本发明涉及微晶氧化铝陶瓷制备
技术领域:
,具体而言,涉及一种金属塑性相结合微晶氧化铝陶瓷及其制备方法与应用。
背景技术:
:目前的氧化铝陶瓷球所用的原料为一般的ɑ-Al2O3,或含氧化铝的其它物质,通过添加含镁,钙,锆,硅,稀土元素等物质来阻止刚玉晶相的长大达到微晶的目的,或其它物相成份如碳化钛等复合方式来提高陶瓷体的韧性。现有技术中,通过引入含镁、钙、锆、硅等物质阻止刚玉晶体长大的方法,由于陶瓷球的主要物相是刚玉,烧成过程中以刚玉相的烧结为主,不同的物相难以整体达到全部烧结的目的;此外,稀土为国家的战略资源,且成本较高。有鉴于此,特提出本发明。技术实现要素:本发明的第一目的在于提供一种金属塑性相结合微晶氧化铝陶瓷的制备方法,所述的金属塑性相结合微晶氧化铝陶瓷的制备方法工艺简单,能够使微晶氧化铝和金属铝塑型相结合,极大地提高了所得金属塑性相结合微晶氧化铝陶瓷的韧性,使其不易破碎,大大延长了使用寿命。本发明的第二目的在于提供一种采用所述的金属塑性相结合微晶氧化铝陶瓷的制备方法制备得到的金属塑性相结合微晶氧化铝陶瓷,所述的金属塑性相结合微晶氧化铝陶瓷韧性高,不易破碎,使用寿命长。本发明的第三目的在于提供一种采用所述的金属塑性相结合微晶氧化铝陶瓷的制备方法制备得到的金属塑性相结合微晶氧化铝陶瓷的应用,所述的金属塑性相结合微晶氧化铝陶瓷可用作研磨材料,其韧性高,不易破碎,使用寿命长。为了实现本发明的上述目的,特采用以下技术方案:一种金属塑性相结合微晶氧化铝陶瓷的制备方法,将微晶氧化铝和金属铝充分粉碎混合后,煅烧得到金属塑性相结合微晶氧化铝陶瓷。本发明金属塑性相结合微晶氧化铝陶瓷的制备方法工艺简单,通过将微晶氧化铝和金属铝充分粉碎混合后,再进行煅烧,能够使微晶氧化铝和金属铝塑型相结合,极大地提高了所得金属塑性相结合微晶氧化铝陶瓷的韧性,使其不易破碎,大大延长了使用寿命。优选地,所述金属铝的用量为微晶氧化铝质量的30%-50%,优选为35%-45%,进一步优选为40%。优选地,将微晶氧化铝、金属铝和结合剂充分粉碎混合后,煅烧得到金属塑性相结合微晶氧化铝陶瓷。进一步优选地,所述结合剂包括无水粘合剂和铝溶胶粘合剂中的一种或多种,优选包括聚乙烯醇。进一步优选地,所述粘合剂的用量为微晶氧化铝质量的6%以下,优选为1%-6%,进一步优选为3%。优选地,所述煅烧的煅烧温度为1350-1600℃,优选为1350-1500℃,进一步优选为1350-1480℃。优选地,所述煅烧的煅烧时间为1小时以上,优选为1-10小时,进一步优选为3-6小时。优选地,所述微晶氧化铝包括超低钠微晶氧化铝。优选地,所述超低钠微晶氧化铝的制备方法包括:将Al(OH)3浸泡在近中性缓冲溶液中充分搅拌,得到超低钠Al(OH)3,将所得超低钠Al(OH)3煅烧后得到超低钠微晶氧化铝。优选地,所述近中性缓冲溶液为能溶解钠离子的近中性缓冲溶液,优选为近中性水性缓冲溶液。优选地,所述近中性缓冲溶液的pH至为6-8,优选为6.5-7.5,进一步优选为6.98-7.17。优选地,所述近中性缓冲溶液通过在溶剂中溶解近中性缓冲剂制备得到。进一步优选地,所述缓冲剂包括PBS缓冲剂。优选地,所述超低钠微晶氧化铝的制备过程中,煅烧的煅烧温度为1200-1500℃,优选为1300-1500℃,进一步优选为1400-1500℃。优选地,所述超低钠微晶氧化铝的制备过程中,煅烧的煅烧时间为1小时以上,优选为1-10小时,进一步优选为5-8小时。