硼系膜的成膜方法和成膜装置与流程

文档序号:18873440发布日期:2019-10-14 20:03阅读:289来源:国知局
硼系膜的成膜方法和成膜装置与流程

本公开涉及一种硼系膜的成膜方法和成膜装置。



背景技术:

近年来,由于半导体制造技术的发展,半导体装置不断精细化,出现14nm以下、甚至10nm以下的半导体装置。另外,为了使半导体装置进一步集成化,将半导体元件以立体方式构建的技术不断发展。因此,半导体晶圆上形成的薄膜的层叠数增加,例如在利用三维nand的快闪存储器中,需要通过干蚀刻对包括氧化硅(sio2)膜、氮化硅(sin)膜等在内的厚度为1μm以上的厚的层叠膜进行精细加工的工序。

作为用于进行精细加工的硬掩膜,以往使用非晶硅膜、非晶碳膜,但耐蚀刻性低。因而,在将这些膜用作硬掩膜的情况下,不得不将膜厚设得厚,需要形成1μm以上那样厚的膜。

并且,作为新一代的硬掩膜材料,讨论一种相比于非晶硅膜、非晶碳膜而言耐蚀刻性高的钨等金属材料膜。但是,耐蚀刻性非常高的钨膜等金属材料膜难以实施针对干蚀刻加工后的剥离、金属污染等的对策。

因此,作为相比于非晶硅膜、非晶碳膜而言耐干蚀刻性高并且相对于sio2膜等而言具有高的选择比的新的硬掩膜材料,正在讨论一种硼系膜。在专利文献1中记载了能够将通过cvd形成的硼系膜用作硬掩膜的技术。

专利文献1:日本特表2013-533376号公报



技术实现要素:

发明要解决的问题

本公开提供一种硼系膜的成膜方法和成膜装置,能够得到具有适合作为硬掩膜的特性的硼系膜。

用于解决问题的方案

本公开的一个方式所涉及的硼系膜的成膜方法用于在基板上形成以硼为主体的硼系膜,所述硼系膜的成膜方法包括以下工序:第一工序,将基板搬入到成膜装置的腔室内,所述成膜装置用于通过利用电容耦合等离子体的等离子体cvd来形成硼系膜;第二工序,施加用于生成电容耦合等离子体的高频电力;第三工序,向所述腔室内供给含有含硼气体的处理气体;以及第四工序,利用所述高频电力生成所述处理气体的等离子体,来在基板上形成所述硼系膜,其中,通过所述第二工序的高频电力的功率来调整所述硼系膜的膜应力。

