金属基体复合材料及其制造方法与流程

文档序号:20875358发布日期:2020-05-26 16:26阅读:114来源:国知局
金属基体复合材料及其制造方法与流程

发明技术领域

本发明涉及金属基体复合材料。本发明还涉及制造这种材料的方法。



背景技术:

金属基体复合材料目前用于许多领域,特别是因为其机械和化学性能是其中所含元素的固有物理化学性能之间极好的折衷的结果。例如,在钟表领域,用陶瓷颗粒增强的金属基体复合材料(该材料也称为金属陶瓷)被用于生产外部元件如表壳或表圈。用肉眼来看,这些外部元件具有均匀的视觉外观,因为所用陶瓷颗粒的尺寸小(通常小于10μm)和这些陶瓷颗粒的体积分数(通常大于80%)。

天然粒状材料如花岗岩,特别是在艺术或建筑领域中用于生产装饰元件的那些,已经在钟表和珠宝领域中使用。为了说明的目的,提到了由瑞士天梭公司销售的商标名为rock的手表。由于其粒状结构,这种材料例如给手表的外部元件提供了原始且令人惊讶的外观。然而,这样的材料非常硬,并且特别是通过直接在固体材料中研磨而对其进行的机加工是长且昂贵的。

为了克服这些缺点,已经通过合成获得了具有粒状外观的复合材料。与天然粒状材料相似,粒状复合材料用于艺术和建筑中。这些粒状复合材料例如通过将聚合物粘合剂与陶瓷颗粒结合而获得。由于聚合物粘合剂的存在,这些粒状复合材料可以容易地成型,例如通过模制。然而,由于聚合物粘合剂的体积分数高,所以这些粒状复合材料相对较软并且随着时间的流逝而趋于劣化,特别是在光和温度的影响下。粒状复合材料的例子包括聚合物混凝土和再生花岗岩,也称为合成花岗岩。

具有粒状外观的合成复合材料的其他众所周知的例子通过将陶瓷颗粒与矿物粘合剂如水泥、灰泥、石灰、矿渣或粘土结合而获得。这些粒状复合材料如混凝土,可以通过明智地选择其陶瓷颗粒的性质、粒度和体积分数而用于制造装饰元件。然而,这些装饰元件是相对易碎的,不能通过高速率和大量地模制来生产,因为它们的成形是通过将复合材料浇铸在模具中而进行的,粘合剂的固化相对较慢。

因此,在现有技术中需要一种具有粒状外观的复合材料,该复合材料的实施容易并且尤其能够制造用于钟表和珠宝的外部元件。



技术实现要素:

为此,本发明涉及一种具有粒状外观的复合材料,该复合材料包含金属基体,该金属基体就体积分数而言占该粒状复合材料的50-95%,其中陶瓷颗粒具有0.1-2mm的直径且就体积分数而言占复合材料的50%-5%,分散在金属基体中并形成该粒状复合材料的其余部分。

根据本发明的一个具体实施方案,金属基体是由金属粉末获得的,该金属粉末由多个具有小于100μm的累积函数d90值的颗粒形成。

根据本发明的另一个具体实施方案,金属基体选自由奥氏体不锈钢、钛合金、贵金属合金、铜合金和铝合金组成的组。

根据本发明的又一具体实施方案,贵金属选自金、银、铂和钯。

根据本发明的另一个具体实施方案,就体积分数而言,陶瓷颗粒占复合材料的50%-5%,且其直径为0.2mm-2mm。

根据本发明的又一个具体实施方案,就体积分数而言,陶瓷颗粒占复合材料的50%-5%,且其直径为0.25mm-0.75mm。

根据本发明的另一个具体实施方案,就体积分数而言,陶瓷颗粒占复合材料的30%-5%,且其直径为0.25mm-0.75mm。

根据本发明的另一个具体实施方案,就体积分数而言,陶瓷颗粒占复合材料的20%-10%,且其直径为0.25mm-0.75mm。

根据本发明的又一个具体实施方案,陶瓷颗粒是从天然材料或合成材料获得的。

根据本发明的另一个具体实施方案,陶瓷颗粒选自氧化铝、氧化硅、氧化锆、氧化钛、金刚石、碳化硅、氮化硅、碳化钛、硼化钛和硼化锆。

根据本发明的另一个具体实施方案,陶瓷颗粒选自刚玉和硅酸盐。

根据本发明的另一个具体实施方案,粒状复合材料是由金属粉末和基于稀土铝酸盐、稀土硅酸盐或掺杂铝酸锶的发光无机颗粒的混合物获得的。

根据本发明的又一个实施方案,粒状复合材料由1.4435不锈钢粉末和15%体积分数的铕和/或镝掺杂的铝酸锶颗粒(粒度为400-600μm)形成,1.4435不锈钢粉末中90%的颗粒具有小于22μm的粒度。

