第一材料组成,所述第三气体混合物由第二浓度的所述第一材料组成。18.根据项目13所述的方法,其中所述第一膜层是梯度层。19.根据项目18所述的方法,其中所述第一膜层是Rugate滤光器。20.根据项目13所述的方法,其中所述第一气体混合物或所述第二气体混合物选自包括介电氧化物的组。
本发明及其目的和优点在以下给出的优选实施方案的详细描述中会更清楚。


尽管说明书总结了特别指明和直接要求保护本发明主题的权利要求,但是相信以下结合附图的说明会使本发明更易理解,其中图1是根据本发明的用于原子层沉积的递送装置的一个实施方案的截面侧视图;图2是递送装置的一个实施方案的截面侧视图,示出提供给进行薄膜沉积的基底的气体材料的一个示例性设置;图3A和3B是递送装置的一个实施方案的截面侧视图,示意性示出伴随的沉积操作;图4是根据一个实施方案的沉积系统中的递送装置的透视分解图,包括任选的扩散单元;图5A是图4的递送装置的连接板的透视图;图5B是用于图4的递送装置的气室板的平面图;图5C是用于图4的递送装置的气体方向板的平面图;图5D是用于图4的递送装置的底板的平面图;图6是示出在一个实施方案中的递送装置的底板的透视图;图7是根据一个实施方案的气体扩散单元的分解图;图8A是图7的气体扩散单元的喷嘴板的平面图;图8B是图7的气体扩散单元的气体扩散板的平面图;图8C是图7的气体扩散单元的面板的平面图;图8D是图7的气体扩散单元内的气体混合的透视图;图8E是利用图7的气体扩散单元的气体排放路径的透视图;图9A是利用垂直堆叠板的实施方案中的递送装置的一部分的透视图;图9B是图9A中所示的递送装置的组件的分解图;图9C是显示用堆叠板形成的递送组合件的平面图;图IOA和IOB分别是用于图9A的垂直板实施方案中的隔板的平面图和透视图;图IlA和IlB分别是用于图9A的垂直板实施方案中的吹扫板的平面图和透视图;图12A和12B分别是用于图9A的垂直板实施方案中的排放板的平面图和透视图;图13A和13B分别是用于图9A的垂直板实施方案中的反应物板的平面图和透视图;图13C是在另一个方向上的反应物板的平面图;图14是沉积系统的一个实施方案的侧面图,包括浮动递送装置并且示出相关距离尺寸和力的方向;图15是示出与基底输送系统一起使用的分布头的透视图;图16是示出利用本发明的递送装置的沉积系统的透视图;图17是示出应用于移动网格的沉积系统的一个实施方案的透视图;图18是示出应用于移动网格的沉积系统的另一实施方案的透视图;图19是具有弯曲输出面的递送装置的一个实施方案的截面侧视图20是利用气垫使递送装置与基底分离的一个实施方案的透视图;图21是示出包括与移动基底一起使用的“空气”轴承实施方案的沉积系统的一个实施方案的侧视图;和图22k和22B示出利用沉积操作生产的滤光器及其吸收。
具体实施例方式本发明具体涉及形成根据本发明设备的部件的元件或更直接与该设备协同工作的元件。应理解没有具体示出或描述的元件可以采取本领域技术人员所公知的各种形式。在以下说明书中,术语“气体”或“气体材料”以其广义使用,包括任何范围的气化的或气态的元素、化合物或材料。文中所用的其它术语例如反应物、前体、真空和惰性气体都具有如材料沉积领域技术人员所公知的常规含义。提供的图不是按比例绘制的,只是旨在示出本发明的一些实施方案的整体功能和结构配置。在以下说明书中,叠合具有其常规含义,即元件置于另一元件上部或者彼此相对, 使得一个元件的部分与另一元件的相应部分对准并且它们的周边通常重合。当涉及气流方向时,术语“上游”和“下游”具有其常规含义。本发明的设备与传统ALD方法显著不同,采用改进的分配装置用于为基底表面递送气体材料,适用于在基于网格的较大基底上沉积并且能够以提高的生产速度获得高度均勻的薄膜沉积。本发明的设备和方法采用连续的(与脉冲相反)气体材料分布。本发明的设备允许在大气压力或接近大气压力下以及在真空下的操作,并且能够在未密闭或暴露于空气的环境中操作。参考图1,示出了根据本发明的用于在基底20上进行原子层沉积的递送头10的一个实施方案的截面侧视图。递送头10具有用于接收第一气体材料的与导管14相连的气体进口、用于接收第二气体材料的与导管16相连的气体进口、和用于接收第三气体材料的与导管18相连的气体进口。这些气体均经由输出通道12在输出面36处发射,并具有下述的结构配置。图1中和随后的图2 ;3B中的短划线箭头是指气体从递送头10递送到基底 20。在图1中,点线箭头X也是指气体排放路径(在图中显示指向上方)和排放通道22, 并与连接导管M的排放口连通。为描述简单起见,图2 ;3B中没有示出气体排放。因为排放的气体仍可包含一定量的未反应前体,因此可能不希望主要包含一种反应性材料的排放流与主要包含另一种材料的排放流混合。因此,认识到递送头10可包括几个独立的排放在一个实施方案中,气体进口导管14和16适用于接收依次在基底表面上反应以进行ALD沉积的第一和第二气体,并且气体进口导管18接收对第一和第二气体呈惰性的吹扫气体。递送头10与基底20的距离为D,其可设置在基底支撑物上,下面将更加详细地描述。可通过基底20的移动、或者通过递送头10的移动、或者通过基底20和递送头10 二者的移动,在基底20和递送头10之间提供往复运动。在图1所示的特定实施方案中,基底20 通过基底支撑物96以往复方式移动经过输出面36,如图1中箭头A和基底20的左右阴影框所示。应注意,使用递送头10的薄膜沉积并不总是需要往复运动。也可以提供基底20 和递送头10之间的其它类型的相对运动,例如基底20或递送头10在一个或多个方向上移动,如下文中所详细描述的。