优选地,所述超低钠微晶氧化铝的制备过程中,搅拌的搅拌时间为10min以上,优选为10-60min,进一步优选为20-30min。采用上述的一种金属塑性相结合微晶氧化铝陶瓷的制备方法制备得到的金属塑性相结合微晶氧化铝陶瓷。本发明金属塑性相结合微晶氧化铝陶瓷韧性高,不易破碎,使用寿命长。上述的一种金属塑性相结合微晶氧化铝陶瓷的应用,所述金属塑性相结合微晶氧化铝陶瓷用作研磨材料。本发明金属塑性相结合微晶氧化铝陶瓷可作为研磨材料使用,韧性高,不易破碎,使用寿命长。与现有技术相比,本发明的有益效果为:本发明金属塑性相结合微晶氧化铝陶瓷的制备方法工艺简单,通过将微晶氧化铝和金属铝充分粉碎混合后,再进行煅烧,能够使微晶氧化铝和金属铝塑型相结合,极大地提高了所得金属塑性相结合微晶氧化铝陶瓷的韧性,使其不易破碎,大大延长了使用寿命。具体实施方式下面将结合具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。一种金属塑性相结合微晶氧化铝陶瓷的制备方法,将微晶氧化铝和金属铝充分粉碎混合后,煅烧得到金属塑性相结合微晶氧化铝陶瓷。本发明金属塑性相结合微晶氧化铝陶瓷的制备方法工艺简单,通过将微晶氧化铝和金属铝充分粉碎混合后,再进行煅烧,能够使微晶氧化铝和金属铝塑型相结合,极大地提高了所得金属塑性相结合微晶氧化铝陶瓷的韧性,使其不易破碎,大大延长了使用寿命。本发明采用了微晶氧化铝和金属铝作为煅烧原料,在烧成过程中,表层部分金属铝会氧化成高活性的Al2O3,此晶相与物料主晶相一致,能促进制品的低温烧结,并且节省烧成成本;表层金属铝经氧化变成Al2O3烧结后能封闭气孔,阻止内部的金属铝氧化,这样,得到的研磨体制品内部富含金属铝,形成金属陶瓷体,得到一种金属塑性相复合的氧化铝研磨体,并且,玻璃相少,极大地提高了制品的韧性,这样制品在使用过程中不易破碎,大大延长了使用寿命。本发明一种优选的具体实施方式中,所述金属铝的用量为微晶氧化铝质量的30%-50%,优选为35%-45%,进一步优选为40%。采用特定用量的金属铝,能够制备得到具有特定金属陶瓷体组成的金属塑性相结合微晶氧化铝陶瓷,有助于进一步提高所得金属塑性相结合微晶氧化铝陶瓷的韧性,延长使用寿命。本发明一种优选的具体实施方式中,将微晶氧化铝、金属铝和结合剂充分粉碎混合后,煅烧得到金属塑性相结合微晶氧化铝陶瓷。采用结合剂,有助于使微晶氧化铝和金属铝更好地相结合,避免在煅烧过程中发生损坏。进一步优选地,所述结合剂包括无水粘合剂和铝溶胶粘合剂中的一种或多种,优选包括聚乙烯醇。进一步优选地,所述粘合剂的用量为微晶氧化铝质量的6%以下,优选为1%-6%,进一步优选为3%。本发明一种优选的具体实施方式中,所述煅烧的煅烧温度为1350-1600℃,优选为1350-1500℃,进一步优选为1350-1480℃。采用特定煅烧温度,有助于促进微晶氧化铝和金属铝的结合,得到金属塑性相结合微晶氧化铝陶瓷。本发明一种优选的具体实施方式中,所述煅烧的煅烧时间为1小时以上,优选为1-10小时,进一步优选为3-6小时。采用特定煅烧时间,有助于促进微晶氧化铝和金属铝的结合,得到金属塑性相结合微晶氧化铝陶瓷。本发明一种优选的具体实施方式中,采用球磨机将微晶氧化铝和金属铝充分粉碎混合。使用球磨机有助于使微晶氧化铝和金属铝的粒径进一步降低,促进微晶氧化铝和金属铝之间更充分地分散混合,进一步提高所得金属塑性相结合微晶氧化铝陶瓷的韧性。