发明的效果

根据本公开,提供一种硼系膜的成膜方法和成膜装置,能够得到具有适合作为硬掩膜的特性的硼系膜。

附图说明

图1是示出用于实施一个实施方式所涉及的硼系膜的成膜方法的成膜装置的一例的截面图。

图2是用于说明一个实施方式所涉及的硼系膜的成膜方法的流程图。

图3是将通过电容耦合等离子体cvd形成的硼膜的干蚀刻特性与非晶碳膜、非晶硅膜的干蚀刻特性进行比较来表示的图。

图4是示出利用被构成为图1所示的电容耦合等离子体cvd装置的成膜装置改变rf功率来形成硼膜时的rf功率与膜应力之间的关系的图。

图5是将图4的横轴的rf功率进行对数表示所得到的图。

图6是示出使等离子体生成用rf功率变化而形成的硼膜的ft-ir测定结果的图。

图7是示出等离子体生成用rf功率为1000w和100w时的硼膜的膜厚与膜的表面粗糙度rms之间的关系的图。

图8是示出等离子体生成用rf功率与膜应力及成膜速率之间的关系的图。

图9是示出等离子体生成用rf功率为100w、500w、1000w时的压力与膜应力之间的关系的图。

图10是将图9的横轴的压力进行对数表示并且添加了100w时的高压侧的标记的图。

图11是示出等离子体生成用rf功率为100w、500w、1000w时的ar气体稀释率(%)与膜应力之间的关系的图。

图12是示出使压力发生了变化的情况下的硼膜的ft-ir测定结果的图。

图13是示出使ar气体稀释率发生了变化的情况下的硼膜的ft-ir测定结果的图。

图14是示出偏置电压用高频功率与膜应力之间的关系的图。

图15是示出使偏置电压用高频功率发生了变化的情况下的硼膜的ft-ir测定结果的图。

图16是示出用于实施硼系膜的成膜方法的成膜装置的其它例子的截面图。

附图标记说明

10:腔室;20:载置台;30:气体喷淋头;40:气体供给机构;50:高频电力供给装置;60:控制部;100:成膜装置;w:半导体晶圆(被处理基板)。

具体实施方式

下面,参照附图来说明实施方式。

<经过>

首先,对形成本公开的硼系膜的成膜方法的经过进行说明。硼系膜有望被作为通过干蚀刻进行的图案化工序中的硬掩膜,以往,通过cvd来形成。已知在硼系膜之中,尤其是只含有硼的硼膜也具有作为硬掩膜优异的特性。

另一方面,随着半导体装置的精细化和多层构造化,硬掩膜材料不断多样化/厚膜化,并且除了被要求干蚀刻特性之外,还被要求各种各样的膜特性。例如,从膜的密合性、作为基板的晶圆的翘曲等观点出发,硬掩膜材料膜的膜应力为重要的膜特性。另外,伴随半导体装置的精细化,膜自身的平坦性(rms:均方根粗糙度)受到重视,并且作为硬掩膜,被要求表面粗糙度(平坦性)rms为1nm以下的膜。

但是,关于通过cvd形成的硼系膜,膜应力、平坦性一定不足够,从而要求一种这些特性良好的硼系膜。在上述专利文献1中,记载了能够将通过cvd形成的硼系膜用作硬掩膜,但没有公开获得作为硬掩膜材料所要求的膜应力和表面平坦性的成膜方法。

因此,发明人们进行讨论的结果是,发现能够通过使用电容耦合等离子体cvd装置调整高频电力的功率,来调整硼系膜的膜应力。而且发现:通过将高频电力的功率设为500w以下这样的相比于通常的电容耦合等离子体cvd装置而言低的功率来形成硼系膜,膜应力变小,并且表面平坦性也良好,适合作为硬掩膜。

此外,在本公开中,作为成膜对象的硼系膜为具有50at.%以上的硼的以硼为主体的膜,可以为包含硼和不可避免的杂质的硼膜,也可以为在硼中有意地添加氮(n)、碳(c)、硅(si)等其它元素所形成的膜。但是,从获得高耐蚀刻性的观点出发,优选的是不含其它添加元素的硼膜。在下面的实施方式中,对将不含添加元素的硼膜用作硼系膜的例子进行说明。

<成膜装置>

图1是示出用于实施一个实施方式所涉及的硼系膜的成膜方法的成膜装置的一例的截面图。本例的成膜装置100被构成为用于形成硼膜的电容耦合等离子体cvd装置。

成膜装置100被构成为将载置台(载物台)20和气体喷淋头30相向地配置在腔室10内的平行平板型(电容耦合型)的等离子体蚀刻装置。载置台20作为下部电极发挥功能,气体喷淋头30作为上部电极发挥功能。成膜装置100还具有气体供给机构40、高频电力供给装置50以及控制部60。

腔室10具有大致圆筒形状,例如由表面被进行阳极氧化处理后的铝构成,并且电接地。在腔室10的底面形成有排气口11,排气口11与排气配管12连接。排气配管12与包括真空泵、压力控制阀等的排气装置13连接,利用排气装置13对腔室10内进行排气,并且将腔室10内控制为规定的压力(真空度)。在腔室10的侧壁设置有用于搬入搬出作为被处理基板的半导体晶圆w(以下简称为晶圆w)的晶圆搬入搬出口14,晶圆搬入搬出口14通过闸阀g而被开闭。而且,在将闸阀g开放的状态下,进行晶圆w相对于腔室10的搬入和搬出。

载置台20被设置在腔室10的底部的中央部,在该载置台20上载置晶圆w。载置台20由金属材料构成。载置台20借助配置于腔室10的底面的金属制的支承构件21和绝缘构件22被支承。另外,在载置台20中埋入有电阻加热型的加热器23,该加热器23通过被加热器电源24供电而发热,由此经由载置台20将晶圆w加热至规定的温度。

此外,在载置台20,以能够相对于静电卡盘的表面突出或退回的方式设置有晶圆升降销(未图示),在使晶圆升降销突出的状态下进行晶圆w的交接。

气体喷淋头30呈圆板状,经由由绝缘体构成的屏蔽环35被嵌入于设置在腔室10的上部的圆环状的盖15,从而构成腔室10的顶部。气体喷淋头30可以如图示的那样电接地,也可以连接可变直流电源而被施加规定的直流(dc)电压。