图2的截面图示出在递送头10的输出面36的一部分上发射的气流(如上所述省略了排放通路)。在该特定配置中,每个输出通道12与图1所示的气体进口导管14、16或 18中的一个气流连通。每个输出通道12通常递送第一反应物气体材料0或第二反应物气体材料M或第三惰性气体材料I。图2示出相对基本或简单的气体配置。设想多个非金属沉积前体(如材料0)流或多个含金属前体材料(如材料M)流可以在薄膜单沉积中依次在多个端口递送。作为替代方案,当制造复合薄膜材料例如具有交替的金属层或具有掺杂在金属氧化物材料中的较少量掺杂物时,可以在单一输出通道处应用反应物气体的混合物,例如金属前体材料的混合物或者金属和非金属前体的混合物。明显地,用I标记的惰性气体也称为吹扫气体的内部流分隔开其中气体有可能相互反应任何反应物通道。第一和第二反应物气体材料0和M 相互反应以进行ALD沉积,但是反应物气体材料0或M都不与惰性气体材料I反应。图2及以下图中所用的命名法表明一些常见类型的反应物气体。例如,第一反应物气体材料0可以是氧化性气体材料;第二反应物气体材料M可以是含金属化合物,如含锌的材料。惰性气体材料I可以是氮气、氩气、氦气或其它常用作ALD系统的吹扫气体的气体。惰性气体材料 I相对于第一和第二反应物气体材料O和M呈惰性。第一和第二反应物气体材料之间的反应会形成金属氧化物或其它二元化合物,如氧化锌ZnO或aiS,在一个实施方案中用于半导体。超过两种反应物气体材料之间的反应形成三元化合物,例如ZnAW。图3A和;3B的截面图以简单示意的方式示出ALD涂覆操作,其实施为在递送反应物气体材料0和M时,基底20沿着递送头10的输出面36移动。在图3A中,基底20的表面首先接收从指定为递送第一反应物气体材料0的输出通道12连续发射出的氧化性材料。 此时,基底的表面包含容易与材料M反应的材料0的部分已反应形式。然后,当基底20移动进入第二反应物气体材料M的金属化合物的路径时,发生与M的反应,形成金属氧化物或其它可以由两种反应物气体材料形成的某些薄膜材料。与常规方法不同,图3A和;3B所示的沉积顺序在对给定基底或其特定区域的沉积过程中是连续的而不是脉冲式的。即,当基底20移动经过递送头10的表面时,或反过来当递送头10沿基底20移动时,连续发射材料 0 禾口 M。如图3A和;3B所示,在另一输出通道12中,在第一和第二反应物气体材料0和M之间提供惰性气体材料I。特别地,如图1中所示,存在排放通道22,但是优选在输出通道12 之间不配置真空通道。只需要提供小量吸力的排放通道22用于排放递送头10所发射的用完的气体并且用于处理过程中。在一个实施方案中,如共同转让且共同未决的美国专利申请No. 11/620,744(其全文通过引用并入本文)中更详细描述的,对基底20提供气体压力,使得通过所施加的压力至少部分地保持间隔距离D。通过保持在输出面36和基底20的表面之间的一定量的气体压力,本发明的设备可以为递送头10本身或者作为替代方案为基底20提供至少一部分空气轴承,或者更确切的说是气态流体轴承。该配置有助于简化对于递送头10的递送需求,如下所述。允许递送装置靠近基底以使其由气体压力支撑的效果有助于提供气流之间的隔离。通过允许递送头漂浮在这些流上,从而在反应流和吹扫流区域中设立压力区域,其导致气体从进口引导到排放口而很少或不与其它气流混合。在一个这样的实施方案中,由于间隔距离D相对小,因此甚至是距离D的很小改变(例如甚至是100微米)也需要在流量和其后提供间隔距离D的气体压力方面的显著变化。例如,在一个实施方案中,间隔距离 D加倍,涉及小于Imm的改变,将有必要使提供间隔距离D的气体流量增加超过一倍,优选增加超过三倍。本发明不需要浮头系统,但是递送装置和基底可以如常规系统中那样具有固定距离D。例如,递送装置和基底可以是彼此以一定的间隔距离机械固定的,其中递送头并不是随流量变化而相对于基底垂直移动,而且其中基底在垂直固定的基底支撑物上。在本发明的一个实施方案中,递送装置具有用于为在基底上沉积的薄膜材料提供气体材料的输出面,包括(a)多个进口,包括能够分别接收第一、第二和第三气体材料的共同供应的至少第