球磨机的使用过程中一般根据设备要求,需添加部分水或其他溶剂,保证球磨机的安全运行,此时,可以使用水溶性粘合剂或溶剂型粘合剂,促进微晶氧化铝和金属铝原料更紧密的结合。本发明一种优选的具体实施方式中,原料在充分粉碎混合后先制成所需形状,再进行煅烧,能够得到所需形状的金属塑性相结合微晶氧化铝陶瓷。进一步优选地,原料在充分粉碎混合后机压成所需形状。本发明一种优选的具体实施方式中,使用低粒度的微晶氧化铝和金属铝,虽然通过粉碎混合也能一定程度上进一步降低物料粒度,但使用低粒度的物料更易于相互充分混合均匀,同时也便于物料在煅烧前成型。优选地,所使用的金属铝的粒度为800目以上,优选为1500目以上,进一步优选为2000目以上。本发明所使用的微晶氧化铝可采用市售微晶氧化铝产品,或自行制备得到的微晶氧化铝产品。本发明一种优选的具体实施方式中,所述微晶氧化铝包括超低钠微晶氧化铝。本发明一种优选的具体实施方式中,所述超低钠微晶氧化铝的制备方法包括:将Al(OH)3浸泡在近中性缓冲溶液中充分搅拌,得到超低钠Al(OH)3,将所得超低钠Al(OH)3煅烧后得到超低钠微晶氧化铝。上述的超低钠微晶氧化铝的制备方法工艺简单,造性地以近中性缓冲溶液为分离环境,既经济又能充分脱钠,降低Al(OH)3中钠的含量,并且近中性缓冲溶液在生产过程中产生的温度波动,钠离子的饱和吸收量有较大的适应性,且对Al(OH)3的溶解损失很小;经上述方法处理的微晶氧化铝,其钠含量可以降低到150ppm以下,微晶氧化铝的晶相晶粒尺寸可以控制在0.5μm以下。Al(OH)3是一种两性化合物,既能与强酸反应,也能与强碱反应,但在中性及弱酸弱碱环境中的溶解度不高,而钠的化合物在近中性缓冲溶液中的度很大;溶解度小的物质在水或溶液中并不是直接沉淀,而是一个溶解饱和≒沉淀的平衡过程,Al(OH)3在水中或中性溶液中的溶解度为1.86×10-9mol/L,合1.45×10-8g/L,而含钠的物质溶解度很大,如NaOH的溶解度20℃时为91g,60℃时为129g,100℃时为336g,这一溶解度的巨大差别及Al(OH)3的溶解饱和≒沉淀平衡为Al(OH)3与含钠物质的分离提供了充分条件。本发明一种优选的具体实施方式中,所述近中性缓冲溶液为能溶解钠离子的近中性缓冲溶液,优选为近中性水性缓冲溶液。本发明一种优选的具体实施方式中,所述近中性缓冲溶液的pH至为6-8,优选为6.5-7.5,进一步优选为6.98-7.17。Al(OH)3是一种两性化合物,只有在近中性缓冲溶液中能保持低的溶解度,在特定pH条件下,能够使Al(OH)3保持低溶解度,进一步减少在脱钠过程中Al(OH)3的损失。本发明一种优选的具体实施方式中,所述近中性缓冲溶液通过在溶剂中溶解近中性缓冲剂制备得到。进一步优选地,所述缓冲剂包括PBS缓冲剂。体系的pH值对Al(OH)3的溶解性具有重要影响,Al(OH)3只有在近中性缓冲溶液中能保持低的溶解度,而在脱钠过程中,含钠物质会不断溶解到溶剂中,从而使体系的pH值发生变化,如果体系pH值的变化过大,体系偏离了中性,将直接导致Al(OH)3的溶解,造成Al(OH)3的损失;采用近中性缓冲剂,能够使体系的pH值保持在近中性的范围内,避免在脱钠过程中随着含钠物质的溶解,导致体系pH值变化过大,减少在脱钠过程中Al(OH)3的损失。本发明一种优选的具体实施方式中,所述超低钠微晶氧化铝的制备过程中,煅烧的煅烧温度为1200-1500℃,优选为1300-1500℃,进一步优选为1400-1500℃。