气体喷淋头30具有主体31。在主体31的内部,分两层设置有比晶圆w稍大的圆板状的主气体扩散室32和副气体扩散室33。主气体扩散室32被分为中央部的第一气体扩散室32a和边缘部的圆环状的第二气体扩散室32b。

在主体31的底部,以从主气体扩散室32的第一气体扩散室32a和第二气体扩散室32b面向腔室10内的方式形成有很多第一气体喷出孔36。另外,在主体31的底部,以从副气体扩散室33面向腔室10内的方式形成有很多第二气体喷出孔37。第一气体喷出孔36和第二气体喷出孔37交替地形成,第二气体喷出孔37从副气体扩散室32经过主气体扩散室31的第一气体扩散室31a及第二气体扩散室31b内的管部38到达主体31的底部。

气体供给机构40用于供给含有含硼气体的处理气体。作为含硼气体,能够例举乙硼烷(b2h6)气体、三氯化硼(bcl3)气体、烷基硼烷气体、十硼烷气体等。作为烷基硼烷气体,能够例举三甲基硼烷(b(ch3)3)气体、三乙基硼烷(b(c2h5)3)气体、由b(r1)(r2)(r3)、b(r1)(r2)h、b(r1)h2(r1、r2、r3为烷基)表示的气体等。在这些气体中,能够优选使用b2h6气体。

另外,处理气体含有等离子体激励用的稀有气体。并且,也可以含有h2气体等。作为稀有气体,使用he气体、ar气体等。下面,以将b2h6气体用作含硼气体、将含ar气体和he气体的处理气体用作稀有气体的情况为例来进行说明。

气体供给机构40具有b2h6气体供给源41、he气体供给源42、ar气体供给源43、分别从这些气体供给源延伸的配管44、45及46。在配管44上设置有质量流量控制器那样的流量控制器44a和开闭阀44b,在配管45上设置有流量控制器45a和开闭阀45b,在配管46上设置有流量控制器46a和开闭阀46b。从b2h6气体供给源41延伸的配管44及从he气体供给源42延伸的配管45与配管47合流,配管47分支为第一分配配管47a和第二分配配管47b。在第一分配配管47a和第二分配配管47b上分别设置有流量控制阀48a和48b。第一分配配管47a和第二分配配管47b分别连接于主气体扩散室32的第一气体扩散室32a和第二气体扩散室32b。由此,b2h6气体和he气体以规定的分配比分配到第一气体扩散室32a和第二气体扩散室32b,能够使b2h6气体和he气体的量在晶圆w的中央部和周边部不同。另一方面,从ar气体供给源43延伸的配管46连接于副气体扩散室33,ar气体均匀地喷出至晶圆w的整个面。像这样,通过将he气体和ar气体利用独立的供给系统来供给,能够任意地调整he气体与ar气体的流量比。

高频电力供给装置50向载置台20供给双频叠加的高频电力,具有用于供给等离子体生成用的第一频率的第一高频电力的第一高频电源52、以及用于供给偏置电压施加用的第二频率的第二高频电力的第二高频电源54,其中,第二频率低于第一频率。第一高频电源52经由第一匹配器53而与载置台20电连接。第二高频电源54经由第二匹配器55而与载置台20电连接。第一高频电源52向载置台20施加例如40mhz的第一高频电力。第二高频电源54向载置台20施加例如3mhz的第二高频电力。此外,第一高频电力也可以施加至气体喷淋头30。

第一匹配器53使负载阻抗与第一高频电源52的内部(或输出)阻抗匹配,该第一匹配器53发挥功能,使得在腔室10内生成等离子体时第一高频电源52的输出阻抗与负载阻抗看上去一致。第二匹配器55使负载阻抗与第二高频电源54的内部(或输出)阻抗匹配,该第二匹配器55发挥功能,使得在腔室10内生成等离子体时第二高频电源54的内部阻抗与负载阻抗看上去一致。