一、第二和第三进口 ;(b)第一多个伸长发射通道、第二多个伸长发射通道和第三多个伸长发射通道,第一、第二和第三伸长发射通道中的每一个能够与对应的第一、第二和第三进口之一气态流体连通;其中第一、第二和第三多个伸长发射通道中的每一个沿长度方向并且基本平行地延伸;其中每个第一伸长发射通道沿其每个伸长侧通过第三伸长发射通道与最接近的第二伸长发射通道分隔;其中每个第一伸长发射通道和每个第二伸长发射通道位于第三伸长发射通道之间;其中多个第一、第二和第三多个伸长发射通道的至少一个中的每个伸长发射通道能够分别将第一、第二和第三气体材料流中的至少一个流引导为与递送装置的输出面基本正交,直接或间接地来自多个第一、第二和第三多个伸长发射通道的至少一个中的每个伸长发射通道的气体材料流能够设置为与基底的表面基本正交;并且其中递送装置形成为多个孔板,其设置为与输出面基本平行,并且将其叠合以限定互连供应室的网络并且将用于发送第一、第二和第三气体材料中的每一种的通道从其对应的进口引导至其对应的多个伸长发射通道。图4的分解图示出,对于在一个这样的实施方案中的整体组合件的小部分而言, 递送头10可以如何由一组孔板构建,并且示出一种气体的仅一部分的示例性气流路径。递送头10的连接板100具有用于连接在递送头10上游的气体供应(未在图4中示出)的一系列输入端口 104。每个输入端口 104与将所接收的气体向下游引导至气室板110的引导室102连通。气室板110具有供应室112,所述供应室112与气体方向板120上的单个引导通道122气流连通。气体流从引导通道122前进到在底板130上的特定伸长排放通道134。 任选的气体扩散器单元140在其输出面36处提供输入气体的扩散和最终递送。示例性气流Fl通过递送头10的每个构成组合件进行追踪。图4中所示的x-y-z轴定向也适用于本发明中的图5A和7。如在图4中的实例所示,递送头10的递送装置150形成为叠合孔板配置连接板 110、气室板110、气体方向板120和底板130。在这个“水平的”实施方案中,这些板设置为基本上与输出面36平行。气体扩散器单元140也可由叠合孔板形成,如下所述。可以理解的是,图4中所示的任意板本身可以由一组叠合板形成。例如,可以有利地由适于结合在一起的四个或五个堆叠的孔板形成连接板100。这种类型的配置可以比用于形成引导室102 和输入端口 104的机械加工或成型方法的复杂性更小。尽管气体扩散器单元140可以用于使经输出通道向基底提供气体材料的流量相等,但是输出通道可以用于在没有扩散器的情况下提供气体材料,如美国专利 No. 4,413,022 (Suntola等)中所述,其通过引用并入本文。通过提供非扩散流体,可能获得更高的产量,但有可能付出沉积均勻性下降的代价。另一方面,扩散系统尤其有利于上述浮头系统,这是因为其可在递送装置内提供背压而有利于递送头的浮动。图5A至5D示出在图4的实施方案中组合在一起形成递送头10的每一个主要部件。图5A是连接板100的透视图,示出多个引导室102。图5B是气室板110的平面图。在一个实施方案中,供应室113用于递送头10的吹扫或惰性气体(涉及在稳态操作过程中相同分子材料之间的分子基础上的混合)。在一个实施方案中,供应室115提供前体气体(0) 的混合;排放室116为该反应性气体提供排放通路。类似地,供应室112提供其它所需的反应性气体,即第二反应物气体材料(M);排放室114为该气体提供排放通路。图5C是在该实施方案中用于递送头10的气体方向板120的平面图。提供第二反应物气体材料(M)的多个引导通道122排列为将合适的供应室112(图中未示出)与底板 130连接的图案。对应的排放引导通道123位于引导通道122附近。引导通道90提供第一反应物气体材料(0)。引导通道92提供吹扫气体(I)。此外,必须强调的是,图4和5A-5D 示出了一个示例性实施方案;多种其它的实施方案也是可能的。图5D是用于递送头10的底板130的平面图。底板130具有与伸长排放通道134 交错的多个伸长发射通道132。图6是示出由水平板形成的底板130和示出输入端口 104的透视图。图6的透视图示出从输出侧观察以及具有伸长发射通道132和伸长排放通道134的底板130的外表面。参考图4,图6的视图是从面向基底的方向一侧得到的。如图4的实施方案和下述其它实施方案中所使用的,图7的分解图示出用于形成任选的气体扩散器单元140的一个实施方案的基本配置。其包括在图8A的平面图中所示的喷嘴板142。如图6、7和8A中所示,喷嘴板142紧贴底板130安装,并且从伸长发射通道132得到其气流。在所示的实施方案中,喷嘴孔形式的第一扩散器输出通道143提供了所需的气体材料。如下所述,在排放通道中设置有槽180。图8B中所示的与喷嘴板142和面板148协同扩散的气体扩散板146紧贴喷嘴板 142安装。优化在喷嘴板142、气体扩散板146和面板148上的各种通路的配置以提供气流扩散所需的量,同时有效引导排放气体离开基底20的表面区域。槽182提供排放端口。在所示实施方案中,形成第二扩散器输出通道147的气体供应槽与排放槽182在气体扩散板 146中交替排列。然后,如图8C中所示的面板148面向基底20。提供气体和排放槽184的第三扩散器输出通道149再次替代该实施方案。图8D涉及经过气体扩散器单元140的气体递送路径;然后图8E示出相应方式的排放路径。参考图8D,示出代表性的一组气体端口,在一个实施方案中用于输出流F2的反应物气体的全面扩散的整体设置。来自底板130(图4)的气体设置为经过喷嘴板142上的第一扩散器输出通路143。气体向下游到达气体扩散器板146上的第二扩散器输出通路147。如图8D中所示,在一个实施方案中,扩散器输出通路143和147之间可以有垂直偏移 (即,利用图7中所示的水平板设置,正好垂直于水平板的平面),有助于产生背压,并因此有助于更均勻的流动。