高强度钢板及其制造方法与流程

文档序号:13040168阅读:138来源:国知局

本发明涉及汽车部件等中应用的高强度钢板及其制造方法。



背景技术:

作为成为汽车构件的原材的钢板,从构件轻量化等观点考虑,高强度钢板被广泛使用。例如,骨架构件、耐碰撞用构件等为了确保乘务人员的安全而要求在碰撞时不易发生变形,要求成为这些构件的原材的钢板的屈服比高。另一方面,为了在不发生破裂的情况下稳定地进行冲压成形,还期望钢板的板宽方向上的中央与端部的拉伸强度之差小。针对屈服比的要求,到目前为止公开了各种钢板及其制造技术。

在专利文献1中公开了含有合计为0.01%以上的nb、ti且以再结晶率80%以上的铁素体作为主相的涂装烧结硬化性优良的高强度钢板及其制造方法。另外,在专利文献2中公开了含有20~50%的未再结晶铁素体作为钢组织的耐碰撞特性优良的高强度钢板及其制造方法。

现有技术文献

专利文献

专利文献1:日本专利第4740099号公报

专利文献2:日本专利第4995109号公报



技术实现要素:

发明所要解决的问题

专利文献1或2记载的技术中,没有将热轧后的钢板宽度方向的卷取温度控制为适当,结果,钢板板宽方向的铁素体粒径的均匀性认为是不充分的。因此,专利文献1或2记载的技术中,认为得不到板宽方向的中央与端部的拉伸强度之差小的高强度钢板。另外,在像专利文献2那样使热轧后的钢组织的一部分生成未再结晶铁素体的情况下,为了得到钢板的宽度方向中央与端部的拉伸强度之差小的高强度钢板,需要在退火中极其严格地管理板宽方向的温度。因此,基于专利文献2记载的发明的板宽方向的强度差小的钢板的工业化实质上是不可能的。

鉴于上述情况,本发明为了解决上述问题而完成,其目的在于得到屈服比高、钢板宽度方向中央与端部的强度差小的高强度钢板。

用于解决问题的方法

本发明人为了解决上述的问题而进行了深入研究。结果发现,在以铁素体作为主体的钢组织中,将铁素体的平均结晶粒径微细化至一定以下、在钢板的宽度中央和端部使平均结晶粒径之差减小对于解决上述问题是重要的。另外发现,为了形成期望的钢组织,调节成预定的成分组成并且将热轧后的卷取温度控制为适当范围是有效的。

本发明是基于以上的见解而完成的,其主旨如下所述。

[1]一种高强度钢板,其中,成分组成以质量%计含有c:0.02%以上且低于0.10%、si:低于0.10%、mn:低于1.0%、p:0.10%以下、s:0.020%以下、al:0.01%以上且0.10%以下、n:0.010%以下、nb:0.005%以上且低于0.070%,余量由fe和不可避免的杂质构成,钢组织以面积率计包含铁素体:90%以上、珠光体:0~10%、马氏体、残余奥氏体和渗碳体的合计:0~3%,钢板宽度方向中央的上述铁素体的平均结晶粒径dc为15.0μm以下,自钢板宽度方向边缘起向钢板宽度方向中央侧100mm的位置处的上述铁素体的平均结晶粒径de与上述平均结晶粒径dc之差为5.0μm以下。

[2]如[1]所述的高强度钢板,其中,上述成分组成进一步以质量%计含有cr:0.3%以下、mo:0.3%以下、b:0.005%以下、cu:0.3%以下、ni:0.3%以下中的任意一种或两种以上。

[3]如[1]或[2]所述的高强度钢板,其中,在高强度钢板的表面具有热镀锌层。

[4]如[3]所述的高强度钢板,其中,上述热镀锌层为合金化热镀锌层。

[5]一种高强度钢板的制造方法,其中,对具有[1]或[2]所述的成分组成的钢片进行热轧后,将热轧钢板的钢板宽度方向中央的温度设定为500~650℃、将卷取时的钢板宽度方向中央的温度与自钢板宽度方向边缘起向钢板宽度方向中央侧100mm位置的温度之差设定为50℃以下来进行卷取,对卷取后的上述热轧钢板进行冷轧,将冷轧钢板在连续退火炉中进行退火。

