用于沉积混合晶体层的pvd混合方法

文档序号:3322935阅读:182来源:国知局
专利名称:用于沉积混合晶体层的pvd混合方法
技术领域
本发明涉及通过PVD方法在基底上沉积具有至少两种金属(M1,M2)的混合晶体层的方法。
背景技术
用于例如切削金属加工的切削工具通常包含硬质合金、金属陶瓷、钢或者高速钢的主体(基底),所述主体具有金属硬质材料层、氧化物层以及类似层的耐磨单层或多层涂层。为了施加这些涂层,使用CVD法(化学气相沉积)和/或PVD法(物理气相沉积)。在PVD法的情况下,在不同的变体之间存在区别,所述变体例如阴极溅射(溅射沉积),电弧气相沉积(电弧PVD),离子镀,电子束沉积和激光烧蚀。阴极溅射,如磁控溅射,反应磁控溅射或者高能脉冲磁控溅射(HIPIMS)和电弧气相沉积,是PVD法中最常用于涂覆切削工具的方法。在所述溅射操作(阴极溅射)中,高能离子轰击使原子或分子从所述靶上脱离,并转变成气相,其中它们然后直接或者在与反应气体反应后沉积在所述基底上。在电弧气相沉积的情况下,电弧在腔室和所述靶之间燃烧,并且熔融和蒸发所述靶材。在这种情况下,大部分的蒸发材料被离子化,并朝向处于负电势的基底加速,和沉积在所述基底表面上。通过磁控溅射以及通过电弧气相沉积都可以在基底上沉积金属氧化物层。通常在电弧气相沉积的情况下获得较高的沉积速率。单和双磁控溅射变体具有如下缺点许多氧化物不能以特别稳定的并且因此是期望的α相获得或者最多可以部分获得,例如在氧化铝的情况下,或者在铝铬混合氧化物的情况下。当采用电弧气相沉积时,可以获得非常高比例α相的金属氧化物。然而要指出的是电弧气相沉积的缺点是,由于所采用的方法,还会沉积非常多的大粒子(微滴),而要避免这种情况是非常复杂和高成本的。由于以非稳定相或混合相的形式沉积,和/或与非常多大粒子一起沉积,根据上述方法沉积的层通常不具有对于需要高硬度和低热导率这些特性的特定应用足够的高硬度和低热导率。·
DE 44 05 477和DE 43 31 890描述了氮化物层的制备,其中基础材料的沉积借助于非平衡磁控溅射法(单磁控溅射)开始。然后,在后续阶段的层沉积中,打开阴极电弧放电以在已沉积的基础材料的层中并入另外的金属(并入材料)。这样形成了多层涂层,在这方面,据推测由于在非平衡磁控溅射的情况下等离子体能量的水平低,产生了多相层。US 2005/0284747描述了借助于磁控溅射和电弧气相沉积制备含硅多层涂层,其中所述涂层具有多相结构,该多相结构具有α氮化硅和β氮化硅。没有得到混合晶体结构。铝及其合金在所述电弧中沉积,并且这导致形成大粒子(微滴)。EP O 306 612描述了借助于阴极溅射和电弧气相沉积在基底上产生涂层,从而获得的层,与单纯采用阴极溅射相比,密度更大且更致密。所沉积的层通常具有不利的混合相和许多大粒子
发明内容
目的本发明目的在于提供通过PVD方法在基底上沉积具有至少两种不同金属的混合晶体层的方法,其中通过该方法获得了混合晶体层,该混合晶体层尽可能不含大粒子(微滴)并且该混合晶体层具有尽可能高比例的希望结晶相,特别是单相混合晶体层,并且该混合晶体层是高度结晶的。发明详述根据本发明,所述目的通过一种本说明书公开部分阐述的方法实现,在该方法中,在同时实施i)双磁控溅射或高能脉冲磁控溅射(HIPIMS)的阴极溅射法以及ii)电弧气相沉积(电弧PVD)的情况下进行所述混合晶体层的沉积。根据本发明的同时实施双磁控溅射或HIPMS和电弧气相沉积,使得可以有利地产出高结晶单相混合晶体层,其基本上不含大粒子(微滴),但其至少具有与根据已知方法制备的层相比显著更低数量的大粒子。