来自第一高频电源52的高频电力可以被进行功率调制而成为例如脉冲状来施加。脉冲的周期优选为5khz~40khz左右。

控制部60控制成膜装置100的各构成部、例如阀类、流量控制器、第一高频电源52、第二高频电源54、排气装置13、从加热器电源24向加热器23的供电等。控制部60具备输入装置、输出装置、显示装置、存储装置以及具有cpu的主控制部。在存储装置中安装存储介质,该存储介质保存有用于对由成膜装置100执行的处理进行控制的程序、即处理制程,主控制部进行控制,使得调用存储介质中存储的规定的处理制程,并基于该处理制程来使成膜装置100进行规定的处理。

<硼系膜的成膜方法>

接着,参照图2的流程图来说明在如以上那样构成的成膜装置100中实施的作为硼系膜的硼膜的成膜方法。

首先,将闸阀g打开,将晶圆w搬入到成膜装置1的腔室10内(步骤1)。然后,将该晶圆w载置于载置台20,并且将闸阀g关闭。

载置台20的温度被设定为500℃以下,优选被设定为60℃~500℃、例如300℃。在对腔室10进行真空排气之后,向腔室10内供给处理气体(步骤2)。处理气体的供给通过如下方式进行:最初使ar气体和he气体流入腔室10内来进行循环吹扫,之后供给b2h6气体。在进行循环吹扫时,将基于ar气体和he气体得到的腔室10内的压力设为例如400mtorr左右并使晶圆w的温度稳定化。而且,b2h6气体的供给如以下那样进行。将用he气体稀释后的b2h6气体以使b2h6气体实质上为5sccm~50sccm、例如30sccm的流量的方式来进行供给,并且将ar气体和/或he气体以合计100sccm~1000sccm、例如400sccm的流量供给至腔室10内。由此,将腔室10内的压力控制为100mtorr~10torr(13.3pa~1333.3pa)。

然后,从等离子体生成用高频电源52向载置台20施加等离子体生成用的第一高频电力(步骤3)。此时,如后述的那样,通过高频电力的功率来调整在步骤4中形成的硼系膜即硼膜的膜应力。通过第一高频电力,在作为上部电极的气体喷淋头30与作为下部电极的载置台20之间形成高频电场,并生成处理气体的等离子体,通过电容耦合等离子体cvd来形成硼膜(步骤4)。此时所形成的硼膜通常为非晶硼(a-b)。硼膜的成膜时间根据膜厚来适当地设定。

像这样,通过等离子体cvd形成的硼膜(非晶硼a-b)在进行干蚀刻时相对于sio2膜、sin膜而言具有高的选择比。因而,如图3所示,在用以cf系气体为基础适当地添加了ar、o2、n2、h2等气体而得到的气体进行蚀刻时,相比于以往被用作硬掩膜材料的非晶碳膜(a-c)、非晶硅膜(a-si)而言耐蚀刻性高。因此,通过将硼膜应用于硬掩膜等,半导体装置的制造变得容易。

关于硬掩膜材料膜,从膜的密合性、作为基板的晶圆的翘曲等观点出发,被要求膜应力小,另外,伴随半导体装置的精细化,膜自身的平坦性(表面粗糙度;例如均方根粗糙度(rms))受到重视。

在通过cvd来形成如硼膜那样的硼系膜的情况下,能够通过使用如本实施方式那样的电容耦合等离子体cvd装置,调整等离子体生成用的高频电力功率(rf功率),来调整膜应力。

对这一点详细地进行说明。

图4是示出利用构成为图1所示的电容耦合等离子体cvd装置的成膜装置改变rf功率来形成硼膜时的rf功率与膜应力之间的关系的图,图5是将横轴的rf功率进行对数表示所得到的图。其它工艺条件设为:温度为300℃,压力为500mtorr(66.7pa),b2h6气体(b2h6浓度为在he气体中占15vol%)流量为200sccm(b2h6气体实际流量为30sccm,he气体为170sccm),ar气体流量为100sccm,he气体流量为100sccm,电极间间隙为20mm。此外,关于应力,负的方向为压缩方向。

如这些图所示,能够通过等离子体生成用的rf功率来调整膜应力。在利用电容耦合等离子体cvd进行的成膜中,为了生成等离子体,一般使用1000w以上的rf功率,但如这些图所示的那样,可知:在rf功率为1000w以上时,膜应力变为大到1gpa以上的压缩应力。与此相对,当减小rf功率时,膜应力变小,在rf功率为500w以下时,膜应力为500mpa以下这样的能够作为硬掩膜应用的值。并且,明确了在rf功率为100w以下时,膜应力变为300mpa以下这样的更适合作为硬掩膜的值。在电容耦合等离子体中,以这样的低功率生成等离子体并且形成应力小的膜是以往预想不到的。