[6]如[5]所述的高强度钢板的制造方法,其中,在上述退火后,在高强度钢板的表面施加热镀锌层。

[7]如[6]所述的高强度钢板的制造方法,其中,对上述热镀锌层实施合金化处理。

发明效果

根据本发明,通过将成分组成和热轧后的卷取条件等制造条件控制为适当,能够得到作为汽车构件用途所要求的高屈服比并且减小钢板宽度方向的中央与端部的拉伸强度之差。

此外,根据本发明,能够稳定地制造高强度钢板。结果,能够实现汽车的进一步轻量化、冲压破裂所引起的成品率损失的降低,本发明在汽车、钢铁业界中的利用价值极大。

具体实施方式

以下,对本发明的实施方式进行说明。需要说明的是,本发明不限定于以下的实施方式。在以下的说明中,表示成分的含量的“%”是指“质量%”。

首先,对本发明内容进行说明。本发明的目的在于,在拉伸强度为330mpa以上且低于500mpa的高强度钢板中,使屈服比高至0.70以上、使钢板宽度方向的中央与端部的拉伸强度之差低至20mpa以下。为此,有效的是:设定为含有0.005%以上的nb的成分组成,设定为铁素体单相、或以铁素体作为主体且在铁素体以外含有珠光体、马氏体、残余奥氏体和渗碳体中的任意一种以上的钢组织,使钢板宽度方向中央的该铁素体的平均结晶粒径为15.0μm以下,使钢板宽度方向中央与端部的铁素体的平均结晶粒径之差为5.0μm以下。

另外,为了形成期望的铁素体平均结晶粒径,将热轧后的卷取温度管理为500~650℃、使卷取时的板宽方向的温度均匀是重要的。具体而言,使钢板宽度方向中央与端部的温度差为50℃以下是重要的。认为由此能够使nb碳化物在热轧卷取后的冷却中均匀微细地析出,能够使退火后的铁素体平均结晶粒径在钢板宽度方向中央和端部变得均匀。

需要说明的是,关于屈服强度和拉伸强度,从试验片的平行部中央与钢板宽度方向中央或自宽度方向边缘起向钢板宽度方向中央侧100mm位置一致的位置,以使拉伸方向与轧制方向垂直的方式裁取jis5号拉伸试验片,通过依据jisz2241的拉伸试验来求出屈服强度和拉伸强度。

接着,对于本发明的高强度钢板,按成分组成、钢组织的顺序进行说明。

(1)成分组成

本发明的高强度钢板的成分组成以质量%计含有c:0.02%以上且低于0.10%、si:低于0.10%、mn:低于1.0%、p:0.10%以下、s:0.020%以下、al:0.01%以上且0.10%以下、n:0.010%以下、nb:0.005%以上且低于0.070%,余量由fe和不可避免的杂质构成。另外,上述成分组成可以进一步以质量%计含有cr:0.3%以下、mo:0.3%以下、b:0.005%以下、cu:0.3%以下、ni:0.3%以下中的任意一种或两种以上。

c:0.02%以上且低于0.10%

c以nb碳化物(在本说明书中,nb碳化物也包含nb碳氮化物)的形式析出,通过抑制析出强化、铁素体晶粒的粗大化而有助于屈服强度和拉伸强度的增加。c含量低于0.02%时,nb碳化物的析出量减少,因此,得不到本发明作为目的的拉伸强度。c含量为0.10%以上时,因nb碳化物的粗大化而使铁素体粒径粗大化或者使珠光体、马氏体过度生成,因此,屈服比降低至低于0.70。因此,c含量设定为0.02%以上且低于0.10%。优选为0.02%以上。优选为0.06%以下。

si:低于0.10%

si一般通过铁素体的固溶强化而对于增加屈服强度和拉伸强度是有效的。但是,含有si时,由于加工硬化能力的显著提高而使拉伸强度的增加量比屈服强度大,因此导致屈服比的降低,表面性状也发生劣化。因此,si含量越少越优选,在本发明中设定为低于0.10%。原理上,si含量可以为0%,但在工业上大多含有0.001%以上。