可以认为由于等离子体能量在双磁控溅射或HIPMS 中比在单磁控溅射的情况下显著更高,生成了基本上单层的混合晶体结构。这是令人惊奇的。同时根据本发明制备的层的特点在于由于它们具有特殊的结构性质,其具有有利的硬度和热导率。根据本发明特别优选的混合晶体层是铬铝氧化物(AlCr)2O3的单相混合晶体的层。具有该组成的层既可以通过电弧气相沉积也可以通过单或双磁控溅射从如AlCr (70/30)原子%的靶进行沉积。应当承认,在单独使用电弧气相沉积进行PVD沉积的情况下,可以获得高比例的热力学稳定的α相混合晶体,但同时还获得非常高比例的同样沉积的大粒子(微滴),其显著降低了所述混合晶体层的质量。应当承认,在通过磁控溅射进行的沉积中,同样沉积的大粒子(微滴)与电弧气相沉积相比有所减少,但却很难得到所述混合晶体的热力学稳定的α相。现在已经可以令人惊奇地证明,应用同时实施双磁控溅射或HIPMS和电弧气相沉积的本发明的方法,使得可以沉积混合晶体层,该层同时含有高度结晶的混合晶体层,其几乎不含大粒子(微滴),而且其是单相的或至少具有非常高比例的期望相,例如在氧化铬铝情况下的稳定的α相,以及至多小比例的其它相,例如在氧化铬铝情况下的Y相。如同样在现有技术所描述的,实施单磁控溅射和电弧气相沉积并不能得到理想的结果。在根据本发明的方法中,使用至少两个不同的靶,即在电弧气相沉积法中作为所述阴极的具有至少一种第一金属(Ml)的靶,以及另一个在所述双磁控溅射方法或HIPMS中用于阴极溅射的具有至少另一种金属的靶。所使用的靶可以是纯金属,例如纯铝靶或者铬靶,或者混合金属靶,例如铝/铬(70/30)原子%靶。或者,还可以采用陶瓷靶,其已经含有待沉积的化合物,例如金属氧化物,金属氮化物,金属碳化物或者金属硼化物。理想地,在电弧气相沉积方法中使用较高熔点的靶材,而在双磁控溅射法或HIPIMS法中使用较低熔点的靶材。根据本发明有利的例子是在所述电弧气相沉积方法中使用金属铬靶,和在所述双磁控方法或HIPMS中使用金属铝靶。假如以上所述靶颠倒使用,那会带来更多的大粒子(微滴)沉积以及关于所述混合晶体层较低程度的结晶度。在根据本发明方法的一个实施方案中,所述混合晶体层是如下物质的单相的或者基本上单相的混合晶体层所述至少两种不同金属(Ml,M2)的混合氧化物、碳化物、氮化物、碳氮化物、氧氮化物、氧碳化物、氧碳氮化物、硼化物、硼氮化物、硼碳化物、硼碳氮化物、硼氧氮化物、硼氧碳化物、硼氧碳氮化物和氧硼氮化物。然而优选所述混合晶体层包含所述至少两种不同金属(M1,M2)的混合氧化物。尤其特别优选的体系为铝铬氧化物的混合晶体层。双磁控溅射和高能脉冲磁控溅射(HIPIMS)适合用于根据本发明的方法。尤其特别优选例如采用纯金属靶和氧气作为反应气体的反应双磁控溅射。在本发明的另一个实施方案中,采用至少一个至少含有第一种金属(Ml)的靶用于实施所述双磁控方法或者HIPMS。然而可替代地,还可以采用混合金属靶用于实施所述双磁控方法或者HIPIMS,所述靶既含有第一种金属(M1),也含有第二种金属(M2),并且任选含有另外的金属。在如上已经说明的铬铝氧化物体系中的混合金属靶的例子是铝/铬(70/30)原子%的靶。至少一个至少含有第二种金属(M2)的靶用于实施所述电弧气相沉积方法(电弧 PVD)。如果与这种实施联系起来,要阐述的是靶含有一种金属或多种金属,其既包括纯金属靶,而且包括陶瓷靶,其中所述一种或多种金属以例如氧化物、氮化物、碳化物或硼化物的形式存在。通常几乎所有金属都适合用于沉积本发明的混合晶体层。在本发明的一个实施方案中,第一种金属和第二种金属选自周期表副族IVa至VIIa的元素、锂、硼、铝和硅。然而优选第一种金属和第二种金属是铝和铬。