耐磨耐蚀纳米氮化铝复合涂层的制作方法

文档序号:13157936阅读:924来源:国知局

本发明涉及电化学和金属表面处理技术领域,具体涉及一种耐磨耐蚀纳米氮化铝复合涂层。



背景技术:

随着海上运输、深海采矿、港口码头、油气开发、海洋生物技术等新兴海洋产业的兴起,加上近年来深海开发中的油气勘探和生产活动的大大增加,人类对海洋的开发利用规模不断扩大,逐步从传统走向深入。正是由于海洋经济和海洋产业对人类社会的发展起着极为重要的作用,因此海洋环境中各类设备装置的防腐蚀涂层及其技术的开发将成为研究的重点。海洋环境是非常严酷的腐蚀环境,海洋设备的几乎所有部位都需要进行防护,但目前海洋设备的防护主要集中在工程防护,海洋开发研究所用的仪器设备依然与陆地仪器采用相同的防护方法,应用于海洋环境的精密仪器少有采用专门针对海洋环境的防护,造成其腐蚀迅速,损坏率高。

铝涂层由于其点位低,表面易形成性能稳定的三氧化二铝而被广泛用于机械和结构防腐蚀,特别是在海洋工程及设备中。但铝延展性好,强度低,为了设备或者装置需要,常常在铝涂层中添加一些其他物质来提高涂层的硬度和耐磨性能。

氮化铝具有禁带宽度大、电子迁移率高、压电系数大、耐高温等特点,是制造声表面波设备、高频滤波器、谐振器及恶劣条件下的压力传感器等高频设备的理想压电材料。

氮化铝是共价键化合物,具有熔点高、机械强度高、化学稳定性好、电绝缘性好等特点,是优良的压电材料。纯净的氮化铝是无色透明的晶体,块体氮化铝材料的硬度很高,与石英相接近。氮化铝的热稳定性能好,在温度不高于700℃的空气中都可以稳定存在。由于氮化铝具有大的禁带宽度和直接带隙,是重要的蓝光和紫外发光材料,它的热导率高,硬度大,熔点高,可用于高温高功率的微电子器件和深紫外光电子器件。氮化铝化学稳定信号,击穿强度大,介电损耗小,机电耦合系数高,热膨胀系数与si、ga、as等常用半导体材料相近,因此易与其他半导体材料兼容。沿c轴取向的氮化铝具有非常好的压电性和声表面波高速传播性能,传声速度高达11.3km/s,是所有无机非铁性压电材料中最高的,是优秀的声表面波期间和体波器件材料。

纳米氮化铝是一种类金刚石氮化物,是目前最好的高导热绝缘材料,最高可稳定到2200℃,热膨胀系数低,与单晶硅相近,其室温强度高,且强度随温度的升高下降较慢,是一种电阻高、高温下材料强度大、硬度高、界面相容性好、无毒的耐热冲击材料。



技术实现要素:

针对现有技术中海洋开发过程中电子设备各部件少有针对海洋环境的防护措施的问题,本发明提供了耐磨耐蚀纳米氮化铝复合涂层,以获得一种在海洋环境下具有强度大、耐磨、耐腐蚀的复合涂层。

本发明提供的耐磨耐蚀纳米氮化铝复合涂层,由内往外依次包括粘接底层、耐蚀耐磨功能层;所述粘接底层为ni-al复合层,所述耐蚀耐磨功能层为al-aln复合层。

所述al-aln复合层与ni-al粉末复合层以机械结合和冶金结合为主要结合方式。喷涂过程中,al-aln复合层中al与ni-al复合层中形成的ni-al金属间化合物形成微区冶金结合,使涂层间不仅仅通过机械结合力结合,增加了其涂层结合力。