然后,气体进一步向下游到达面板148上的第三扩散器输出通路149 以提供输出通道12。不同的扩散器通路143、147和149不但可以空间偏移,还可以具有不同的几何形状以在流经递送装置时有助于气体材料的分子间混合和均勻扩散。当不存在任选的扩散器单元时,底板中的伸长发射通道132可用作递送头10的输出通道12而不是第三扩散器输出通路149。图8E象征性地追踪在类似实施方案中为了泄放或排放气体所提供的排放通道, 其中下游方向与供应气体的方向相反。流F3指示分别经过排放槽184、182和180泄放气体的通路。与用于气体供应的流F2的更迂回的混合路径不同的是,图8E中所示的泄放设置旨在使耗尽气体从表面快速移动。因此,流F3相对直接地从基底表面泄除气体。再参考图4,如连接板100、气室板110、气体方向板120和底板130所示的组件组合可以成组地提供递送组合件150。递送组合件150也可以有替代实施方案,包括垂直形成的而不是水平形成的孔板,利用图4的坐标设置。递送装置的另一实施方案具有用于提供在基底上沉积薄膜材料的气体材料的输出面,包括递送装置,具有用于提供在基底上沉积薄膜材料的气体材料的输出面,所述递送装置包括(a)多个进口,包括能够分别接收第一、第二和第三气体材料的共同供应的至少第
一、第二和第三进口 ;和(b)第一多个第一伸长发射通道、第二多个第二伸长发射通道和第三多个第三伸长发射通道,第一、第二和第三伸长发射通道中的每一个能够与对应的第一、第二和第三进口之一气态流体连通;其中第一、第二和第三伸长发射通道中的每一个沿长度方向并且基本平行地延伸;其中每个第一伸长发射通道在其每个伸长侧上通过第三伸长发射通道与最接近的第二伸长发射通道分隔;其中每个第一伸长发射通道和每个第二伸长发射通道位于第三伸长发射通道之间;其中多个第一、第二和第三伸长发射通道的至少一个中的每个伸长发射通道能够分别将第一、第二和第三气体材料流中的至少一个流引导为与递送装置的输出面基本正交,直接或间接地来自多个第一、第二和第三多个伸长发射通道的至少一个中的每个伸长发射通道的气体材料流能够设置为与基底的表面基本正交;其中递送装置的至少一部分形成为多个孔板,将其叠合以限定互连供应室的网络并且将用于发送第一、第二和第三气体材料中的每一种的通道从其对应的进口导向其对应的伸长发射通道,并且其中孔板设置为相对于输出面基本垂直;并且,其中对于第一、第二和第三多个伸长发射通道中的每一个,每个单独的伸长发射通道包括(i)两个分隔板,其沿着单个伸长发射通道的长度限定侧壁,在中央板的两侧各有一个分隔板;(ii)中央板,其限定单个伸长发射通道的宽度,该中央板夹在两个分隔板
17中间;其中两个分隔板和中央板的孔对准,提供与第一、第二和第三气体材料之一的供应的流体连通,并且仅允许第一、第二和第三气体材料之一的通路进入单个伸长发射通道。参考图9A,示出这样的一个替代实施方案,从下视图观察(即从气体发射侧观察),可用于递送组合件150的替代配置利用了垂直于输出面36放置的叠合孔板。为解释方便起见,图9A的“垂直”实施方案中所示的递送组合件150的部分具有两个伸长发射通道152和两个伸长排放通道154。图9A至13C的垂直板配置可易于扩展以提供多个伸长发射和伸长排放通道。如图9A和9B中所示,孔板垂直于输出面36的平面设置,每个伸长发射通道152通过具有由分隔板限定的侧壁而形成,以下详细示出,在它们之间的中央具有反应物板。然后,孔的适当对准提供与气体材料供应的流体连通。图9B的分解图示出用于形成图9A中所示的小部分递送组合件150的孔板的配置。图9C是示出具有用于发射气体的五个伸长通道并且利用孔板形成的递送组合件150 的平面图。然后,图IOA至13B以平面图和透视图的形式示出各种孔板。为简单起见,对每种类型的孔板进行字母标记分隔板S、吹扫板P、反应物板R和排放板E。图9B中从左到右是分隔板160 (S),也示于图IOA和IOB中,其在板间交替,用于引导气体朝向或远离基底。吹扫板162(P)示于图IlA和IlB中。排放板164(E)示于图12A 和12B中。反应物板166 (R)示于图13A和13B中。图13C示出通过水平翻动图12A的反应物板166所获得的反应物板166’ ;根据需要,该交替方向也可用于排放板164。当叠置孔板时,每个孔板中的孔168对准,从而形成使气体穿过递送组合件150进入伸长发射通道 152和伸长排放通道154的管道,如参考图1所述。回到图9B,只示出了递送组合件150的一部分。这部分的板结构可以用前面分配的字母缩写的序列来表示,即S-P-S-E-S-R-S-E- (S)(图9A或9B中未示出本序列中的最后一个分隔板。)如该序列所示,分隔板 160 (S)通过形成侧壁限定每个通道。用于提供两种反应性气体以及必要的吹扫气体的最小递送组合件150和用于典型的ALD沉积的排放通道可用如下全部缩写序列表示S-P-S-E1-S-R1-S-E1-S-P-S-E2-S-R2-S-E2-S-P-S-E1-S-R1-S-E1-S-P-S-E2-S-R2-S-E2-S-P-S-E1-S-R1-S-E1-S-P-S其中Rl和R2表示用于所用的两种不同反应物气体的不同方向的反应物板166,而 El和E2相应地表示不同方向的排放板164。