在工具涂层中的铝铬混合氧化物层已被证实尤其有利。这些涂层具有特别高的硬度和耐磨性。在本发明一个优选实施方案中,对于实施所述双磁控方法或HIPIMS,使用两个铝靶,或使用一个铝靶和一个混合铝铬靶用于制备铝铬混合氧化层。对于所述电弧气相沉积方法(电弧PVD),使用一个或两个铬靶。预计用于相同PVD方法的靶被布置在PVD装置中,在所述基底支架的彼此相对侧上。在本发明另一个实施方案中,混合晶体层被沉积的层厚度为O. 2nm至ΙΟμπι,优选5nm至I μ m,尤其优选IOnm至lOOnm。过厚的层厚度具有的缺点是由于不利的应力条件,所述层可能会剥落。另外,沉积速度随着层厚度增加而降低,这使得沉积由于非常低的沉积速率而变得不经济。本发明的混合晶体氧化物层在其自身中可以包含如下层结构,该层结构可在依赖于旋转速度的PVD设备中进行沉积时,通过旋转所述基底而产生。在这种情况下,相互叠加的层可以根据所述靶的组成包含不同的化学组成,和/或可以包含不同的晶体取向,其中所述相互叠加的层的晶体体系与在混合晶体氧化物层中的相同。在混合晶体氧化物层中的单个层的厚度可以是O. Inm至I μ m,优选2nm至500nm,特别优选3nm至50nm,非常特别优选 5nm 至 15nm。在本发明方法的另一个实施方案中,用于沉积所述混合晶体层的基底由硬质合金、金属陶瓷、钢或高速钢(HSS)制成。尤其优选所述基底由硬质合金或金属陶瓷制成。在本发明方法的另一个实施方案中,用于所述电弧气相沉积方法(电弧PVD)的革巴材的熔点高于700°C,优选高于1000°C,尤其优选高于1500°C。在所述电弧方法中使用高熔点靶材具有的优点是与使用低熔点靶材相比,显著更少的大粒子(微滴)也被沉积。
本发明还包括切削工具,其包含基底和施加于其上的单层或多层涂层,其中所述多层涂层的至少一个层为采用根据本发明前述权利要求之一所述的方法制备的混合晶体层。优选所述多层涂层的至少一个混合晶体层为铬铝氧化物混合晶体层,其完全是或者其至少90体积%以所述α相存在。根据本发明的混合晶体层具有的优点是,其具有特别高的结晶度和低比例的沉积的大粒子(微滴)。采用本发明的方法,在所述铬铝混合氧化物体系中,以及在类似的晶体结构的相当体系中,获得了具有特别高比例的热力学稳定的α相的所 述混合晶体。其优点在于具有高硬度,高耐磨性,耐高温性和耐高温循环性。
具体实施例方式实施例 根据本发明(实施例I和2)和常规地(对比例I和2),通过仅双磁控溅射(对比例)或与电弧气相沉积组合(本发明的实施例),在PVD设备中用铝铬混合氧化物层或氧化铝分别涂覆硬质合金基底。然后测定维氏硬度(VH)和降低的E-模量(ΕΙΤ/α-ν2))。所测量的参数和结果在下表中再现。通过X射线研究证实实施例I和2的层为α铝铬氧化物的单相混合晶体层,而对比例I仅产生Y氧化铝和非晶氧化铝的混合物,和对比例2提供的是α和Y相的混合
物。所有的层都基本上不含大粒子(微滴)。
—工.艺参数实施例I实施例2对比例I对比例2
^双磁控AlAl 和八10(70/30)原子%AlAlCr(70/30)原子%
矩形靶矩形靶矩形靶矩形靶
__(81cmx16cm)__( 8 Icmx 16cm)__(8 Icmx 16cm) (81cm><16cm)
电弧气相 4个Cr圆形源4个Cr圆形源
沉积 (063mm),分别在 (063mm),分别在75A
__75A 下__T___
基底偏压 120V (单极性脉冲 60V (单极性脉冲频率150V150V
_ 频率 100Hz)__IOOHz)___
功率(双20kW20kW20kW20kW
磁控)_____
氧气流__180sccm__180sccm__500sccm__500sccm