所述超低钠微晶氧化铝的制备过程中,在特定温度下进行煅烧,能够使Al(OH)3分解,得到氧化铝,主要是α-Al2O3,同时还有助于降低所得微晶氧化铝的晶相晶粒尺寸。本发明一种优选的具体实施方式中,所述超低钠微晶氧化铝的制备过程中,煅烧的煅烧时间为1小时以上,优选为1-10小时,进一步优选为5-8小时。所述超低钠微晶氧化铝的制备过程中,采用特定煅烧时间,能够使Al(OH)3分解,得到氧化铝,主要是α-Al2O3,同时还有助于降低所得微晶氧化铝的晶相晶粒尺寸。优选地,所述超低钠微晶氧化铝的制备过程中,搅拌的搅拌时间为10min以上,优选为10-60min,进一步优选为20-30min。所述超低钠微晶氧化铝的制备过程中,采用特定搅拌时间,Al(OH)3能够与溶剂充分接触,在这个过程中,Al(OH)3适中处于溶解饱和≒沉淀的平衡过程中,其含有的含钠物质能够充分溶解到溶剂中,进一步提高脱钠效率,降低所得Al(OH)3的钠含量。优选地,所述超低钠微晶氧化铝的制备过程中,将所得超低钠Al(OH)3进行脱水后再进行煅烧。优选地,所述超低钠微晶氧化铝的制备过程中,将所得超低钠微晶氧化铝研磨至所需细度。采用上述的一种金属塑性相结合微晶氧化铝陶瓷的制备方法制备得到的金属塑性相结合微晶氧化铝陶瓷。本发明金属塑性相结合微晶氧化铝陶瓷晶体尺寸小,韧性高,不易破碎,使用寿命长。上述的一种金属塑性相结合微晶氧化铝陶瓷的应用,所述金属塑性相结合微晶氧化铝陶瓷用作研磨材料。本发明金属塑性相结合微晶氧化铝陶瓷可作为研磨材料使用,韧性高,不易破碎,使用寿命长。实施例1一种金属塑性相结合微晶氧化铝陶瓷的制备方法,包括如下步骤:(1)将市售PBS缓冲剂(pH范围为6.98-7.17)搅拌溶解在去离子水中;(2)将工业用Al(OH)3浸泡在步骤(1)所得溶液中,搅拌使Al(OH)3在步骤(1)所得溶液中均匀分散,持续搅拌10min,过滤收集超低钠Al(OH)3;(3)将步骤(2)所得超低钠Al(OH)3在1200℃下,煅烧10小时,得到超低钠微晶氧化铝;(4)取100g步骤(3)所得超低钠微晶氧化铝和30g金属铝粉(粒度为800目),经球磨机充分混合共磨,机压成型,得到坯体;(5)将步骤(4)所得坯体在1350℃下,煅烧10小时,得到金属塑性相结合微晶氧化铝陶瓷产品。实施例2一种金属塑性相结合微晶氧化铝陶瓷的制备方法,包括如下步骤:(1)将市售PBS缓冲剂(pH范围为6.98-7.17)搅拌溶解在去离子水中;(2)将工业用Al(OH)3浸泡在步骤(1)所得溶液中,搅拌使Al(OH)3在步骤(1)所得溶液中均匀分散,持续搅拌60min,过滤收集超低钠Al(OH)3;(3)将步骤(2)所得超低钠Al(OH)3在1500℃下,煅烧1小时,得到超低钠微晶氧化铝;(4)取100g步骤(3)所得超低钠微晶氧化铝和50g金属铝粉(粒度为800目),经球磨机充分混合共磨,机压成型,得到坯体;(5)将步骤(4)所得坯体在1600℃下,煅烧1小时,得到金属塑性相结合微晶氧化铝陶瓷产品。实施例3一种金属塑性相结合微晶氧化铝陶瓷的制备方法,包括如下步骤:(1)将市售PBS缓冲剂(pH范围为6.98-7.17)搅拌溶解在去离子水中;(2)将工业用Al(OH)3浸泡在步骤(1)所得溶液中,搅拌使Al(OH)3在步骤(1)所得溶液中均匀分散,持续搅拌20min,过滤收集超低钠Al(OH)3;(3)将步骤(2)所得超低钠Al(OH)3在1300℃下,煅烧8小时,得到超低钠微晶氧化铝;(4)取100g步骤(3)所得超低钠微晶氧化铝、35g金属铝粉(粒度为1500目)和6g聚乙烯醇,经球磨机充分混合共磨,机压成型,得到坯体;(5)将步骤(4)所得坯体在1400℃下,煅烧6小时,得到金属塑性相结合微晶氧化铝陶瓷产品。