伸长排放通道IM通常不需要真空端口,但是也可简单设置真空端口以从其对应的输出通道12中抽出流,从而利于在通道中的均勻流动图案。负压抽吸,即略低于临近的伸长发射通道152处的(相反的)气体压力,可有助于有序流动。负压抽吸可例如用0.2 1.0大气压的源(例如真空泵)的抽吸压力来操作,而通常真空为例如0.1大气压以下。相比于例如在前述背景技术部分指出的那些脉冲气体单独供应至沉积室的常规方法,使用递送头10提供的流动图案提供许多优点。沉积设备的灵活性得到改善,并且本发明的装置适合于其中基底尺寸超过沉积头尺寸的高容积沉积应用。流动动力学也相对于现有方法得以改善。在本发明中使用的流动配置允许在递送头10和基底20之间具有非常小的距离 D,如图1中所示,优选Imm以下。输出面36可设置为非常靠近基底表面,在约Imil (大约0. 025mm)以内。通过比较,例如前述的美国专利No. 6,821,563 (Yudovsky)中描述的现有方法被限制在与基底表面的距离为0. 5mm以上,而本发明的实施方案可在小于0. 5mm,例如小于0.450mm的距离实施。实际上,本发明优选将递送头10设置为更靠近基底表面。在一个尤其优选的实施方案中,与基底表面的距离D可以为0. 20mm以下,优选小于100 μ m。期望的是,当大量孔板组装成堆叠板实施方案时,递送到基底的气流均勻穿过所有递送气流(I、M或0材料)的通道。这可以通过合理设计孔板来实现,例如对每个板的流动图案的一些部分进行限制,对其进行精确加工以为每个伸长发射输出或排放通道提供可再现的压力降。在一个实施方案中,输出通道12表现出沿开口长度基本等同的压力,偏差不超过10%。可以提供甚至更高的容限,例如允许不超过约5%或甚至小至2%的偏差。在本发明的一个实施方案中,通过使用浮动系统,本发明的递送头10可以在其输出面36与基底20的表面之间保持合适的间隔距离D(图1)。图14示出用从递送头10发射的气流的压力保持距离D的一些考虑。在图14中,示出代表性数目的输出通道12和排放通道22。从一个或多个输出通道12发射的气体的压力产生一个力,如图中向下箭头所示。为了使这个力对递送头10提供有用的缓冲或“空气”轴承(气态流体轴承)效应,必须有足够的着陆区,即可以与基底紧密接触的沿输出面36的固体表面区域。着陆区的百分比对应于允许在其下建立气体压力的输出面36的固体面积的相对量。最简而言之,着陆区可以计算为输出面36的总面积减去输出通道12和排放通道22的总表面积。这意味着除去具有宽度wl的输出通道12的气流面积或者具有宽度的排放通道22的气流面积外,总表面面积必须尽可能最大化。在一个实施方案中提供95%的着陆面积。其他实施方案可使用较小的着陆面积值,例如85% 或75%。为了改变分离力或缓冲力并由此相应改变距离D,也可调节气体流量。可以理解的是,提供气流轴承具有优点,使得递送头10基本保持在基底20上方距离D处。这将允许递送头10利用任意类型的递送机制进行基本无摩擦的移动。然后,当递送头10沿通道来回运动时,可导致递送头10 “悬”在基底20的表面上方,从而在材料沉积过程中扫过基底20的表面。如图14中所示,递送头10也许会过重,以致于向下的气体力不足以保持所需的分离。在这种情况下,可以使用辅助抬升部件如弹簧170、磁体或其它装置来补充升力。在另一些情况下,气流可能过高以引起相反的问题,使得递送头10被迫与基底20的表面间隔距离过大,除非施加额外的力。在这种情况下,弹簧170可以是压缩弹簧,以提供额外所需的力以保持距离D(相对于图14的配置为向下)。作为替代方案,弹簧170可以是磁体、弹性体弹簧或补充向下力的一些其它装置。作为替代方案,递送头10可以设置在相对于基底20的一些其它方位。例如,基底 20可以通过气态流体轴承效应来支撑对抗重力,从而使基底20可以在沉积过程中沿着递送头10移动。图20中示出利用气态流体轴承效应在基底20上沉积,同时基底20缓冲上方的递送头10。基底20在沿如图所示的双箭头方向上移动经过递送头10的输出面36。图21的替代实施方案示出在基底支撑物74上的基底20,如在递送头10和气液轴承98之间沿方向K移动的网格支撑物或滚轴。在这种情况下,可以单独使用空气或另一种惰性气体。在这个实施方案中,递送头10具有空气轴承效应并且与气态流体轴承98协同以保持输出面36与基底20之间的期望距离D。气态流体轴承98可以利用惰性气体或空气或一些其它气体材料的流F4引导压力。应注意的是,在本沉积系统中,基底支撑物或固定器在沉积过程中可与基底接触,所述基底支撑物可以是传递基底的手段,例如滚轴。因此, 本系统不要求所处理的基底绝热。如参考图3A和;3B具体描述的,递送头10要求相对于基底20的表面移动以执行其沉积功能。这种相对移动可以用多种方式获得,包括移动递送头10和基底20中的任意一个或两个,例如移动提供基底支撑物的设备。移动可以是振荡或往复或者可以是连续运动,这取决于需要多少次沉积循环。尽管优选连续处理,但是也可以利用基底的旋转,尤其是在间歇处理中。致动装置可以与递送装置的主体结合,例如机械连接。作为替代方案,也可以使用替代力,如改变磁力场。