氧气流__500sccm__500sccm__IOOsccm__IOOsccm_
实施例I实施例2对比例I对比例2
维氏硬度(VH) 2438227021012602
EIT/(Ι-v2)328GPa280GPa315GPa339GPa
权利要求
1.通过PVD方法在基底上沉积具有至少两种不同金属(M1,M2)的混合晶体层的方法,其特征在于在同时实施i)双磁控溅射或高能脉冲磁控溅射(HIPIMS)的阴极溅射法以及ii)电弧气相沉积(电弧PVD)的情况下进行所述混合晶体层的沉积。
2.根据权利要求I所述的方法,其特征在于所述混合晶体层是如下物质的单相混合晶体层所述至少两种不同金属(M1,M2)的混合氧化物、碳化物、氮化物、碳氮化物、氧氮化物、氧碳化物、氧碳氮化物、硼化物、硼氮化物、硼碳化物、硼碳氮化物、硼氧氮化物、硼氧碳化物、硼氧碳氮化物和氧硼氮化物,优选所述至少两种不同金属(M1,M2)的混合氧化物的单相混合晶体层。
3.根据以上任一权利要求所述的方法,其特征在于第一种金属和第二种金属选自周期表副族IVa至VIIa族元素、锂、硼、铝和硅。
4.根据以上任一权利要求所述的方法,其特征在于所述两种不同金属(Ml,M2)为铝和铬。
5.根据以上任一权利要求所述的方法,其特征在于使用至少一个靶用于实施所述双磁控溅射或者高能脉冲磁控溅射(HIPIMS)的阴极溅射方法,所述靶含有至少第一种金属(Ml)以及任选另外包含第二种金属(M2),并且任选包含另外的金属,和使用至少一个含有至少第二种金属(M2)的靶用于实施所述电弧气相沉积方法(电弧PVD)。
6.根据以上任一权利要求所述的方法,其特征在于使用两个铝靶,或者使用一个铝靶和一个铝铬混合靶用于实施所述双磁控溅射或高能脉冲磁控溅射(HIPIMS)的阴极溅射方法,以及使用至少一个铬靶用于所述电弧气相沉积方法(电弧PVD)。
7.根据以上任一权利要求所述的方法,其特征在于所述混合晶体层被沉积的层厚度为O. 2nm至10 μ m,优选5nm至I μ m,尤其优选IOnm至lOOnm。
8.根据以上任一权利要求所述的方法,其特征在于所述基底由硬质合金、金属陶瓷、钢或高速钢(HSS)制成。
9.根据以上任一权利要求所述的方法,其特征在于用于所述电弧气相沉积方法(电弧PVD)的靶材的熔点高于700°C,优选高于1000°C,尤其优选高于1500°C。
10.切削工具,其包含基底和施加于其上的单层或多层涂层,其中所述多层涂层的至少一层为使用以上任一权利要求所述的方法制备的混合晶体层。
11.根据权利要求10所述的切削工具,其特征在于所述多层涂层的至少一个混合晶体层为铬铝氧化物混合晶体层,其完全是或者其至少90体积%是以α相存在的。
全文摘要
本发明涉及通过PVD方法在基底上沉积具有至少两种不同金属(M1,M2)的混合晶体层的方法。为了提供通过PVD方法在基底上沉积具有至少两种不同金属的混合晶体层的方法,其中通过该方法可获得混合晶体层,该混合晶体层尽可能不含大粒子(微滴)并且具有尽可能高比例的希望结晶相,而且是高度结晶的,本发明提出在同时实施i)双磁控溅射或高能脉冲磁控溅射(HIPIMS)的阴极溅射法以及ii)电弧气相沉积(电弧PVD)的情况下进行所述混合晶体层的沉积。
文档编号C23C14/22GK102933737SQ201180022438
公开日2013年2月13日 申请日期2011年5月3日 优先权日2010年5月4日
发明者沃尔夫冈·恩格哈特, 法伊特·席尔 申请人:瓦尔特公开股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1