像这样,对能够通过电容耦合等离子体生成用的rf功率来调整作为硼系膜的硼膜的膜应力,并且rf功率越小则膜应力越小的机理的讨论结果进行说明。

在利用等离子体使作为硼原料的b2h6解离时,如果等离子体的电子温度低,则生成很多键能小的bh3、bh2等含氢的自由基,如果等离子体的电子温度高,则生成很多bh+、b+等这样的离子。图6是示出改变等离子体生成用rf功率形成的硼膜的ft-ir测定结果的图。根据图6可知,等离子体生成用rf功率越小,则b-h键的峰值越高。即,等离子体生成用rf功率越小,则等离子体的电子温度越低,膜中的氢量越多,b-h键越多。在膜中含有很多b-h键的膜被作为h端基,因此认为容易引起膜构造松弛,使膜应力变小。

另外,通过像这样减小等离子体生成用rf功率,膜的平坦性也变得良好。具体地说,在rf功率为500w以下时,即使硼系膜的膜厚厚至1μm,表面粗糙度rms也能够设为1nm左右的小的值,并且,在rf功率为100w以下时,能够得到表面粗糙度rms为0.5nm附近的极优异的平坦性。图7是示出在实际以等离子体生成用rf功率为1000w和100w来进行成膜时的硼膜的膜厚与膜的表面粗糙度rms之间的关系的图。如该图所示那样,可知:在rf功率为1000w时,即使膜厚为1000nm(1μm)以下,表面粗糙度rms也为2nm左右,与此相对,在rf功率为100w时,即使膜厚为1μm,表面粗糙度rms也为0.5nm附近这样的极小的值。具体地说,在膜厚为1.2μm时,保持表面粗糙度rms为0.6nm这样的高的平坦性。另外,虽然未图示,但在rf功率为500w时,介于1000w时与100w时之间,预测在膜厚为1μm左右时,表面粗糙度rms为1nm左右。

根据以上内容,明确了通过减小等离子体生成用rf功率,膜应力变小,并且膜的平坦性变得良好。

图8是示出等离子体生成用rf功率与膜应力及成膜速率之间的关系的图。如图8所示的那样,可知:通过使rf功率为500w以下、甚至小到100w以下,成膜速率也与膜应力一起下降,但是为在实用上不存在问题的水平。

硼系膜的膜应力还通过压力、非活性气体中的ar气体浓度而变化。在等离子体处理中,一般认为:压力越高,并且非活性气体的ar/he比越大,则等离子体的电子温度越低。如上述的那样,当电子温度低时,膜中的b-h键增加,容易引起膜结构松弛,使膜应力变小,因此压力越高,并且非活性气体的ar/he比越大,则膜应力越小。因而,能够通过压力、非活性气体中的ar气体浓度来调整硼系膜的膜应力。

图9是示出等离子体生成用rf功率为100w、500w、1000w时的腔室内的压力与膜应力之间的关系的图,图10是将横轴的压力进行对数表示并且添加了100w时的高压侧的标记的图。其它工艺条件设为:温度为300℃,b2h6气体(b2h6浓度为在he气体中占15vol%)流量为200sccm(b2h6气体实际流量为30sccm,he气体为170sccm),ar气体流量为100sccm,he气体流量为100sccm,电极间间隙为20mm。如这些图所示的那样,确认出成膜时的压力越高,则膜应力越小。另外,如图10所示,在压力为1torr(133.3pa)以上时,膜应力转为正,具有拉伸应力。根据这些,腔室内的压力优选为300mtorr(40pa)~3torr(400pa),更优选为500mtorr(66.7pa)~1torr(133.3pa)。

图11是示出等离子体生成用rf功率为100w、500w、1000w时的ar气体稀释率(%)与膜应力之间的关系的图。ar气体稀释率(%)为ar气体流量在全部工艺气体流量(=400sccm)中所占的比率。设为ar气体流量:0sccm~200sccm。其它工艺条件设为:温度为300℃,b2h6气体(b2h6浓度为在he气体中占15vol%)流量为200sccm(b2h6气体实际流量为30sccm,he气体为170sccm),压力为500mtorr,电极间间隙为20mm。如图11所示那样,确认出ar气体稀释率越高,则膜应力越小。