所述ni-al复合层的厚度为50~200μm,所述al-aln复合层的厚度为20~100μm。无机纳米涂层不宜过厚。一般来说,薄无机涂层比厚无机涂层更经久耐用。因为al-aln复合层在冷却凝固时伴随着收缩过程。当熔滴撞击基体并快速冷却、凝固时颗粒内部产生张应力,其大小与无机涂层厚度成正比。无机涂层厚度达到一定程度时,涂层内的张应力超过涂层与基体的结合强度或涂层自身的结合强度时,涂层就会发生破坏。

所述al-aln复合层中铝含量为88.2ωt%~92.1ωt%。所述al-aln复合层采用铝粉或超细铝粉和纳米氮化铝颗粒制备,所述铝粉粒径为:0.5μm~20μm,所述纳米氮化铝粒径为:20~100nm。所述复合涂层的基材为金属、合金和钢材中的一种。所述al-aln复合层采用超音速火焰喷涂技术、低压等离子喷涂技术和惰性气体保护等离子喷涂技术中一种进行加工。铝粉熔点低,易融化,纳米氮化铝熔点高,喷涂时作为不熔颗粒包裹在铝熔融液中。喷涂时,混合均匀的铝粉和纳米氮化铝粉末中铝粉被融化,包裹着未熔纳米氮化铝颗粒经喷涂在有ni-al粉末复合层的基材上,凝固后形成涂层。得到的al-aln复合涂层中纳米氮化铝均匀分布在al中,形成复合涂层,增强了涂层的强度和耐蚀性能。

纳米粉体不能直接用于热喷涂,因为过细的粉末会产生烧损和飞扬等问题,并且送粉十分困难,沉积效率也受影响。本发明中铝粉和纳米氮化铝粉末采用液体分散喷雾法或机械研磨合成法将铝粉和纳米氮化铝粉末混合均匀,并制备成能直接热喷涂的微米级纳米结构喂料。

所述ni-al复合层采用铝包镍复合粉末加工所得,所述铝包镍复合粉松装密度不小于3.25g/cm3。所述ni-al复合层低压等离子喷涂或惰性气体保护等离子喷涂技术加工,以避免喷涂过程中金属被氧化。ni-al复合层在喷涂过程中,ni和al反应生成金属间化合物,放出大量热,使基材微区融化,形成微区冶金,提高涂层和基材之间的结合力,增强涂层的结合强度。同时,ni-al复合层具有“粗化”效应,其涂层表面非常粗糙,可以直接替代喷砂处理的粗化效果,因此在ni-al复合层的基础上进行al-aln复合层喷涂不需要再进行表面粗化处理。

所述的耐磨耐蚀纳米氮化铝复合涂层的制备包括以下步骤:

(1)基材预处理:将基材进行除油除锈处理,并用80目以上刚玉砂或者棕玉砂喷砂,清洗、烘干。

(2)制备ni-al复合层:在步骤(1)获得的基材上,通过低压等离子喷涂或惰性气体保护等离子喷涂技术喷涂铝包镍复合粉,得到ni-al粉末复合层。

(3)制备al-aln复合层:按照摩尔比为1:3~1:5的比例取20~100nm纳米氮化铝粉末与0.5μm~20μm的铝粉,采用液体分散喷雾法或机械研磨合成法将铝粉和纳米氮化铝粉末混合均匀,并制备成粒度在50~200μm的纳米结构微米颗粒。在步骤(2)获得的ni-al粉末复合层上,通过超音速火焰喷涂技术、低压等离子喷涂技术或惰性气体保护等离子喷涂技术喷涂铝和纳米氮化铝制得的微米颗粒,形成al-aln复合层,得到耐蚀耐磨的纳米氮化铝复合涂层。

(4)涂层后处理:根据设备需要进行后期热处理或者封孔处理。

本发明提供的耐磨耐蚀纳米氮化铝复合涂层,具有以下有益效果:

(1)al-aln复合层中硬度大、耐蚀、耐磨的纳米氮化铝作为不熔物均匀分布在涂层中,增强了涂层的耐蚀耐磨性能。同时,氮化铝作为高温导热性能和耐热冲击性能的优良无机材料,可以提高涂层高温应用的稳定性。