通常,ALD需要多个沉积循环,以建立每个循环的受控膜厚度。利用前文给出的气体材料类型的命名法,例如在一个简单设计中,一个循环可提供第一反应物气体材料0的一个应用和第二反应物气体材料M的一个应用。反应物气体材料0和M的输出通道之间的距离决定了完成每个循环的往复运动所需的距离。例如,图4的递送头10可具有0. 1英寸(2. 54mm)的名义通道宽度,即反应物气体通道出口与相邻的吹扫通道出口之间的宽度。因此,对于往复运动(如此处所用的沿y 轴),为了允许相同表面的所有区域经历完整的ALD循环,需要至少0.4英寸(10.2mm)的行程。在这个例子中,基底20的区域将随着在这个距离上移动而暴露于第一反应物气体材料0和第二反应物气体材料M。作为替代方案,递送装置就其行程而言可移动更大的距离, 甚至从基底的一端移动到另一端。在这种情况下,生长膜可以在其生长过程中暴露于大气环境中,在很多使用情况下没有造成不良影响。在一些情况下,出于均勻性的考虑需要测量每个循环中往复运动量的随机性,例如用以减小边缘效应或减少沿往复移动行程极限的累积。递送头10可以具有仅足够提供一次循环的输出通道12。作为替代方案,递送头 10可具有多个循环的配置,以使其覆盖较大沉积面积或使其往复运动能在一定距离内,以允许在一个往复运动距离的一个行程内进行两个或多个沉积循环。例如,在一个具体应用中,发现每个O-M循环在约1/4的所处理表面上形成一个原子直径的层。因此,在这种情况下,在所处理表面上形成1个原子直径的均勻层需要四次循环。类似的,在这种情况下要形成10个原子直径的均勻层则需要40次循环。用于本发明的递送头10的往复运动的优点是其允许在其表面超过输出面36的面积的基底20上进行沉积。图15示意性示出如何利用如箭头A所示的沿y轴的往复运动以及相对于χ轴与往复运动垂直或横向的移动来覆盖该更广的区域。另外,必须强调的是,如图15中所示,无论在χ或y方向的移动均可受到递送头10的移动的影响、或受到具有提供移动的基底支撑物74的基底20的移动的影响、或者受到递送头10和基底20 二者的移动的影响。在图15中,递送装置的相对运动方向与基底是互相垂直的。也可使这种相互运动平行。在这种情况下,相对运动需要具有表示摆动的非零频率部件和表示基底位移的零频率部件。该组合可实现如下固定基底上的递送装置的位移与摆动组合;基底相对于固定的基底递送装置的移动与摆动组合;或者其中通过递送装置和基底二者的移动来提供摆动和固定移动的任意组合。
有利的是,递送头10可以制造成为比很多可能类型的沉积头更小的尺寸。例如, 在一个实施方案中,输出通道12具有约0.005英寸(0.127mm)的宽度wl并且长度延伸到约3英寸(75mm)。在一个优选实施方案中,ALD可以在大气压力下或接近大气压力下和在优选 300°C温度以下的宽范围的环境温度和基底温度下实施。优选地,需要相对洁净的环境以尽量减小污染的可能性;但是,在使用本发明设备的优选实施方案时,获得良性能并不需要全 “无尘室”条件或惰性气体填充封闭。图16示出具有提供相对良好控制和无污染环境的室50的原子层沉积(ALD)系统 60。气体供应^a、28b和28c通过供应管线32向递送头10提供第一、第二和第三气体材料。柔性供应管线32的任选使用有利于递送头10移动方便。为简单起见,任选的真空气相回收设备和其它支撑部件未在图16中示出,但也可以使用。传输子系统M提供沿递送头10的输出面36递送基底20的基底支撑物,其提供χ方向移动,利用本公开内容中使用的坐标轴系统。移动控制和全部阀和其它支撑部件的控制可以通过控制逻辑处理器56例如计算机或专用微处理器组合件来提供。在图16的配置中,控制逻辑处理器56控制致动装置30以为递送头10提供往复运动,其也控制传输子系统M的传输电机52。致动装置 30可以是适用于使递送头10沿移动的基底20 (或者,作为替代方案,沿着固定的基底20) 往复运动的多种装置的任意一种。图17示出用于在沿着用作基底支撑物的网格输送器62传输经过递送头10的网格基底66上进行薄膜沉积的原子层沉积(ALD)系统70的一个替代实施方案。递送装置输送器64沿网格移动方向的横向将递送头10传输经过基底66的表面。在一个实施方案中, 用气体压力提供的完全分离力推动递送头10来回经过网格基底66的表面。在另一个实施方案中,递送装置输送器64使用横贯网格基底66的宽度的导螺杆或类似机构。在另一个实施方案中,沿着网格输送器62的合适位置处使用多个递送装置10。图18示出另一个使用固定递送头10的网格配置的原子层沉积(ALD)系统70,其中流动图案的朝向与图17中的构型垂直。在这种配置中,网格输送器62本身的运动提供 ALD沉积所需的移动。往复运动也可用于该环境中。参考图19,示出了递送头10的一部分的一个实施方案,其中输出面36有一定量的曲率,这对一些网格涂层应用是有利的。可以提供凸或凹的曲率。 在另一个特别用于网格制造的实施方案中,ALD系统70可具有多个递送装置10或双递送装置10,其中在网格基底66的两侧各设置一个。作为替代方案,可提供柔性递送头 10。这将提供表现出与沉积表面至少部分共形的沉积设备。本发明的设备的优点在于其能够在包括室温或某些实施方案中接近室温的宽温度范围内在基底上进行沉积。本发明的设备可以在真空环境中操作,但是尤其适于在大气压力或接近大气压力下操作。根据本方法制造的具有半导体膜的薄膜晶体管可表现出的场效应电子迁移率大于0.01cm7Vs,优选至少0. lcm2/Vs,更优选大于0.2cm7Vs。另外,根据本方法制造的具有半导体膜的η-沟道薄膜晶体管能够提供至少104,优选至少IO5的开/关率。开/关率测量为当栅极电压从一个值扫到另一个值时的漏电流的最大值/最小值,代表性的栅极电压为可用于显示器件的栅极线的相关电压。典型的一组值为-IOV 40V,并且漏电压保持在19/22 页