mn:低于1.0%

通过mn的含有,利用铁素体的固溶强化使屈服强度和拉伸强度增加。mn含量为1.0%以上时,由于铸造偏析而在mn的富集部和稀薄部使热轧后的铁素体相变开始温度产生差异,nb碳化物的析出温度产生差异。结果,退火后的铁素体的平均结晶粒径变得不均匀,钢板宽度方向中央与端部的拉伸强度之差超过20mpa。因此,mn含量设定为低于1.0%。优选为0.2%以上。优选为0.8%以下。

p:0.10%以下

通过含有p,利用铁素体的固溶强化使屈服强度和拉伸强度增加。但是,p含量超过0.10%时,由于铸造偏析、铁素体晶界偏析而使拉伸强度局部性地增加,因此,导致钢板宽度方向中央与端部的拉伸强度之差的增大。因此,p含量设定为0.10%以下。原理上,p含量可以为0%,但优选设定为0.01%以上且0.04%以下。

s:0.020%以下

s是作为杂质而不可避免地含有在成分组成中的元素。含有s时,由于mns的形成等而使固溶mn减少,由此,屈服强度、拉伸强度降低,或者由于延展性的降低而助长冲压成形时的破裂。因此,优选尽可能地降低s含量,s含量的上限设定为0.020%。优选设定为0.015%以下。原理上,s含量可以为0%,但在工业上大多含有0.0001%以上。

al:0.01%以上且0.10%以下

al是用于在精炼工序中脱氧和将固溶n以aln的形式固定而添加的。为了得到充分的效果,需要将al含量设定为0.01%以上。但是,al含量超过0.10%时,aln的析出量和粒径在钢板宽度方向上变得不均匀,钢板宽度方向中央与端部的铁素体平均结晶粒径差变大。因此,al含量设定为0.01%以上且0.10%以下。优选为0.01%以上。优选为0.07%以下。进一步优选为0.06%以下。

n:0.010%以下

n是在铁水的精炼工序之前不可避免地含有的元素。n含量超过0.010%时,在铸造时析出粗大的nb碳化物,然后,nb碳化物在板坯加热中也不溶解,导致铁素体平均结晶粒的粗大化。因此,n含量设定为0.010%以下。原理上,n含量可以为0%,但在工业上大多含有0.0001%以上。

nb:0.005%以上且低于0.070%

nb是有助于铁素体平均结晶粒的微细化、nb碳化物的析出所带来的屈服比的增加的重要元素。nb含量低于0.005%时,该效果小。另外,nb含量为0.070%以上时,nb碳化物过量析出,在退火后也残留未再结晶铁素体,因此导致钢板宽度方向中央与端部的拉伸强度之差的增加。因此,nb含量设定为0.005%以上且低于0.070%。优选为0.010%以上。优选为0.040%以下。

本发明的高强度钢板可以含有以下的成分作为任选成分。

cr:0.3%以下

cr可以作为不损害本发明的作用效果的微量元素含有。cr含量超过0.3%时,由于淬透性的提高而使马氏体过量生成,有时导致屈服比的降低。因此,在添加cr的情况下,cr含量设定为0.3%以下。

mo:0.3%以下

mo可以作为不损害本发明的作用效果的微量元素含有。但是,mo含量超过0.3%时,由于淬透性的提高而使马氏体过量生成,有时导致屈服比的降低。因此,在添加mo的情况下,mo含量设定为0.3%以下。

b:0.005%以下

b可以作为不损害本发明的作用效果的微量元素含有。但是,b含量超过0.005%时,由于淬透性的提高而使马氏体过量生成,有时导致屈服比的降低。因此,在添加b的情况下,b含量设定为0.005%以下。

cu:0.3%以下

cu可以作为不损害本发明的作用效果的微量元素含有。但是,cu含量超过0.3%时,由于淬透性的提高而使马氏体过量生成,有时导致屈服比的降低。因此,在添加cu的情况下,cu含量设定为0.3%以下。

ni:0.3%以下

ni可以作为不损害本发明的作用效果的微量元素含有。但是,ni含量超过0.3%时,由于淬透性的提高而使马氏体过量生成,有时导致屈服比的降低。因此,在添加ni的情况下,ni含量设定为0.3%以下。