(2)al-aln复合层中纳米氮化铝可以阻碍铝凝固结晶,使铝结晶细化,涂层显微结构细化致密,提高涂层的结合强度和断裂强度。同时,纳米氮化铝软化,可在接触到基材后剧烈变形,减少显微裂纹,使涂层层状结构不明显,孔隙率降低。

(3)喷涂时,al-aln复合层中的铝与ni-al复合层形成微区冶金,且少量al-aln复合层中的铝与ni-al复合层析出的镍形成金属间化合物,提高al-aln复合层与ni-al复合层的结合强度。

(4)采用ni-al复合层作为粘接底层,可以增强涂层与基体的结合强度,同时减少al-aln复合层喷涂时粗化的加工步骤。

(5)al-aln复合层选用在海洋工业中防腐性能较好的铝涂层中加入硬度大、强度高、耐蚀耐磨、化学性能稳定的纳米氮化铝,提高铝涂层的耐蚀耐磨性能和高温稳定性,提高海洋环境中各设备仪器的耐蚀耐磨性能,减少海洋开发的设备损耗。

具体实施方式

下面通过实施例对本发明的技术方案进行进一步说明。

实施例1

通过低压等离子喷涂技术获得50μm的ni-al复合层,其喷涂材料采用铝包镍复合粉。所述铝包镍复合粉为直接采购的松装密度不小于3.25g/cm3的用于热喷涂的铝包镍复合粉。在ni-al复合层上采用低压等离子喷涂技术喷涂30μm的al-aln复合层。其铝和纳米氮化铝粉末混合摩尔比为3:1。所得al-aln复合层中铝含量为88.52ωt%。

实施例2

通过惰性气体保护等离子喷涂技术获得200μm的ni-al复合层,其喷涂材料采用铝包镍复合粉。所述铝包镍复合粉为直接采购的松装密度不小于3.25g/cm3的用于热喷涂的铝包镍复合粉。在ni-al复合层上采用惰性气体保护等离子喷涂技术喷涂100μm的al-aln复合层。其铝和纳米氮化铝粉末混合摩尔比为4:1。所得al-aln复合层中铝含量为90.63ωt%。

实施例3

通过低压等离子喷涂技术获得100μm的ni-al复合层,其喷涂材料采用铝包镍复合粉。所述铝包镍复合粉为直接采购的松装密度不小于3.25g/cm3的用于热喷涂的铝包镍复合粉。在ni-al复合层上采用超音速火焰喷涂技术喷涂50μm的al-aln复合层。其铝和纳米氮化铝粉末混合摩尔比为5:1。所得al-aln复合层中铝含量为92.05ωt%。采用超音速火焰喷涂al-aln复合层时,空气中的氧会与铝反应,生成少量的三氧化二铝掺杂在涂层中,增强涂层的耐蚀耐磨性能和高温热稳定性能,但涂层中氧含量增大会降低对涂层的剪切强度。

喷涂结束后,可根据设备及应用需要对涂层进行封孔处理,使产品适用于不同应用中。

本发明中所述的低压等离子喷涂技术、惰性气体保护等离子喷涂技术、超音速火焰喷涂技术、机械研磨合成法、液体分散喷雾法均为现有技术,作为本领域技术人员能够理解并掌握,在本发明中不再一一说明。

喷涂结束后,进行涂层的硬度测试、盐雾试验和耐磨实验。

(1)硬度:喷涂后,不进行其他加工处理,其纳米氮化铝复合涂层硬度为1.0gpa~1.8gpa。

(2)盐雾试验:常温下3.5ωt%中性盐水浸泡360h,不变色、无气泡、不脱落。封孔处理后,常温下3.5ωt%中性盐水浸泡1000h,不变色、无气泡、不脱落。

(3)耐磨实验:直径10mm淬火钢球,载荷30n,200r/min,磨损实验30min后,镀层磨损量为1~3*10-4/mm3

本发明不局限于上述最佳实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是具有与本申请相同或相近似的技术方案,均落在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1