实施例4一种金属塑性相结合微晶氧化铝陶瓷的制备方法,包括如下步骤:(1)将市售PBS缓冲剂(pH范围为6.98-7.17)搅拌溶解在去离子水中;(2)将工业用Al(OH)3浸泡在步骤(1)所得溶液中,搅拌使Al(OH)3在步骤(1)所得溶液中均匀分散,持续搅拌30min,过滤收集超低钠Al(OH)3;(3)将步骤(2)所得超低钠Al(OH)3在1400℃下,煅烧5小时,得到超低钠微晶氧化铝;(4)取100g步骤(3)所得超低钠微晶氧化铝、45g金属铝粉(粒度为1500目)和1g聚乙烯醇,经球磨机充分混合共磨,机压成型,得到坯体;(5)将步骤(4)所得坯体在1500℃下,煅烧3小时,得到金属塑性相结合微晶氧化铝陶瓷产品。实施例5一种金属塑性相结合微晶氧化铝陶瓷的制备方法,包括如下步骤:(1)将市售PBS缓冲剂(pH范围为6.98-7.17)搅拌溶解在去离子水中;(2)将工业用Al(OH)3浸泡在步骤(1)所得溶液中,搅拌使Al(OH)3在步骤(1)所得溶液中均匀分散,持续搅拌25min,过滤收集超低钠Al(OH)3;(3)将步骤(2)所得超低钠Al(OH)3在1450℃下,煅烧6小时,得到超低钠微晶氧化铝;(4)取100g步骤(3)所得超低钠微晶氧化铝、40g金属铝粉(粒度为2000目)和3g聚乙烯醇,经球磨机充分混合共磨,机压成型,得到坯体;(5)将步骤(4)所得坯体在1480℃下,煅烧4小时,得到金属塑性相结合微晶氧化铝陶瓷产品。采用火焰原子吸收法测定本发明各实施例所得超低钠Al(OH)3中的钠含量,结果如下:表1本发明所得超低钠Al(OH)3中的钠含量实施例钠含量(在超低钠Al(OH)3中的质量浓度)/ppm实施例1141实施例2117实施例3132实施例4124实施例5136对本发明各实施例所得超低钠Al(OH)3中的晶相晶粒(原晶)尺寸进行测量,结果如下:表2本发明所得超低钠Al(OH)3中的晶相晶粒(原晶)尺寸通过表1和表2可以看出,本发明所得超低钠Al(OH)3中的钠含量低,可以控制在150ppm以下,本发明所得超低钠Al(OH)3中的晶相晶粒(原晶)尺寸小,可以控制在0.5微米以下。对本发明所得金属塑性相结合微晶氧化铝陶瓷产品进行性能测定,结果如下:表3本发明所得金属塑性相结合微晶氧化铝陶瓷性能通过表3可以看出,本发明所得金属塑性相结合微晶氧化铝陶瓷的抗弯强度可以达到1450MPa以上,断裂韧性可以达到21MPa·m1/2以上,维氏硬度可以达到18以上,本发明金属塑性相结合微晶氧化铝陶瓷的制备方法通过将微晶氧化铝和金属铝充分粉碎混合后,再进行煅烧,能够使微晶氧化铝和金属铝塑型相结合,极大地提高了所得金属塑性相结合微晶氧化铝陶瓷的韧性,使其不易破碎,大大延长了使用寿命。尽管已用具体实施例来说明和描述了本发明,然而应意识到,以上各实施例仅用以说明本发明的技术方案,而非对其限制;本领域的普通技术人员应当理解:在不背离本发明的精神和范围的情况下,可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围;因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些替换和修改。当前第1页1 2 3