上述以外的余量为fe和不可避免的杂质。另外,在本发明中,除了上述元素以外,也可以在不损害本发明的作用效果的微量范围内含有ti、v、sn、sb、co、w、ca、na、mg等元素作为不可避免的杂质。

(2)钢组织

本发明的高强度钢板的钢组织以面积率计包含铁素体:90%以上、珠光体:0~10%、马氏体、残余奥氏体和渗碳体的合计:0~3%。另外,钢板宽度方向中央的铁素体的平均结晶粒径dc为15.0μm以下,自钢板宽度方向边缘起向钢板宽度方向中央侧100mm的位置处的铁素体的平均结晶粒径de与上述平均结晶粒径dc之差为5.0μm以下。

铁素体:90%以上

铁素体具有良好的延展性,是本发明的钢组织的主相,其含量以面积率计为90%以上。铁素体的含量以面积率计低于90%时,得不到0.70以上的屈服比。因此,铁素体的含量以面积率计设定为90%以上。优选设定为95%以上。需要说明的是,本发明的钢组织可以为铁素体单相(铁素体的含量以面积率计为100%)。

珠光体:0~10%

珠光体对于得到期望的屈服强度和拉伸强度是有效的。但是,珠光体含量以面积率计超过10%时,得不到0.70以上的屈服比。珠光体含量以面积率计设定为0~10%。优选设定为0~5%。

马氏体、残余奥氏体和渗碳体的合计:0~3%

本发明的高强度钢板的钢组织中,除了铁素体、珠光体以外,可以含有合计为0~3%的马氏体、残余奥氏体和渗碳体。马氏体、残余奥氏体和渗碳体的合计超过3%时,得不到0.70以上的屈服比。因此,马氏体、残余奥氏体和渗碳体的合计以面积率计设定为0~3%。

钢板宽度方向中央的铁素体的平均结晶粒径dc:15.0μm以下

铁素体的平均结晶粒径对于得到本发明作为目的的0.70以上的高屈服比是重要的。铁素体的平均结晶粒径超过15.0μm时,得不到0.70以上的屈服比。因此,钢板宽度方向中央的铁素体的平均结晶粒径设定为15.0μm以下。优选设定为10.0μm以下。需要说明的是,铁素体平均结晶粒径的下限没有特别限定,但小于1.0μm时,拉伸强度、屈服强度过度增加,有时导致延伸凸缘性、延伸性的劣化,因此,铁素体平均粒径优选为1.0μm以上。

自钢板宽度方向边缘起向钢板宽度方向中央侧100mm的位置处的铁素体的平均结晶粒径de与平均结晶粒径dc之差:5.0μm以下

钢板宽度方向中央与端部的铁素体平均结晶粒径之差(铁素体平均结晶粒径差)对于使作为目的的钢板宽度方向中央与端部(自钢板宽度方向边缘起向钢板宽度方向中央侧100mm位置)的拉伸强度之差为20mpa以下是重要的,差越小越优选。钢板宽度方向中央与端部的上述铁素体平均结晶粒径差超过5.0μm时,上述拉伸强度之差超过20mpa,得不到本发明作为目的的高强度钢板。因此,将铁素体平均结晶粒径差设定为5.0μm以下。另外,优选设定为3.0μm以下。需要说明的是,上述差的下限没有特别限定,但为了使其小于1.0μm,要使热轧和退火时的宽度方向的温度分布均匀,因此需要高额的设备投资。因此,优选设定为1.0μm以上。

需要说明的是,关于各组织的面积率,利用sem对以从与轧制宽度方向垂直的断面中的板厚方向断面的表面起板厚1/4位置为中心的板厚1/8~3/8的范围进行观察,通过astme562-05记载的点计数法求出。铁素体的平均结晶粒径通过如下方法求出:利用sem对以从上述板厚方向断面的表面起板厚1/4位置为中心的板厚1/8~3/8的范围内的钢板宽度方向中央和端部(自钢板宽度方向边缘起向钢板宽度方向中央侧100mm位置)进行观察,由观察面积和晶粒数算出圆当量直径。