本发明进一步涉及制造具有视觉上粒状外观的复合材料的方法,该方法包括以下步骤:

-获得由多个具有小于100μm的累积函数d90值的金属颗粒形成的粉末;

-获得陶瓷颗粒,其直径为0.1-2mm;

-将金属粉末颗粒与陶瓷颗粒混合以获得原料,就体积分数而言,金属粉末占所得混合物的50-95%;

-通过将金属粉末-陶瓷颗粒的混合物压入或注入模具中来制造生坯;

-在600-1400℃的温度下对生坯进行烧结处理,持续时间为1h-4h,以获得由复合材料制成的灰体,该复合材料具有视觉上粒状外观并且包含金属基体,就体积分数而言金属基体占该粒状复合材料的50%-95%,并且其中分散有陶瓷颗粒,该颗粒具有0.1-2mm的直径并形成该粒状复合材料的其余部分。

根据本发明的另一个具体实施方案,当将金属粉末颗粒与陶瓷颗粒混合以获得原料时,将有机粘合剂添加到混合物中,该粘合剂就体积分数而言占原料的2-40%,然后将金属粉末颗粒、陶瓷颗粒和有机粘合剂的混合物压入或注入模具中,然后在至少一个脱粘步骤中将有机粘合剂从生坯中除去。

根据本发明的又一具体实施方案,对灰体进行机械加工,特别是降低表面粗糙度。

根据本发明的另一具体实施方案,将灰体研磨。

根据本发明的另一具体实施方案,将灰体抛光。

根据本发明的另一具体实施方案,将灰体砂磨。

根据本发明的另一具体实施方案,使灰体经受化学或电化学蚀刻,这已经观察到,特别是根据灰体的表面状况,能够获得原始的美学效果,例如金属基体和陶瓷颗粒之间的相衬(phasecontrast)提高。

归因于这些特征,本发明提供了一种复合材料,尽管其具有金属基体,但仍耐腐蚀并且不是铁磁性的。该材料由肉眼可见的颗粒构成,这使其具有与粒状材料如某些岩石如花岗岩或某些所谓的“美学”混凝土类似的外观。通过轻松且快速地压入或注入模具中,该粒状复合材料可使得待生产的装饰元件如手表或珠宝的外部部件不受形状的限制,其外观和质感具有原始性和绝对创新性。也可以考虑使用本发明粒状复合材料来生产钟表机芯的部件,例如主夹板(plate)、桥板(bridge)或甚至是摆锤(oscillatingweight)。

此外,本发明复合材料是硬的、韧的,并且由于在其组合物中不存在任何聚合物材料,因此能够容易地经受时间的考验。特别地,该复合材料对可见光中包含的紫外线辐射具有低的敏感性或不敏感。

附图说明

通过阅读以下对本发明粒状复合材料的各种示例实施方案的详细描述,将更好地理解本发明的其他特征和优点,所述示例仅出于说明的目的而提供,并不欲限制本发明的范围。参考附图,其中图1-9是这些各种示例实施方案的截面图。

本发明的一个实施方案的详细描述

本发明是从如下总的发明思想中得出的,该总的发明思想包括获得快速且易于实施的硬、韧和耐用的复合材料。这样的复合材料源自占材料体积的50%-95%的金属基体和占材料体积的5%-50%的陶瓷颗粒的组合,使得待制造的外部元件,特别是用于钟表和珠宝的,不受形状限制,其视觉外观具有原始性和创新性。通过明智地选择本发明复合材料的组合物中使用的元素、陶瓷颗粒的尺寸及其体积分数,除了材料成形参数外,还可以在材料的不同相之间获得对比度,它使本发明的复合材料具有原始的视觉外观,类似于某些岩石如花岗岩或本领域和建筑领域中使用的某些混凝土。

通过将2级钛粉末与刚玉粉末根据不同的体积分数和粒度混合而获得本发明复合材料的第一实例。钛粉末的累积函数具有小于25μm的d90值。换句话说,进入本发明材料的组合物中的2级钛颗粒的90%具有小于25μm的粒度。通过将上述2级钛粉末分别与以下物质混合而制备四个本发明复合材料样品:

-15体积%的刚玉,其具有297μm-420μm的粒度。在这些条件下制备的样品砂磨后的截面图如图5所示。

-25体积%的刚玉,其具有297μm-420μm的粒度。在这些条件下制备的样品砂磨后的截面图如图6所示。

-15体积%的刚玉,其具有420μm-595μm的粒度。在这些条件下制备的样品砂磨后的截面图如图7所示。

-25体积%的刚玉,其具有420μm-595μm的粒度。在这些条件下制备的样品砂磨后的截面图如图8所示。

在将这些钛-刚玉复合材料在真空下在1100℃的温度下烧结2小时的情况下,刚玉和钛之间的反应显示,在金属基体和陶瓷颗粒之间的界面处,一个与刚玉相和钛相共存的相。该第三相在砂磨期间得到证明,在由此获得的复合材料部件上显示出三种不同的灰色阴影。

通过将1.4435不锈钢粉末与刚玉粉末根据不同的体积分数和粒度混合而获得本发明复合材料的第二实例。不锈钢粉末的累积函数具有小于22μm的d90值。换句话说,进入本发明材料的组合物中的1.4435不锈钢颗粒的90%具有小于22μm的粒度。通过将上述1.4435不锈钢粉末分别与以下物质混合来制备四个本发明复合材料样品:

-15体积%的刚玉,其具有297μm-420μm的粒度。在这些条件下制备的样品砂磨后的截面图如图1所示。

-25体积%的刚玉,其具有297μm-420μm的粒度。在这些条件下制备的样品砂磨后的截面图如图2所示。

-15体积%的刚玉,其具有420μm-595μm的粒度。在这些条件下制备的样品砂磨后的截面图如图3所示。

-25体积%的刚玉,其具有420μm-595μm的粒度。在这些条件下制备的样品砂磨后的截面图如图4所示。

将上述本发明不锈钢-刚玉复合材料的四个实例在1300℃的温度和中性氩气氛下在900毫巴的压力下烧结2小时。

在将这些不锈钢-刚玉复合材料在中性氩气氛下烧结的情况下,观察到,作为温度和烧结持续时间的函数,合金的某些元素在最初的白色刚玉中扩散并赋予其颜色,其在美学上非常有趣。因此,当铬在刚玉中扩散时,后者呈现出类似于红宝石的粉红色,而铁在刚玉中的扩散使其呈现出与绿色蓝宝石相似的绿色。

通过将1.4435不锈钢粉末与基于稀土铝酸盐、稀土硅酸盐或甚至铕和/或镝掺杂的铝酸锶的发光无机颗粒混合而获得本发明复合材料的第三实例。

这种材料的一个实例是通过混合15%体积分数的铕和/或镝掺杂的铝酸锶颗粒获得的。不锈钢粉末的累积函数具有小于22μm的累积d90值。换句话说,进入本发明材料的组合物中的1.4435不锈钢颗粒的90%具有小于22μm的粒度。铕和/或镝掺杂的铝酸锶颗粒具有400-600μm的粒度。然后将这种1.4435不锈钢颗粒与铕和/或镝掺杂的铝酸锶颗粒的混合物在1,300℃的温度和中性氩气氛下在900毫巴的压力下烧结2小时。令人惊讶地,在烧结之后,掺杂的铝酸锶颗粒保持其发光效果,这被添加到所得材料的粒状外观中。在这些条件下制备的样品砂磨后的截面图如图9所示。

不言而喻,本发明不限于上述实施方案,本领域技术人员可以在不脱离由所附权利要求限定的本发明范围的情况下考虑各种简单的替代和修改。应该注意的是,尤其是根据本发明,术语“粒状复合材料”应理解为是指由肉眼可见的颗粒形成的材料。还应注意,分散在金属基体中的陶瓷颗粒可以全部具有相同的性质或可以对应于至少两种不同的材料。类似地,陶瓷颗粒可以全部具有相同尺寸或可以具有不同尺寸。还应该理解,尽管机械加工和研磨操作的目的通常是降低表面粗糙度并使灰体具有其最终形状和尺寸,但抛光操作和/或砂磨操作和/或化学/电化学蚀刻操作通常是为了提高最终组件的美学外观。更具体地,已经观察到,通过将这种抛光/砂磨/化学或电化学蚀刻操作应用于灰体,最终组件以大大改进的美学外观获得,特别是通过显示组成该复合材料的不同相,和通过强调这些相之间的对比度。最后,应该指出的是可以由以下事实得到益处:由根据本发明的粒状复合材料制成的部件的基体是金属的,因此是导电的,以对该部件进行电沉积处理,这提供将复合材料部件的金属表面选择性涂覆装饰材料层的可能性。类似地,可以对粒状复合材料部件的金属基体进行阳极化,以对该金属基体进行着色。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1