30V。本发明已经具体参考其特定优选实施方案进行详细描述,但是本领域技术人员应理解可在上述说明书和所附权利要求中提及的本发明范围内进行修改和变化,而不偏离本发明的范围。例如,虽然可利用空气轴承效应来至少部分地分隔开递送头10和基底20的表面,但是本发明的设备可以替代性地用于从递送头10的输出表面36提升或悬起基底20。 可以替代性地使用其它类型的基底固定器,包括例如台板。用于递送头10的孔板可以以多种方法形成并结合在一起。有利的是,孔板可以用已知方法如顺序冲模、模塑、机械加工或冲压来单独制造。尤其期望的在孔板上形成复杂开口的方法是导线放电加工(导线EDM)或光刻技术。孔板的组合可与图4、9A和9B的实施方案中的组合差别很大,可形成具有任意数目板的递送头10,例如5到100个板。在一个实施方案中使用不锈钢,优点是其耐化学性和抗腐蚀性。通常,孔板是金属的,但陶瓷、玻璃或其它耐用材料也可适用于形成部分或所有的孔板,这取决于应用以及用于沉积过程的反应物气体材料。为了组装,孔板可以利用机械紧固件如螺栓、夹子或螺钉胶合或接合在一起。为了密封,孔板可以表面涂覆合适的粘合剂或密封材料如真空油脂。环氧树脂如高温环氧树脂可用作粘合剂。熔融的聚合物材料如聚四氟乙烯(PTFE)或TEFLON的粘合特性也用于将叠合的孔板与递送头10连接在一起。在一个实施方案中,PTFE涂层形成在用于递送头10中的每个孔板上。当加热至接近PTFE材料的熔点(名义上为327°C)时,板被堆叠(叠合) 并压缩在一起。然后热和压力的组合使涂层孔板形成递送头10。涂层材料同时用作粘合剂和密封剂。Kapton和其它聚合物材料可替代性地用作粘合剂的间质涂层材料。如图4和9B中所示,孔板必须以合适的序列组装,以形成互连供应室网络和引导发送气体材料至输出面36的通道。当组装在一起时,可以使用提供定位针或类似特征配置的固定装置,其中孔板中的孔或槽的配置与这些对准特征匹配。上述方法和设备可用于在多种基底上沉积薄膜材料层。基底的一个实例可以是美国专利申请No. 11/861,539中所述的OLED器件,其全文通过引用并入本文。这种OLED器件具有由包括例如可交换沉积的氧化锌和氧化铝的多层无机材料构成的包封封装。该无机多层堆叠体可优化为产生最大透光率,在显示器上提供防炫目或抗反射涂层,或者在显示器上提供彩色的中性密度或彩色转换滤光器。滤光器、偏光器和防炫目或抗反射涂层的各个层可以分别提供在包封封装上,或者可以包括在预设特性的密封封装中,尤其是在多层薄膜的情况下。上述方法和设备是可用于本发明中以产生干涉滤光器形式的薄膜材料层的气相沉积方法的一个实例。实施例在实施例中,用与上述类似的设备实施薄膜材料涂覆。涂覆氧化铝或氧化锌。对于氧化铝,将IM三甲基铝的庚烷溶液置于一个鼓泡器中,另一个装水。对于氧化锌,将15 重量%的二乙基锌的庚烷溶液放在一个鼓泡器中,另一个鼓泡器中装水。对所有氧化物,经过鼓泡器的载气流量为50ml/分钟。对于水反应物,稀释载气的流量为300ml/分钟。惰性分隔气体的流量是21/分钟。所有情况下都用氮气作为载气。运行校准以确定氧化物的厚度与基底摆动次数的关系曲线。基底温度为 220°C。
22
实施例1通过用ALD系统在62 X 62 X Imm的载玻片上可交换地沉积氧化锌和氧化铝层来产生干涉滤光器。从基底向上顺序层的目标厚度为氧化锌IOOnm氧化铝IOOnm氧化锌IOOnm氧化铝IOOnm氧化锌IOOnm氧化铝200nm氧化锌IOOnm氧化铝IOOnm氧化锌IOOnm氧化铝IOOnm氧化锌IOOnm图22b示出滤光层的图表。测量滤光器的吸收率,显示其峰值在570nm处和约 700nm处,如图22b所示。本发明已经参考其优选实施方案进行了详细描述。但是本领域技术人员应理解可以在本发明的范围内进行修改和变化。附图标记列表10递送头12输出通道14气体进口管16气体进口管18气体进口管20基底22排放通道24排放端口管28a气体供应28b气体供应28c气体供应30致动装置32供应管线36输出面50室52传输电机54传输子系统56控制逻辑处理器60原子层沉积(ALD)系统62网格输送器
64递送装置输送
66网格基底
70原子层沉积(ALD)系统
74基底支撑物
90前体材料的引导通道
92吹扫气体的引导通道
96基底支撑物
98气态流体轴承
100连接板
102引导室
104输入端口
110气室板
112供应室
113供应室
115供应室
114排放室
116排放室
120气体方向板
122前体材料的引导通道
123排放引导通道