另外,本发明中作为对象的钢板的卷材的宽度为800~1700mm。

(3)制造条件

本发明的高强度钢板通过如下方法制造:将具有上述成分组成的钢熔炼,通过铸造制造板坯(钢片)后,进行热轧、冷轧,然后,在连续退火炉中进行退火。在热轧后,可以进行酸洗。以下,对这些制造条件的限定条件进行说明。需要说明的是,以下的说明中的温度是指表面温度。

铸造方法没有特别限定,只要不发生显著的成分组成的偏析、组织的不均匀,则可以通过铸锭法、连铸法中的任意一种进行铸造。

关于热轧,可以将高温的铸造板坯直接进行轧制,也可以将冷却至室温的板坯进行再加热后进行轧制。另外,在板坯的时刻存在破裂等表面缺陷的情况下,可以利用研磨机等实施板坯修理。在对板坯进行再加热的情况下,为了使nb碳化物溶解,优选加热至1100℃以上。

热轧中,对板坯实施粗轧、精轧。然后,将热轧钢板制成卷取热轧卷材。热轧中的粗轧条件没有特别限定,依据常规方法进行即可。精轧条件没有特别限定,依据常规方法进行即可,但在低于ar3点完成时,生成沿轧制方向伸长的粗大的铁素体,有时导致延展性的降低。因此,精轧温度优选设定为ar3点以上。另外,本发明的高强度钢板的制造条件中,卷取温度是重要的。

卷取温度:500~650℃

卷取温度是用于利用nb碳化物的析出量和析出物直径将退火后的铁素体粒径控制为15.0μm以下的重要的制造条件。在钢板的宽度方向中央,卷取温度低于500℃时,在卷取后的冷却中不会充分析出nb碳化物,在退火的加热和均热时在比较短的时间内析出。因此,析出物直径变得不均匀,由于粒径偏差而使宽度方向中央与宽度方向端部的拉伸强度之差增大。卷取温度超过650℃时,nb碳化物的析出物直径过度粗大化,铁素体平均结晶粒径粗大化,因此得不到0.70以上的屈服比。因此,卷取温度设定为500~650℃。优选设定为550~630℃。

卷取时的钢板宽度方向中央的温度与自钢板宽度方向边缘起向钢板宽度方向中央侧100mm位置的温度之差:50℃以下

卷取时的宽度方向中央与端部(自钢板宽度方向边缘起向钢板宽度方向中央侧100mm位置)的温度差(卷取温度差)是用于利用nb碳化物的析出量和析出物直径将退火后的上述铁素体平均结晶粒径差控制为5.0μm以下的重要的制造条件,差越小越优选。温度差超过50℃时,nb碳化物的析出量和析出物直径之差变得显著,退火后的铁素体平均结晶粒径差超过5.0μm,因此,得不到本发明作为目的的、宽度方向中央与端部的拉伸强度之差小的高强度钢板。因此,上述卷取温度差设定为50℃以下。另外,优选设定为30℃以下。为了使卷取温度差为50℃以下,可以采用使用边缘加热器等对钢板宽度方向端部附近进行加热、或者利用边部挡板调节冷却量的方法。加热方法没有特别限定,可以利用直火加热、感应加热等进行。需要说明的是,上述差的下限没有特别限定,但要使其低于5℃,需要在即将卷取之前增设边缘加热器等的高额的设备投资,因此,优选设定为5℃以上。

冷轧依据常规方法进行即可,轧制率优选设定为30~80%。

冷轧后,使用连续退火炉来进行退火。退火时的加热速度没有特别限定,从生产效率、设备投资的观点考虑,优选以0.1~30.0℃/s进行。加热方式没有特别限定,可以利用辐射管方式、直火加热方式进行。均热温度和时间的条件优选设定为均热温度700~900℃、均热时间1秒以上。需要说明的是,保持时间(均热时间)的上限没有特别限定,保持时间变得过长时,会导致nb碳化物的粗大化,因此,保持时间优选为300秒以下。

均热后的冷却条件没有特别限定,可以列举例如冷却停止温度为400~500℃、平均冷却速度为30℃/s以下、处于400~500℃的温度范围内的保持时间为10~100秒的条件。