图12和图13分别是使压力发生了变化的情况下的硼膜的ft-ir测定结果的图以及使ar气体稀释率发生了变化的情况下的硼膜的ft-ir测定结果的图。如这些图所示的那样,压力越高,并且ar气体稀释率(ar气体流量在全部工艺气体流量中所占的比率)越高,则b-h峰值越高,上述倾向得到证明。

硼膜的应力还通过偏置电压施加用的第二高频电力的功率(偏置电压用高频功率)而变化。图14是示出偏置电压用高频功率与膜应力之间的关系的图。此时的其它条件设为:等离子体生成用rf功率为500w,温度为300℃,压力为500mtorr,b2h6气体(b2h6浓度为在he气体中占15vol%)流量为200sccm(b2h6气体实际流量为30sccm,he气体为170sccm),ar气体流量为100sccm,he气体流量为100sccm,电极间间隙为20mm。如图14所示的那样,确认出:偏置电压用高频功率越大且源自等离子体的离子的吸引力越大,则膜应力越大,从减小膜应力的观点出发,不施加偏置电压用高频电力是比较优选的。

图15是示出使偏置电压用高频功率发生了变化的情况下的硼膜的ft-ir测定结果的图。如该图所示的那样,确认出:偏置电压用高频功率越大,则b-h峰值越小,从而偏置电压用高频功率越大,则膜中的b-h键越少,膜应力越大。

当考虑像这样通过偏置电压用高频电力从等离子体吸引离子会使膜应力增加这一点时,能够期待通过对作为下部电极的载置台的阻抗进行控制,来控制源自等离子体的离子对晶圆的作用,从而调整膜应力。即,认为如果将作为下部电极的载置台的阻抗调整成从载置台上的晶圆排斥等离子体中的离子,则能够进一步减小膜应力。

作为控制这样的下部电极侧的阻抗的机构,能够例举日本特开2004-96066号公报中记载的机构。图16是示出具备这样的用于控制阻抗的机构的成膜装置的一例的截面图。该成膜装置100′是在图1的成膜装置100中在偏置电压施加用的第二高频电源54的供电线路上追加可变阻抗单元70和阻抗控制部71而形成的。可变阻抗单元70能够使从作为上部电极的气体喷淋头30观察到的阻抗变化,阻抗控制部71用于控制可变阻抗单元70的阻抗。可变阻抗单元70例如具有在第二高频电源54的供电线路上串联地设置的固定线圈和可变电容器。利用阻抗控制部71控制可变阻抗单元70的阻抗,使得从作为下部电极的载置台20排斥离子,由此能够减小硼膜的膜应力。

如以上那样,根据本实施方式,在通过电容耦合等离子体cvd来形成硼系膜(硼膜)时,通过调整等离子体生成用的rf功率来调整膜应力。具体地说,通过将rf功率设为以往几乎没使用过的500w以下、甚至100w以下的小的值,能够减小硼系膜(硼膜)的膜应力。由此,能够得到维持相比于以往被用作硬掩膜材料的a-c、a-si而言蚀刻选择比高这一特性并且膜应力小、从而适合作为硬掩膜材料的硼系膜(硼膜)。另外,通过减小rf功率,还能够减小膜的表面粗糙度。像这样,根据本实施方式,能够得到特性优异的硼系膜(硼膜)。

另外,还能够通过成膜时的腔室内的压力、ar气体浓度(ar流量/全部工艺气体流量)、偏置电压用高频功率等其它工艺参数来调整膜应力,从而能够通过调整这些工艺参数来使膜应力最优化。

<其它应用>

以上说明了实施方式,但应认为本次公开的实施方式在所有方面均是例示,而不是限制性的。上述的实施方式能够在不脱离权利要求书及其主旨的情况下以各种方式进行省略、置换、变更。

例如,在上述实施方式中,主要对硼膜进行了说明,但在本发明的原理上,可以为在硼中有意地添加其它添加元素所得到的硼系膜、例如富硼的bn膜、富硼的bc膜。

另外,上述实施方式中说明的成膜装置只不过是例示,只要是电容耦合等离子体cvd装置即可,例如能够使用向上部电极施加等离子体生成用的高频电力等具有各种结构的成膜装置。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1