130底板
132伸长发射通道
134伸长排放通道
140气体扩散器单元
142喷嘴板
143第一扩散器输出通路
146气体扩散器板
147第二扩散器输出通路
148面板
149第三扩散器输出通路
150递送组合件
152伸长发射通道
154伸长排放通道
160分隔板
162吹扫板
164排放板
166反应物板
166'反应物板
168孔
21/22 页
24
170弹簧180序列第一排放槽182序列第二排放槽184序列第三排放槽A箭头D足巨离E排放板Fl气流F2气流F3气流F4气流I第三惰性气体材料K方向M第二反应物气体材料0第一反应物气体材料P吹扫板R反应物板S分隔板wl通道宽度w2通道宽度X箭头
权利要求
1.一种制备薄膜电子器件的方法,包括在基底上提供电子器件;提供包括第一反应性气体材料的第一源、第二反应性气体材料的第二源、和惰性气体材料的第三源的多种气体材料源;提供通过多个进口与所述气体材料源流体连通的递送头,所述第一气体材料源连接到第一进口 ;所述第二气体材料源连接到第二进口 ;所述第三气体材料源连接到第三进口 ; 所述递送头包括输出面和与所述第一进口流体连通的第一多个伸长的基本平行的发射通道、与所述第二进口连接的第二多个伸长的基本平行的发射通道、和与第三进口连接的第三多个伸长的基本平行的发射通道,所述第三伸长发射通道中的至少一个设置为分离所述第一伸长发射通道中的至少一个和所述第二伸长发射通道中的至少一个;使得所述第一反应性气体材料、所述第二反应性气体材料、和所述惰性气体材料的一种或更多种分别流动通过所述递送头的所述第一伸长发射通道、所述第二伸长发射通道、 和所述第三伸长发射通道,所述流动包括压力,所述压力由产生气态流体轴承的所述第一反应性气体材料、所述第二反应性气体材料、和所述第三惰性气体材料的一种或更多种的流动而产生,所述气态流体轴承维持所述递送头的输出面和所述基底之间的基本上均勻的距离;同时引导所述第一反应性气体材料、所述第二反应性气体材料、和所述惰性气体材料分别流动通过所述递送头的所述第一伸长发射通道、所述第二伸长发射通道、和所述第三伸长发射通道,朝向所述电子器件和所述基底;使得所述递送头和所述基底之间相互移动,以使得所述第二反应性气体材料至少与经所述第一反应性气体材料处理过的基底的一部分和电子器件的一部分反应,以至少在经所述第一反应性气体材料处理过的基底的一部分和电子器件的一部分上形成薄膜。
2.根据权利要求1所述的方法,其中所述第一反应性气体材料和所述第二反应性气体材料的材料选择为给所述电子器件提供薄膜,该薄膜提供所选择的光学性质。
3.根据权利要求2所述的方法,其中所述第一反应性气体材料和所述第二反应性气体材料的材料选择为给所述电子器件提供薄膜,该薄膜提供环境阻挡层。
4.根据权利要求1所述的方法,其中产生所述气态流体轴承包括使得递送头漂浮在所述基底上方。
5.根据权利要求1所述的方法,其中产生所述气态流体轴承包括使得所述基底浮在所述递送头上方。
6.根据权利要求1所述的方法,其中所述薄膜为第一薄膜,所述方法还包括通过用第三反应性气体材料替代所述第一反应性气体材料和所述第二反应性气体材料之一并且重复权利要求1的方法,在所述第一薄膜上形成第二薄膜。
7.根据权利要求6所述的方法,其中所述第三反应性气体材料和剩余的第一或第二反应性气体材料的材料选择为给所述电子器件提供薄膜,该薄膜提供所选择的光学性质。
8.根据权利要求6所述的方法,其中所述第三反应性气体材料和剩余的第一或第二反应性气体材料的材料选择为给所述电子器件提供薄膜,该薄膜提供环境阻挡层。
9.根据权利要求1所述的方法,其中所述薄膜为第一薄膜,所述方法还包括通过用第三反应性气体材料替代所述第一反应性气体材料和用第四反应性气体材料替代所述第二反应性气体材料并且重复权利要求1的方法,在所述第一薄膜上形成第二薄膜。
10.根据权利要求9所述的方法,其中所述第三反应性气体材料和所述第四反应性气体材料的材料选择为给所述电子器件提供薄膜,所述薄膜提供所选择的光学性质。
11.根据权利要求9所述的方法,其中所述第三反应性气体材料和所述第四反应性气体材料的材料选择为给所述电子器件提供薄膜,该薄膜提供环境阻挡层。
全文摘要
一种制备光学膜或光学阵列的方法包括沿着伸长的基本平行的通道同时导入一系列气流以在基底上形成第一薄膜;其中所述一系列气流依次包括至少第一反应性气体材料、惰性吹扫气体和第二反应性气体材料;其中第一反应性气体材料能够与经第二反应性气体材料处理过的基底表面反应以形成第一薄膜;重复第一步骤多次,以产生具有第一光学特性的第一厚度的第一膜层;其中上述方法在大气压力下或在高于大气压力下实施;重复第一和第二步骤以产生第二膜层;其中该方法基本上在大气压力下或在高于大气压力下实施。
文档编号C23C16/455GK102433549SQ201110427409
公开日2012年5月2日 申请日期2008年9月18日 优先权日2007年9月26日
发明者埃琳娜·A·费多罗夫斯卡亚, 约翰·理查德·菲森, 罗纳德·史蒂文·科克 申请人:伊斯曼柯达公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1