可以对通过上述的方法得到的高强度钢板的表面实施镀覆。镀覆优选为在热镀锌浴中浸渍的热镀锌等。

通过对热镀锌层实施合金化处理,可以形成合金化热镀锌层。在实施合金化处理的情况下,保持温度低于450℃时,合金化不会充分进行,镀层密合性、耐腐蚀性劣化。另外,保持温度超过560℃时,合金化过度进行,在冲压时产生粉化等问题。因此,保持温度优选设定为450~560℃。另外,保持时间少于5秒时,合金化不会充分进行,镀层密合性、耐腐蚀性劣化,因此,保持时间优选设定为5秒以上。

然后,可以根据需要实施伸长率为0.1~5.0%的平整轧制。

通过以上方法,得到作为本发明目的的高强度钢板,但在冷轧钢板的情况下,即使进一步实施电镀锌、化学转化处理、有机系覆膜处理等表面处理也不会损害作为本发明目的的特性。

实施例

以下,通过实施例对本发明详细地进行说明。

将具有表1所示的成分组成的钢a~m熔炼,铸造成板坯,冷却至室温后,进行在1250℃下均热1小时的板坯加热,在精轧温度900℃、最终板厚3.2mm的条件下实施热轧,在表2所示的条件下进行卷取。对制造的热轧钢板进行酸洗后,制成最终板厚1.4mm、宽度1250mm的冷轧钢板,实施表2所示条件的退火,制造no.1~21的高强度钢板。在不实施镀覆的情况下,退火使用cal(continuousannealingline,连续退火线)来进行。另外,在实施镀覆的情况下,使用cgl(continuousgalvanizing/galvannealingline,连续热镀锌/热镀锌退火线)来实施热镀锌或合金化热镀锌。在使镀层为合金化热镀锌层的情况下,实施在510℃下保持10秒的合金化处理。

对于所得到的高强度钢板,进行钢组织观察和拉伸试验。

关于钢组织的面积率,将以从与轧制宽度方向垂直的断面中的板厚方向断面的表面起板厚1/4位置为中心的板厚1/8~3/8的范围利用sem放大至1000倍,通过astme562-05记载的点计数法求出。关于铁素体的平均结晶粒径,将以从与轧制宽度方向垂直的断面中的板厚方向断面的表面起板厚1/4位置为中心的板厚1/8~3/8的范围的钢板宽度方向中央和端部(自钢板宽度方向边缘起向钢板宽度方向中央侧100mm位置)利用sem放大至1000倍,由面积和晶粒的个数算出圆当量直径来求出。观察均在各10个视野中进行,算出其平均值。需要说明的是,表2的α是指铁素体、p是指珠光体、m是指马氏体,α粒径是指钢板宽度方向中央的铁素体平均结晶粒径,α粒径差是指钢板宽度方向中央与端部的铁素体平均结晶粒径之差。

关于屈服强度和拉伸强度,从试验片的平行部中央与钢板宽度方向中央或自宽度方向边缘起向钢板宽度方向中央侧100mm位置一致的位置,以使拉伸方向为与轧制方向正交的方向的方式裁取jis5号拉伸试验片,通过依据jisz2241的拉伸试验来求出屈服强度和拉伸强度。需要说明的是,将拉伸强度(ts)为330mpa以上且低于500mpa、屈服比(yr)为0.70以上、钢板宽度方向的中央与端部的拉伸强度之差(ts差)为20mpa以下评价为良好。另外,表2的ts和yr是钢板宽度方向的中央处的拉伸试验结果。

表2中示出钢组织的观察结果和拉伸试验结果。no.1~3、6、8~9、12~15、18满足本发明的全部条件,因此,得到了本发明作为目的的高屈服比、钢板宽度方向的拉伸强度之差小的高强度钢板。另一方面,no.4~5、7、10~11、16~17、19~21的钢成分或制造条件在本发明的范围外,没有得到期望的钢组织,因此,没有得到本发明作为目的的高强度钢板。

产业上的可利用性

本发明的高强度钢板适合于以汽车内板部件等为中心的要求高屈服比的领域。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1